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Abstract

This paper studies the problem of the long-run preferences distribution in a large population
using an evolutionary approach. Special attention is given to the investigation of the property
of the mixed population equilibria, in which materialists and reciprocators coexist. Some of
the players with reciprocal preference care about not only their own material payoffs but also
about those of others, while the remaining ones are materialists who maximize their own
material payoffs.
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1. Introduction

Individuals frequently behave altruistically toward others despite the potential for their
own material loss and other people�s material gain. Many experimental studies, such as
those by Fehr and Schmidt [5], and Bolton and Ockenfels [1], suggest that subjects ap-
pear not to care about their own monetary payo¤s. Reciprocal behavior is a well-known
human behavior that is similar to altruistic behavior. For example, Levine [8] leads the
model of reciprocal behavior to explain the results of the ultimatum experiment and
public goods games. Sethi and Somanathan [10] also provide a plausible speci�cation
of reciprocal preference in human society. Reciprocators are assumed to be altruistic
toward each other and to be spiteful toward sel�sh individuals. Sel�sh individuals are
interested exclusively in their own material payo¤s. We refer to sel�sh individuals as
materialists in the following. Spitefulness (altruism) is typically represented by negative
(positive) weight on others�material payo¤s.
The objective of this study is to analyze the state in which reciprocators and ma-

terialists coexist (throughout this study, this state is referred to as a mixed popula-
tion). Sethi and Somanathan [10] investigate mainly the state in which all members
are reciprocators/materialists (this state is referred to as a monomorphic population
of reciprocators/materialists). In this paper, we explore the possibility that a mixed
state is (locally) stable. Since reciprocators and materialists appear to coexist in real
society, the study of a mixed population would also be worthwhile.
Reciprocal preferences are often explained by the evolutionary approach. In these

evolutionary frameworks, it is typically assumed that the selection dynamics are pay-
o¤ monotonic: a (heritable) preference that earns higher material payo¤ is typically
replicated more rapidly over time. For the purpose of analysis of a mixed population,
we assume replicator dynamics, which belongs to the class of payo¤monotonic dynam-
ics. On the other hand, in a strategic setting, evolution will favor the emergence of a
preference that earns higher material payo¤.
We consider a strategic setting that belongs to the class of aggregative games. The

feature of this game is that an individual�s material payo¤ depends on his own action
and an aggregate of the actions of others. Such a payo¤ structure is employed by
strategic market games, common pool resource extraction, and public goods games. In
addition, when the problem of preference evolution is studied, an aggregative game is
considered to be a plausible class as a strategic environment (see Sethi and Somanathan
[10], Corchón [2]). We apply this aggregative game to a common pool resource game
(Dasgupta and Heal [4], Koçkesen, Ok, and Sethi [6], Sethi and Somanathan [9]) in
order to investigate the property of the static mixed population.
This paper is organized as follows. In Section 2, we describe our model. In Section

3, we explore under what condition either materialists or reciprocators are better o¤
than the other in a static analysis. In Section 4, we consider the evolutionary dynamic
model. The �nal section is the conclusion.

2. A Model

First, we consider a game in a strategic form in which no player has an a priori
advantage. We focus on a particular class of strategic environments, i.e., aggrega-
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tive games. Let � denote a symmetric n-person (n � 2) aggregative game in nor-
mal form � � fXi; �igi�I , where I 2 f1; � � � ; ng is the set of players and Xi and
�i : �nj=1Xj ! R are respectively the action set and the material payo¤ function of
player i , which is symmetric for all players:

�i(xi;x�i) � �i = �i (xi; X) :

Here, X =
Pn

j=1 xj is the aggregate action in the group, and �i is assumed to be twice
di¤erentiable. Let the marginal payo¤ of player i be denoted as:

T (xi; X) �
@�i
@xi

+
@�i
@X

dX

dxi
:

Next, we introduce the notion of reciprocity. Let us consider a heterogeneous pop-
ulation, in which players belong to two di¤erent types, namely, materialists, who have
materialistic preferences, and reciprocators, who have reciprocal preferences. Mate-
rialists are material-payo¤ maximizers, i.e., they are concerned with only their own
material payo¤s. On the other hand, reciprocators are concerned with not only their
own material payo¤s but also those of others. There are n-persons in the group, where
k 2 f0; � � � ; ng-persons are materialists and (n� k)-persons are reciprocators. Assum-
ing that all players know the distribution of preferences, it is not necessary that all
players know which of two preferences, reciprocal or materialistic, each player has.
Formally, player i�s objective function is de�ned as follows:(

ui (xi) = �i(xi; X); for i 2M;
ui(xi) = �i(xi; X) + �r

P
j2Rnfig

�j(xj; X) + �m
P
j2M

�j(xj; X); for i 2 R

whereM is the set of all materialists and R is the set of all reciprocators. It is assumed
that the material payo¤ functions and the action space are symmetric for all players.
Furthermore,

�r =
�

1 + �
, and �m =

�(1� �)
1 + �

:

� 2 (0; 1) and � > 0 are parameters. Since � > 0, �r 2 (0; �) and �m 2 (��; �). These
speci�cations are led by the following de�nition from Sethi and Somanathan [10],

�ij =
�i + � (�j � �i)

1 + �
.

That is, �ij is the weight placed by player i on player j�s payo¤, which is the weighted
average of �i and (�j � �i). A parameter �i is player i�s certain amount of pure altruism
toward player j. Thus, � implies the weight placed by player i on the deviation of j�s
altruism from i�s own, where the weight placed by i on his own �i is 1. If player j is a
reciprocator, reciprocator i places the weight �r > 0 on j�s payo¤ (where �j = �i = �).
Conversely, if player j is a materialist (�j = 0), reciprocator i places the weight �m on
j�s payo¤. If player i is more concerned with the di¤erence in the altruism of others
from i�s own (� > 1), then reciprocators are spiteful toward materialists. On the other
hand, if 0 < � < 1, reciprocators are altruistic towards all players. We de�ne this
game as a n-person game �(k), k 2 f0; � � � ; ng. Since player�s objective functions are
heterogenous, the equilibria of �(k) will typically be asymmetric.
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Furthermore, for the static analysis in the next section, we apply � to a symmetric
common pool resource game (which we refer to as the CPR game throughout). Let us
suppose that there are n players in a group and each player has access to a common pool
resource. Player i chooses the extraction e¤ort xi � 0, and then X =

Pn
j=1 xj is the

aggregate extraction e¤ort. Let F (X;K) denote the aggregate production function,
where K is the resource stock. For simplicity, we assume that the resource stock
is exogenously given and constant, i.e., K = K0. Then, f(X) = F (X;K0), which
is assumed to be a di¤erentiable real function, such that f 0 (X) > 0, f 00 (X) < 0
and f(0) = 0. Each member of the group receives a share of the total product that
corresponds to his share of the aggregate extractive e¤ort. The cost of e¤ort w is
constant and exogenously given.
The payo¤ to player i is given by

�i(xi; X) =
xi
X
f(X)� xiw = xi (A(X)� w) ;

where A(X) � f(X)=X is the average value of the e¤ort. It is assumed throughout
that f (X) has an upper bound, i.e., limX!1 f

0 (X) = 0, and that f 0 (0) > w to
guarantee an interior solution. As is well known, if all members are materialists under
open access, we will have an equilibrium of e¤ort that is unique, interior, symmetric,
and ine¢ cient.
From these, we obtain,

@�i
@xi

= A(X)� w; (1)

@�i
@X

= xiA
0(X) < 0; (2)

@�i
@xi

= T (xi; X) = A(X)� w + xiA0(X);

@T (xi; X)

@xi
= A0 (X) < 0: (3)

It is noteworthy that, since f(X) is strictly concave and f(0) = 0 from the assumptions,
we have A0(X) < 0 for all X � 0. Furthermore, we assume that

@T (xi; X)

@X
= A0 (X) + xiA

00 (X) < 0: (4)

The sign of (4) means the assumption of strategic substitutability. This assumption is
general in the analysis of the symmetric aggregative game (see, Corchón [2], Sethi and
Somanathan [10]). From (3) and (4), the marginal payo¤ function is strictly decreasing
in xi and X, and

@2�i

@x2i
=
@T (xi; X)

@xi
+
@T (xi; X)

@X
< 0:

Therefore, the payo¤ function �i is strictly concave.
When there are reciprocators or materialists in this CPR game, the necessary con-
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dition for the Nash equilibrium is given by

@ui
@xi

= T (xi; X) � 0; 8i 2M; (5)

@uj
@xj

= T (xj; X) + �r
P

i2Rnfjg
xiA

0(X) + �m
P
i2M

xiA
0(X) � 0; 8j 2 R: (6)

We de�ne this game as a n-person CPR game �C(k), k 2 f0; � � � ; ng.

3. Static Analysis

Consider a CPR game �C(k), k 2 f0; � � � ; ng. Our main questions are under what
condition either reciprocators or materialists have a higher material payo¤ in a given
equilibrium of �C(k), where there are both reciprocators and materialists, i.e., for any
k 2 f1; � � � ; n� 1g.
It is useful to introduce the following concept before we introduce the main subject.

De�nition 1 If players with the same preference take the same action, an equilibrium
x of �C(k) is referred to as intragroup symmetric.

Lemma 1 For any k 2 f0; � � � ; ng, every equilibrium of �C(k) is an intragroup sym-
metric.

The following proposition shows the su¢ cient condition for outperformance of recip-
rocators (materialists).

Proposition 1 In any equilibrium of �C(k), k 2 f1; � � � ; n � 1g, if � > (<) �� =
(n� 1)=k and � > 1, �j(xj; X) > (<) �i(xi; X) for any i 2M , j 2 R.

Proposition 1 implies that, when � > (<) ��, for all k 2 f1; � � � ; n�1g, reciprocators
(materialists) in a group will outperform materialists (reciprocators) in that group. If
1 < � holds, reciprocators are always spiteful toward materialists. Then, reciprocators
have an advantage over materialists. That is, if �� < �, reciprocators have the urge to
extract more of the common resource than the extraction level chosen by materialists.
If �� > � > 1, reciprocators are willing to strengthen altruistic links with each other
rather than respond spitefully to the presence of materialists. Since reciprocators
do not raise their extractive e¤ort much, materialists are able to be better o¤ than
reciprocators.
Moreover, our result implies that the threshold weight �� depends on the number of

materialists (reciprocators) and the number of persons n in a group. Given the group
size n, �� is a decreasing function of the number of materialists. For instance, if there
are a large number of materialists in a group of constant size n, �� becomes small. That
is to say, in a case in which there are a large number of materialists, smaller values of
�
�
> ��

�
are su¢ cient for reciprocators to outperform materialists in �C(k) than in the

case in which there are few materialists. When �
�
> ��

�
is small, �m is not very large,

and �r is large. Conversely, if there are few materialists in a group of (constant) size n,
the threshold weight becomes large. In this case, a relatively large � is necessary for the
outperformance of reciprocators, compared to the case of large k. If �

�
> ��

�
is large,
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reciprocators place large negative weights on the payo¤s of materialists, and the weight
on the payo¤s of reciprocators is small.1 These results have evolutionarily implications
as well, in the sense that evolution will favor the emergence of the preference that earns
a higher material payo¤.
Lemma 1 and Proposition 1 are an extension of those of Koçkesen, Ok, and Sethi

[6] and Sethi and Somanathan [10] to the analysis of the state with a mixed (group)
population that contains heterogenous preferences.2

4. Evolutionary Dynamics

Now, we analyze the long-run preference distribution in a large population. It is as-
sumed that the population is in�nite.3 Let pm and pr denote the share of materialists
and the share of reciprocators in the global population, respectively, where pm+pr = 1.
Furthermore, n-persons are randomly pulled out from the global population, and they
then match randomly with each other in a group of size n that they formed. Therefore,
the probability k (pm) that k materialists are contained in the group formed is

k(pm) =

�
n

k

�
(pm)

k (pr)
n�k:

It is assumed that all players of a group know the distribution of preferences in
the game. Let �m (k) (> 0) and �r (k) (> 0) denote the expected equilibrium pay-
o¤ to materialists and reciprocators respectively in a group with population com-
position k 2 f0; � � � ; ng.4 Generally, each game � (k) may have multiple equilibria,
and then �m (k) and �r (k) originally depend on the probabilities with which a vari-
ety of equilibria are realized in � (k). Our assumptions, along the lines of those by
Sethi and Somanathan [10], are as follows: the probability that any certain equilib-
rium is realized is exogenously given for any given group composition k. As a result,
�m (k) and �r (k) are well de�ned. In the global population, the expected payo¤s to
materialists and reciprocators are ��m (pm) =

Pn
k=1 [k (pm) =

Pn
l=1 l (pm)]�m (k) and

��r (pm) =
Pn�1

k=0

�
k (pm) =

Pn�1
l=0 l (pm)

�
�r (k), respectively. Now, in order to focus on

the stability of the interior states pm 2 (0; 1), we consider replicator dynamics, which is
included in the class of payo¤monotonic dynamics. If the population is very large and
the generations fuse continuously, we may assume that the state pm (t) evolves as a dif-
ferentiable function of t. The rate of increase in _pm=pm is a measure of the materialists�
evolutionary success. We may express this success as the di¤erence between the payo¤

1If the number of materialists k is constant, then �� is an increasing function of n. In this case, the
same logic to the above discussion can be applied here as well, since a decline in n with constant k has
a similar e¤ect to an increase in k with constant n.

2Koçkesen, Ok, and Sethi [6] show that, in any CPR game, materialistic preferences obtain strictly
lower (absolute) payo¤s than interdependent preferences, as materialists are concerned with their own
(absolute) payo¤ and their payo¤ relative to the average payo¤ in the population.

3The results obtained also hold for a su¢ ciently large population.
4We can observe the assumption that the payo¤ to players is positive in many papers. In this

paper, in �C (k), k 2 f1; � � � ; n� 1g, if � > 1, all players� payo¤s are positive (see the proof of
proposition1). Further, in �C (0) and �C (n), the payo¤ to players is also positive (this can be proved
by the same method as the proof of Proposition 1). In this section, with the assumptions of positive
�m (k) and �r (k), we can obtain the following result in a more general aggregative game that includes
the common pool resource game.
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��m (pm) or ��r (pm) and the average payo¤ �� (pm) = pm��m(pm)+ pr��r(pm) of the global
population. Thus, we obtain two replicator equations: _pm(t) = [��m(pm)� ��(pm)] pm
and _pr(t) = [��r(pm)� ��(pm)] pr. From the de�nition of �� (p), these two equations and
take the same form:

_p = 	(p) � p(1� p) � g (p) ;
where p = pm, and 	(p) � [��m(p)� ��r(p)]. We can rewrite 	(p) as

	(p) =
nP
k=1

k(p)
1�0(p)

�m (k)�
n�1P
k=0

k(p)
1�n(p)

�r (k) :

If interior solutions p̂ 2 (0; 1) exist, p̂ satis�es 	(p) = 0. Suppose that g (p) is
di¤erentiable in (0; 1) and continuous in [0; 1]. Then, Proposition 2 shows that there
is, at least, one interior equilibrium p̂.

Proposition 2 In � (k), two equilibria, p = 1 and p = 0, are locally unstable, and
there exists at least one interior equilibrium p̂ satisfying ��m(p) = ��r(p), in (0; 1).

Proof. It is noteworthy that g (p) is a di¤erentiable function on the open interval
(0; 1).

g0 (p) = 	0 (p) � (1� p) p+	(p) � (1� 2p) :
When p! 1, k (p)! 0, 0 (p)! 0 and n (p)! 0. Moreover, we have 	0 (p)! 0,

if p! 1. Accordingly,
g0 (p)! �	(1) :

where 	(1) = �
Pn�1

k=0 fk (1) = [1� n (1)]g�r (k). From l�Hospital�s rule,

lim
p!1

�
k(p)
1�n(p)

�
=

�
0; for k 2 f1; 2; � � � ; n� 2; ng
1; for k = n� 1

Therefore, when p ! 1, then g0 (p) ! �	(1) = �r (n� 1) > 0 holds. Similarly, if
p ! 0, we obtain g0 (p) ! 	(0) = �m (1) > 0. These signs of g0 (p) together imply
that there exists at least one interior equilibrium p̂ 2 (0; 1) where g (p̂) = 0.
Proposition 2 shows that there exists at least one equilibrium in which reciprocators

and materialists coexist. Next, we consider the stability of an interior solution. Let
us now assume that, in �C , 	(p) is a monotone decreasing function in [0; 1=2] when
� > n � 1.5 Proposition 3 shows the su¢ cient condition for the local stability of an
interior solution in �C .

Proposition 3 Suppose that, in �C, when � > n� 1, 	(p) is a monotone decreasing
function in [0; 1=2]. If � > �� = n � 1, there exists one locally stable equilibrium p̂ in
(0; 1=2).

Proof. It is noteworthy that limp!0	(p) = �m (1) > 0 from Proposition 2. We also
have

	
�
1
2

�
=

�
1
2

�n
1�

�
1
2

�n [�m (n)� �r (0)] + n�1P
k=1

�
1
2

�k �1
2

�n�k
1�

�
1
2

�n [�m (k)� �r (k)] :

5It is noteworthy that when � > n � 1, 	(p) becomes a monotone decreasing function in (0; 1=2]
with some combinations of the value of �m (k) ; �r (k) ; k 2 f0; � � � ; ng.
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As � > n � 1, �m (k) < �r (k) for k 2 f1; � � � ; n� 1g, from Proposition 1. From
this and �m (n) < �r (0), 	(1=2) < 0 is hold .

6 Since 	(p) monotonically decreases in
[0; 1=2], there exists one locally stable equilibrium p̂ 2 (0; 1=2).
Proposition 3 implies that, in �C , when reciprocators are spiteful toward material-

ists, the interior equilibrium p̂ 2 (0; 1=2) is locally stable. Then, if there is an initial
point in a p̂-neighborhood, a global population will converge to the mixed population
in time. Furthermore, from Proposition 2, both the monomorphic population of ma-
terialists (p = 1) and the monomorphic population of reciprocators (p = 0) are locally
unstable. Therefore, even if the distribution of preferences changes with time, there are
both materialists and reciprocators in the global population at any time. Our result is
obtained without the assumption of the separability in material payo¤s that is assumed
in Sethi and Somanathan [10].

5. Concluding Remarks

In this study, we explored the states of mixed populations in which materialists and
reciprocators coexist. First, our static analysis in a CPR game proves that recipro-
cators earn strictly greater (lower) material payo¤s than materialists if reciprocators
are much (less) concerned with the di¤erence between the altruism of others and their
own in an equilibrium. Moreover, we �nd that the threshold weight for reciprocators
(materialists) to outperform depends on the distribution of preferences in a CPR game.
Next, under replicator dynamics, we show that there exists, at least, one equilibrium

in which materialists and reciprocators coexist in an aggregative game. Moreover, this
equilibrium is locally stable when reciprocators are spiteful toward materialists in a
CPR game. Therefore, the global population will then converge to a mixed (global)
population over time if there is an initial point in a neighborhood of that interior
equilibrium. In addition, we �nd that the monomorphic (global) population of each
preference is locally unstable.

Appendix

Proof of Lemma 1 Let us suppose that there exists i,j 2 R such that xi > xj at
some equilibrium x of �C(k). From the necessary condition for equilibrium (6), we
must have @ui=@xi = 0 � @uj=@xj, or

T (xi; X) + �rxjA
0(X) + �r

P
j2Rnfi;jg

xjA
0(X) + �m

P
j2M

xjA
0(X)

� T (xj; X) + �rxiA0(X) + �r
P

i2Rnfi;jg
xjA

0(X) + �m
P
j2M

xjA
0(X):

6The fact �r (0) > �m (n) can be proved along the same lines of Sethi and Somanathan (2001
[proof of Proposition 5]). However, in �C , we can obtain �r (0) > �m (n) without the separability
condition @�i=@xi@X = 0 in their proof. Moreover, we can show that �C (0) and �C (n), respectively,
have a unique equilibrium following the same procedure as Sethi and Somanathan (2001 [claim 1 of
Proposition 4]).
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Therefore we obtain

A(X)� w + (1� �r)xiA0(X) � A(X)� w + (1� �r)xjA0 (X)
) (xi � xj)A0(X) � 0:

where (1� �r) > 0 from � 2 (0; 1) and � > 0. Since A0(X) < 0, xi � xj. However,
this contradicts xi > xj. Hence, for all i,j 2 R, xi = xj. The result for any i,j 2 M ,
xi = xj follows by applying the above reasoning to (5). �

Proof of Proposition 1 Let x 2 RN
+ be an equilibrium of �C(k), k 2 f1; � � � ; n� 1g

and the aggregate equilibrium e¤ort be X =
Pn

i=1 xi. Let y and z denote the equilib-
rium extraction e¤ort of i 2M and j 2 R respectively, from Lemma 1.
From the assumptions that A0 (X) < 0, f 0 (0) > w, and f is bounded above, there

exists a unique open access aggregate e¤ort XO > 0 such that A(X) Q w whenever X
R XO.
First, we claim that X < XO whenever y > 0 in �C (k). To examine this, let us

suppose X � XO, which implies that A(X) � w � 0. However, from (5), T (y;X) =
A(X)�w+yA0(X) = 0 must hold at equilibrium. This and (3) improve A(X)�w > 0.
Hence, X < XO.
Next, we show that �C(k) has y > 0. If y = 0 and z = 0, thenX = ky+(n�k)z = 0

< XO. Hence, A(X) � w > 0 holds. On the other hand, from (5) and (6), we have
T (y;X) = T (z;X) = A(X)� w � 0. Hence, y > 0 or z > 0.
Now, let us suppose that y = 0 and z > 0. If X � XO, then A(X)�w � 0 so that,

by A0(X) < 0,

@uj
@xj

= A(X)� w + zA0(X) + �r
P
j2R

zA0(X) < 0:

This improves z = 0, contradicting the idea that z > 0 in a Nash equilibrium. Ac-
cordingly, we must have X < XO whenever z > 0. This implies that A(X) � w > 0.
However, from (5) and y = 0, A(X) � w � 0 must hold. Hence, y > 0 or z = 0.
Therefore, y > 0 and X < XO hold in �C(k):
Furthermore, we show that, if � > 1, �C(k) has y > 0 and z > 0. We assume that

z = 0. From the necessary condition for equilibrium (6),

@ui
@xi

= A(X)� w + �m
P
j2M

yA0(X) � 0:

From the assumption that A0(X) < 0 and � > 1, we obtain A(X)� w < 0. However,
since y > 0, we must have A(X) � w > 0 from T (y;X) = 0 and A0(X) < 0. Hence,
y > 0 and z > 0 must hold when � > 1. This improves X < XO:
Finally, we compare the material payo¤ of a materialist and a reciprocator when

� > 1 holds at equilibrium of �C(k). Take any i 2M and j 2 R. When � > 1, (6) can
be rewritten as follows:

@uj
@xj

= T (z;X) +
�A0(X)

1 + �
[(n� k � 1) z � (�� 1) ky] = 0: (7)
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(5) and (7) imply that

A0(X)(z � y) + �A
0(X)

1 + �
[(n� k � 1) z � (�� 1) ky] = 0;

); z = (1 + �) + �k (�� 1)
(1 + �) + � (n� k � 1) y: (8)

If (n� 1)=k < �, then

1 =
(1 + �) + � (n� k � 1)
(1 + �) + � (n� k � 1) <

(1 + �) + �k (�� 1)
(1 + �) + � (n� k � 1) =

z

y
:

We obtain z > y. By (1) and A(X) � w > 0, we have �j(z;X) > �i(y;X). If
(n� 1)=k > � > 1, then z < y and �j(z;X) < �i(y;X). �
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