
Some equivalence results between mixed strategy Nash
equilibria and minimax regret in 2x2 games 

Andrea Gallice
University of Munich and ICER, Turin

Abstract

We show that in any 2x2 game in which a unique mixed strategy Nash equilibrium exists, the
probability distribution that this equilibrium assigns to player i is either the same or the
mirror image of the distribution that the minimax regret criterion defines for player j. Sharper
results that connect the two distributions for the same player are then established for the class
of symmetric games.
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1 Introduction

This note identi�es the precise relationship that connects the mixed strategy N ash
equilibria (shortened in what follows to msNe) with the mixed version of the minimax
regret criterion (mmmr) in 2x2 games. Nash equilibrium is a fundamental concept in
game theory. Minimax regret is an important tool in decision theory.

It is shown that, whenever a well-de�ned msNe exists, the probability that this
equilibrium assigns to player i playing a certain strategy and the probability that the
mmmr attaches to player j playing the correspondent strategy are either identical or
they are complement to one. In other words the probability distribution de�ned by
the two concepts is always the same, but the order with which the probabilities are
associated with the two strategies may be di¤erent. Consider for instance a game in
which generic player i 2 fA;Bg can choose between strategies Ti and Bi. If the msNe
of player A is given by �TA + (1 � �)BA with � 2 [0; 1] then the mmmr of player B
will be either �TB + (1� �)BB or (1� �)TB + �BB. We provide su¢ cient conditions
for distinguishing between these two cases as well as more precise results for the class
of symmetric games. Before moving to the proof of the claim we brie�y review the two
concepts we are interested in.

In a mixed strategy Nash equilibrium (Nash, 1951) each player randomizes over
his pure strategies according to a probability distribution that makes his opponent
indi¤erent as to what to play. It follows that each player is mutually (weakly) best
responding and therefore the two distributions identify a Nash equilibrium.

Minimax regret has been originally proposed by Savage (1951) as a criterion to
deal with choices under uncertainty. An axiomatic characterization of minimax regret
appears in Milnor (1954). As the name suggests, this criterion indicates the (pure or
mixed) strategy an agent should adopt in order to minimize the maximum regret he
may su¤er. The regret is de�ned as the di¤erence between the payo¤ stemming from the
actual choice of the player and the payo¤ associated with the optimal choice conditional
on the realized state of Nature. As already mentioned, minimax regret is mainly used
in decision theory (Acker, 1997, Bossert and Peters, 2001) but it also �nds applications
in pure (Rustichini, 1999) and behavioral (Gallice, 2007) game theory as well as in
econometrics (Manski, 2007) and AI design (Brafman and Tennenholtz, 2000).

2 The case of a generic game

Consider the following 2x2 game which we indicate with G1.

(qB) (1� qB)
TB BB

G1) TA a; � b; �
BA c; � d; �
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Notice that only the payo¤s of player A appear in the game matrix. The payo¤s of
player B are left unspeci�ed for simplicity and without loss of generality.

The game does not have to be symmetric or zero sum. The only restriction on
the payo¤s is that they are such that no dominant strategies exist. In 2x2 games the
absence of strictly dominant strategies is in fact a necessary and su¢ cient condition to
ensure the existence of a msNe. Still, in order to ensure its uniqueness, also weakly
dominant strategies have to be ruled out. In other words we focus on non-degenerate
games.1 On the other hand a unique minimax regret (pure or mixed) strategy exists for
any game in normal form, in the sense that the criterion always selects a distribution
de�ned by probabilities belonging to the interval [0; 1].

Ruling out the possibility that in Game G1 player A may have a dominant strategy,
we are left with two possible cases:

Case 1) a; b; c; d : (a > c ^ b < d)

Case 2) a; b; c; d : (a < c ^ b > d)

Depending on B�s payo¤s, the partial structure of Game G1 is thus compatible
with Matching Pennies (both cases 1 and 2), Hawk-Dove (case 2) and various kinds of
coordination games (case 1): Pure Coordination, Stag Hunt, Battle of the Sexes.

In what follows we indicate with q̂ni the unique probability that the mixed strat-
egy Nash equilibrium attaches to player i playing strategy Ti. Subscript i 2 fA;Bg
thus indicates the player while superscript n 2 f1; 2g refers to the two possible cases
described above. In a similar way we indicate with p̂ni the probability that the mixed
minimax regret assigns to player i playing strategy Ti. Given that both the msNe
and the mmmr are de�ned over a discrete support of just two elements (the two pure
strategies Ti and Bi), it follows that q̂ni and p̂

n
i are enough to identify the complete

distributions.
Going back to Game G1, player A�s payo¤s are the �ingredients�needed in order to

compute the msNe of player B. The mixed Nash equilibrium of generic player i is in
fact only a function of the payo¤s of the other player j. In the literature this peculiar
feature of the msNe is called the �no own payo¤ e¤ect�.2

In the case of Game G1 the msNe of player B is computed imposing the equality
aqB + b(1� qB) = cqB + d(1� qB) and solving it for qB to get:

q̂1B = q̂
2
B =

d� b
a� c+ d� b

If player B adopts the mixed strategy q̂nBTB + (1� q̂nB)BB with n = f1; 2g then
player A is indi¤erent to playing any of his two pure strategies (or any convex combi-
nation of them) since they both lead to an expected payo¤ of ad�bc

a�c+d�b . Notice that the

1A 2x2 game is de�ned as degenerate if some player has two pure best responses to a pure strategy
of the opponent.

2 Incidentally the empirical evidence of such an e¤ect is seriously questioned by experimental results
(see for instance Goeree et al., 2002, for the case of Matching Pennies games).
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structure of the msNe is not a¤ected by the ranking of the payo¤s. In fact its formula
remains the same both in Case 1

�
q̂1B
�
and in Case 2

�
q̂2B
�
.

The payo¤s of player A can also be used to compute A�s minimax regret. The �rst
step for doing so consists in constructing the regret matrix rnG1 , in our context one for
each case n 2 f1; 2g. In fact, contrary to the msNe, the formula for the minimax regret
does depend on the ranking of the payo¤s. Each cell of the two tables below displays
the value of the regret. The regret is de�ned as the (non negative) di¤erence between
the payo¤ that player A got and the best payo¤ he could have got if he had known in
advance the move of his opponent. The regret matrix of any 2x2 game always contains
at least two zeros, a feature which makes the calculation of the minimax regret very
easy.

r1G1)
TB BB

(p1A) TA 0; � d� b; �
(1� p1A) BA a� c; � 0; �

r2G1)
TB BB

(p2A) TA c� a; � 0; �
(1� p2A) BA 0; � b� d; �

Consider the regret matrix r1G1 which refers to Case 1 de�ned above. Pure strategy
TA attains minimax regret if d� b < a� c. At the opposite, if d� b > a� c, strategy
BA is the one selected by the (pure) minimax regret criterion. Allowing for mixed
strategies (a possibility already considered in Milnor, 1954), player A can randomize
with probabilities p1A and (1 � p1A) over TA and BA such as to minimize the expected
regret he may su¤er.

In the situation of Game G1, the mmmr of player A takes the following values:

Case 1, matrix r1G1 .
The minimax regret mixed strategy is given by p̂1ATA + (1� p̂1A)BA where p̂1A solves
(d� b)p1A = (a� c)(1� p1A), i.e.:

p̂1A =
a� c

a� c+ d� b

Case 2, matrix r2G1 .
The minimax regret mixed strategy is given by p̂2ATA + (1� p̂2A)BA where p̂2A solves
(c� a)p2A = (b� d)(1� p2A), i.e.:

p̂2A =
d� b

a� c+ d� b

Having computed the msNe of player B and the mmmr of player A we are now
able to state the �rst result of the paper.
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Theorem 1 In any 2x2 game with no dominant strategies the probability distributions
implied by the msNe of player j and by the mmmr of player i are either mirror images
(q̂j = 1� p̂i) or they are the same (q̂j = p̂i).

Proof. Compare q̂nB (the probability the msNe attaches to player B playing strategy
TB) with p̂nA (the probability the mmmr assigns to player A playing TA) and notice
that:

Case 1) q̂1B = 1� p̂1A Case 2) q̂2B = p̂
2
A

Given that a single probability (respectively q̂nB and p̂
n
A) is enough to de�ne the complete

distributions of the Nash equilibrium and of the minimax regret, the equalities above
prove the relation between the msNe of player B and the mmmr of player A. An
analogous demonstration proves the link between themsNe of player A and themmmr
of player B.

A su¢ cient condition for having q̂j = 1 � p̂i is the one which de�nes Case 1. In
particular, payo¤s of A have to be such that a > c ^ b < d and payo¤s of B have to
obey a similar condition. On the other hand if the condition a < c ^ b > d holds then
q̂j = p̂i will be the case.

The reason for the equivalence result of Theorem 1 relies on the fact that both the
mixed strategy Nash equilibrium and the minimax regret are based on some indi¤erence
conditions. In a mixed strategy Nash equilibrium a player randomizes over his two pure
strategies in such a way to make his opponent indi¤erent as to what to play. Under
minimax regret the player mixes in order to be indi¤erent with respect to the regret
the two strategies may lead to. In the simpli�ed framework of 2x2 games these two
probability distributions happen to be related according to the statement of Theorem
1.3

3 The case of symmetric games

If the 2x2 game is symmetric then more accurate results can be stated. Symmetric
games are games in which the payo¤ matrix of player j is the transpose of the payo¤
matrix of player i. In other words each of the two players faces exactly the same
situation so that there are no di¤erences between being a row or a column player. An
example of a symmetric game which is built on the initial partial game of the previous
section is given by Game G2 below:

3Still notice that this does not happen in the case of another well known concept with a long tradition
both in game theory (von Neumann and Morgenstern, 1944) and in decision theory (Wald, 1950, Milnor,
1954), namely the maximin criterion which selects the strategy that maximizes the minimum payo¤
a player can get. In the context of Game G1 the maximin mixed strategy of player A is de�ned by
r̂nATA + (1 � r̂nA)BA with r̂nA =

d�c
a�c+d�b for n 2 f1; 2g and it is thus di¤erent from the distributions

de�ned by the msNe and the mmmr whenever b 6= c.
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G2)
TB BB

TA a; a b; c
BA c; b d; d

It is a basic result of game theory that every symmetric game has at least a sym-
metric Nash equilibrium. A symmetric equilibrium is an equilibrium in which the two
players adopt the same strategy. In particular the mixed equilibrium, if it exists, is

always symmetric
�
q̂ni = q̂

n
j

�
. Given the structure of symmetric games it is clear that

also the minimax regret distributions of the two players are always identical
�
p̂ni = p̂

n
j

�
.

Combining these last two equalities with the results of Theorem 1 we can thus establish
a precise relationship between the msNe and the mmmr of the same player.

Theorem 2 refers to the class of symmetric Coordination games. These games are
characterized by the presence of three symmetric Nash equilibria: the mixed equilibrium
and the two equilibria in pure strategies. In the case of Game G2, these last two
equilibria would obviously be (TA; TB) and (BA; BB).

Theorem 2 In any 2x2 symmetric Coordination game the probability distributions de-
�ned by the msNe and by the mmmr for generic player i are mirror images: q̂i = 1�p̂i.

Proof. The condition which de�nes Case 1 (a > c ^ b < d) is automatically satis�ed
by symmetric Coordination games. Because of Theorem 1, the msNe and the mmmr
are thus linked by the relation q̂j = 1 � p̂i. Moreover, being the game symmetric, we
know that q̂i = q̂j . It follows that q̂i = 1� p̂i.

Symmetric Pure Coordination and Stag Hunt games are examples to which The-
orem 2 applies. A Stag Hunt game, together with the associated msNe and mmmr
distributions, appears in Game G3 below:

G3)

TB BB
TA 2; 2 3; 0

BA 0; 3 4; 4

msNe :
�
1
3Ti +

2
3Bi

�
for i 2 fA;Bg

mmmr :
�
2
3Ti +

1
3Bi

�
for i 2 fA;Bg

There are other symmetric games with an equilibrium in mixed strategies. So
called Hawk-Dove games have in fact a symmetric msNe as well as two asymmetric
pure equilibria ((BA; TB) and (TA; BB) in the case of game G2). Theorem 3 refers to
this class of games.

Theorem 3 In any 2x2 symmetric Hawk-Dove game the probability distributions de-
�ned by the msNe and by the mmmr for generic player i are equal: q̂i = p̂i.
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Proof. The condition which de�nes Case 2 (a < c ^ b > d) is embedded in the struc-
ture of Hawk-Dove games. Theorem 1 states that q̂j = p̂i. Given symmetry we also
have q̂i = q̂j . Therefore q̂i = p̂i holds.

An example of a symmetric Hawk-Dove game is given by Game G4:

G4)

TB BB
TA 0; 0 5; 3

BA 3; 5 4; 4

msNe :
�
1
4Ti +

3
4Bi

�
for i 2 fA;Bg

mmmr :
�
1
4Ti +

3
4Bi

�
for i 2 fA;Bg

A simple counterexample is enough to prove that the relations identi�ed by the
theorems presented in this paper only apply to 2x2 games. In fact similar equivalence
results do not necessarily hold for games with more than two strategies. In these
situations the Nash equilibrium and the minimax regret probability distributions are
often totally unrelated as is the case in Game G5.

G5)

TB MB BB
TA 0; 0 0; 1 2; 0
MA 1; 0 0; 0 0; 1
BA 0; 2 1; 0 0; 0

msNe :
�
2
5Ti +

2
5Mi +

1
5Bi

�
for i 2 fA;Bg

mmmr :
�
3
7Ti +

2
7Mi +

2
7Bi

�
for i 2 fA;Bg

4 Discussion

This note explored the relationship which links the mixed strategy Nash equilibrium
with the mixed version of the minimax regret criterion. In any 2x2 game, to know the
probability distribution of one of these two concepts means to know the probability
distribution of the other one as well. Results are sharper for the case of symmetric
games as stated by theorems 2 and 3.

Whenever interpreting the data of experiments involving 2x2 symmetric games it
is important to keep in mind these results. For instance experimental data that are in
line with the Nash equilibrium distribution may be consistent with the minimax regret
hypothesis as well. In such a situation credit for capturing players�behavior cannot
be given to any of the two concepts without further discriminating between the two
alternatives.
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