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Abstract

I provide an elegant proof identifying the unique mixed Nash equilibrium of the
Rock-Paper-Scissors game. The proof is based on intuition rather than elimination of cases. It
shows that for any mixed strategy other than the one that puts equal probability on each of a
player's actions, it holds that this strategy is not a best response to any mixed strategy that is a
best response to it.
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1 Introduction

The game of Rock-Paper-Scissors is a popular example in textbooks (such

as, for example, Osborne 2004, Page 141). It is well-known that this game

has a unique mixed Nash equilibrium in which each player plays each of the

actions Rock, Paper, and Scissors with equal probability.1 The proof of this

fact consists of two parts — one in which it is shown that the strategy profile

mentioned is a Nash equilibrium and another in which it is shown that no

other strategy profile is a Nash equilibrium.The proof of the second part

usually proceeds by distinguishing various cases (for example, the number

of actions in the support of a player’s mixed strategy) and showing that in

each of these cases no Nash equilbrium can be found. In my opinion, this is

a fairly messy and not very intuitive approach.

In this note I provide an elegant proof identifying the unique mixed Nash

equilibrium of the Rock-Paper-Scissors game. The proof is based on intuition

and shows that for any mixed strategy other than the one that puts equal

probability on each of a player’s actions, it holds that this strategy is not a

best response to any mixed strategy that is a best response to it. Therefore,

such a strategy cannot be part of a Nash equilbrium.

2 The game of Rock-Paper-Scissors

The well-known game of Rock-Paper-Scissors (RPS from now on) is the 2-

player zero-sum game in which players simultaneously each choose either

Rock, Paper, or Scissors. The game ends in a draw when players’ action

choices are the same. If players choose different actions, then one wins and

1Of course, this fact follows easily from general results for zero-sum games, such as can

be found in, for example, Raghavan 1994. However, in this note I am concentrating on

proofs that are specifically for RPS.
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the other loses according to Rock beats Scissors, Scissors beats Paper, and

Paper in turn beats Rock. The winning player’s payoff is 1 and the losing

player’s payoff is -1. The game is represented in the following table, where

I follow the usual convention that player 1 is the row player and player 2 is

the column player.

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

3 Mixed Nash Equilibrium in RPS

Each player’s set of possible actions is denoted A = {Rock, Paper, Scissors}
and ∆(A) = {(p(R), p(P ), p(S)) ∈ R3 | (p(R), p(P ), p(S)) ≥ (0, 0, 0) and

p(R) + p(P ) + p(S) = 1} denotes the set of probability distributions on A.
A mixed strategy for player i is a pi = (pi(R), pi(P ), pi(S)) ∈ ∆(A), whose
interpretation is that the player plays actions Rock, Paper, and Scissors with

probabilities pi(R), pi(P ), and pi(S), respectively.
2 Actions are special cases

of mixed strategies because if player i plays an action ai, this is equivalent

to player i playing the mixed strategy pi that puts probability 1 on action ai

and probability 0 on all other actions of player i.

Denoting a player i’s payoff when the action pair (ai, aj) ∈ A×A is played
by Ui(ai, aj), player i’s expected payoff for a pair of mixed strategies (pi, pj) ∈
∆(A)×∆(A) equals EUi(pi, pj) =

P
(ai,aj)∈A×A pi(ai)pj(aj)Ui(ai, aj).

A pair of mixed strategies (pi, pj) is a mixed Nash equilibrium if for every

player i and every alternative mixed strategy p0i ∈ ∆(A) of player i it holds
2Throughout this note, whenever I use i, it is implicitly understood that this refers to

a player and that i ∈ {1, 2}. Also, whenever j is used in addition to i, it is implicitly
understood that this refers to the other player and that j ∈ {1, 2} and j 6= i.
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that EUi(p
0
i, pj) ≤ EUi(pi, pj).

In the proof that follows below, I use best responses and properties of

Nash equilibria based on best responses. The facts mentioned below are all

well-known, but for the sake of making this note self-contained I list them.

When player j plays a specific mixed strategy pj, a strategy pi by player

i is a best response to pj if EUi(pi, pj) ≥ EUi(p0i, pj) for every p0i ∈ ∆(A).
Fact 1. A pair of mixed strategies (pi, pj) is a mixed Nash equilibrium

if and only if player i’s strategy is a best response to player j’s strategy and

vice versa.

Fact 2. If (pi, pj) is a strategy profile and every action ai ∈ Ai that player
i plays with positive probability (pi(ai) > 0) is at least as good a response to

pj as every other action (i.e. EUi(ai, pj) ≥ EUi(a0i, pj) for all a0i ∈ A), then
pi is a best response to pj.

Fact 3. If pi ∈ ∆(A) is a best response to pj ∈ ∆(A) and player i plays
action ai ∈ Ai with positive probability, i.e. pi(ai) > 0, then ai is at least as
good a response to pj as every other action (i.e. EUi(ai, pj) ≥ EUi(a0i, pj) for
all a0i ∈ A).
Theorem 1 The game of Rock-Paper-Scissors has a unique mixed Nash

equilibrium. In this equilibium, both players play the mixed strategy that puts

equal probabilities on all three actions.

Proof. Part 1. First I prove that the strategy profile
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is a mixed Nash equilibrium.

Part 2. I now prove that a strategy profile in which a player plays

a mixed strategy different from (1
3
, 1
3
, 1
3
) is not a mixed Nash equilibrium.
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Suppose player i plays mixed strategy

pi = (pi(R), pi(P ), pi(S)) 6= (1
3
,
1

3
,
1

3
).

Without loss of generality, I assume that player i plays action Rock with

higest probability, i.e. pi(R) ≥ pi(P ) and pi(R) ≥ pi(S). It then necessarily
holds that

pi(R) >
1

3
.

Now consider player j’s expected payoffs from his actions Paper and Scissors,

the actions that beat and are beaten by Rock, respectively. EUj(pi, P ) =

pi(R) × 1 + pi(P ) × 0 + pi(S) × (−1) = pi(R) − pi(S) and EUj(pi, S) =
pi(R)× (−1) + pi(P )× 1 + pi(S)× 0 = −pi(R) + pi(P ). Using that pi(S) =
1− pi(R)− pi(P ), I derive EUj(pi, P )−EUj(pi, S) = 3pi(R)− 1 > 0. Hence,
by Fact 3 I know that

pj(S) = 0 for every mixed strategy pj that is a best response to pi.

Now, suppose pj(S) = 0 and consider player i’s expected payoffs from his

actions Rock and Paper, the actions that beat and are beaten by Scissors,

respectively. EUi(R, pj) = pj(R)× 0 + pj(P )× (−1) + pj(S)× 1 = −pj(P )
and EUi(P, pj) = pj(R) × 1 + pj(P ) × 0 + pj(S) × (−1) = pj(R). Because
pj(S) = 0, it holds that pj(R) + pj(P ) = 1, so that either pj(R) > 0 or

pj(P ) > 0 or both. In either case, EUi(R, pj) < EUi(P, pj). Therefore, by

Fact 3 I know that

pi(R) = 0 for every mixed strategy pi that is a best response to pj.

I have now shown that a mixed strategy other than (1
3
, 1
3
, 1
3
) is not a best

response to any mixed strategy that is a best response to it. Therefore, using

Fact 1, I derive that there is no mixed Nash equilibrium in which a player

plays a strategy different from (1
3
, 1
3
, 1
3
). Q.E.D.
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4 Applicability

The proof technique that I have used, namely to prove that a strategy cannot

be a best response to any strategy that is a best response to it, can in principle

be applied to any game in strategic form. That is not to say that it will

provide a less messy and more intuitive answer for each game, as that will

depend on the characteristics of the specific game. But I think this proof

technique is a valuable tool in a game theorist’s tool box and it can be used

in combination with other techniques as well.

For example, in the Bertrand price-setting game with two firms producing

homogeneous goods with the same constant marginal costs of production, the

proof technique in this note can be used to show that any pair of prices in

which one firm sets a price below the marginal cost cannot possibly be a

Nash equilibrium. This is so because if firm i sets a price pi < c, where c

denotes the marginal cost of production, then a best response by firm j is

to set any price pj > pi. Firm i will then satisfy demand for it’s product at

a price below cost and make a loss, whereas it can have no loss if it sets a

price equal to c. Hence, pi < c is not a best response to any price pj that

is a best response to it. If there is a smallest unit of money, then the proof

technique can also be used to show that any pair of prices in which one firm

sets a price more than one unit above the marginal cost cannot possibly be

a Nash equilibrium. This is so because if firm i sets a price pi > c+ e, where

e denotes the smallest unit of money, then a best response by firm j is to set

a price pj = min{pm, pi − e}, where pm denotes the monopoly price in the
market. Firm i can then increase its profit by setting a price equal to pj so

that demand for it’s product will be positive. Hence, pi > c+ e is not a best

response to any price pj that is a best response to it. Now that it has been

determined that in a Nash equilibrium player i has only two possible prices,

namely pi = c and pi = c + e, the Nash equilibria can be easily identified
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by finding the best responses to these two prices as pj = c and pj = c + e,

respectively.
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