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Abstract

At each time, a firm facing uncertainty over future market conditions have to make a decision
whether they should continue to produce or stop the process? As the traditional principle, the
firm will go out of production when the price of the typical unit does not cover the average
variable cost that it must incur to produce the typical unit. In reality the firm can suffer losses
today; however it can get more gains tomorrow that is enough to make up the losses. It
means that this rule seems not be suitable absolutely in an uncertainty environment. And it
leads to a rule that the firm only stop producing if average variable costs of unit exceed the
price of unit by a positive amount. This paper expects to find this exceeding amount and
when a firm will stop producing. Under uncertainty, the price of unit and the average
variables cost are assumed to follow a continuous time stochastic process. We wish to apply
the optimal stopping time approach in order to solve it.
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1. Introduction 
There are many firms carrying out production and sale of their goods and services in 

the markets. At each time, a firm facing uncertainty over future market conditions have to 
make a decision whether they should continue to produce or not? The principle of 
microeconomics said that if total revenue (TR) is less than variable costs of production, the 
firm will shut down its production. In other words, the firm will go out of production when 
the price of the typical unit does not cover the average variable cost. In reality the firm can 
suffer losses today; however it can get more gains tomorrow that is enough to make up the 
losses. It means that this rule seems not be suitable absolutely in an uncertainty environment. 
And it leads to a rule that the firm only stop producing if average variable costs of unit 
exceed the price of unit by a positive amount. This paper expects to find this exceeding 
amount and when a firm will stop producing. Under uncertainty, the price of unit and the 
average variables cost are assumed to follow a continuous time stochastic process. The 
problem has a few characteristics similar to the problem “The waiting to invest”. Thus we 
wish to apply the optimal stopping time approach in order to solve it. 

Although McDonald and Seigel (1985) considered the investment problem and the 
value of the firm when there is an option to shut down, the shut-down problem -as the matter 
of fact- have not been mentioned as a separate issue under uncertainty. In their paper, they 
showed how option pricing techniques can be used to study the investment problem of the 
firm which has the option to shut down production if variable production costs exceed 
revenues. In our paper, we wish to detach the shut-down problem from the investment. Our 
contribution in this paper is to give shut-down problem in the simplest circumstance and 
perform an obvious result in the special case of the average variable cost. Besides, we also 
achieve a new solution of a new differential equation presented in section III of this paper. 

 The firm in the model is risk-neutral. This paper is organized as follows. Section I 
presents a general model where the price of unit follows a geometric Brownian motion and 
the average variable costs also follow a continuous time stochastic process. Section I begins 
with simple computation the value of the firm and the optimal stopping time with only the 
price of unit follows a geometric Brownian motion; the average variable costs is constant. 
Despite the essential different problems, the shut-down problem in this section is slightly 
similar to one part of the problem in the paper “Entry and Exit decision under uncertainty” by 
Dixit, Avinash (1986). We used the technical calculi in the literature which we will refer in 
details later. Section III extends to the average variable costs under the process indicated in 
section I. We apply popular variants of Brownian process to the average variable cost in this 
section. Section IV analyzes the obtained results and their reasonableness. Section V gives 
some conclusions of this work. 
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2. The shut-down problem 
We are considering a firm which produces a constant quantity of commodity, says q, at every 
time period. The firm has to pay money to buy inputs per unit at each time period t, called . 
It is clear that  is average variable costs of production. Before its production, the firm paid 
for expenditure of building material and technological foundation which is seen as sunk costs 
because the firm is not able to recover them under any circumstance. Thus, it is not necessary 
to take into account the fixed costs in shut-down decision. The revenue that the firm obtains 
for the sales of a unit of its output is exactly the price of unit, called . As mentioned above, 

 and  are stochastic. 

tC

tC

tP

tP tC

 Assuming that  follows a geometric Brownian motion of the form: tP

    =           (1) tdP )( 1
tppt dBdtP σμ +

where  is the increment of a Wiener process. 1
tdB

tC  follows a dynamic stochastic process of the form: 

tdC = )²1(( ²1
ttcct dBdBdtC ρρσμ −++ )                        (2) 

where  and  are standard increment of Brownian motion and 1
tdB 2

tdB ρ  is coefficient of 

correlation between  and (1
tdB ρ d +1

tB ²1 ρ− d ).  2
tB

1
tB  and  are independent of each other.  2

tB

pμ and cμ  are called the drift parameters in Brownian motion; 

 cσ  and pσ are the volatility parameters. 

 Assuming  followed by equation (2) is to aim to simplify computation in next 
steps. This is an only special case of geometric Brownian motion, in effect. We show this in 
Appendix. 

tC

2.1.The objective function 

Returning to the problem, it is that the firm will stop producing if the price of unit is less 
than the average variable costs by a positive amount as above saying. The firm receives 
q*( - ) at each time t. If the firm decides not to produce, profit is zero. The stopping time 
problem consist of finding the number z* such that at each time, if / z* the firm will 
shut down and otherwise it continues to produce. The decision is made to maximize the time 
zero expected profits. If /  touches the boundary z* at time t*, the firm decide to come to 
a stop at that time. And the value of the firm at time t can be written as 

tP tC

tC tP ≥

tC tP

 E[ ]    (3) ∫ −−t
dttCtPqrte

0
)(

where r is the given appropriate discount rate. It is risk less interest rate, normally. We also 
give assumptions that the variable unit production cost,  , and the output price  are tC tP

 1



known at time zero with certainty. In other word,  and  are given. The firm will choose 
a boundary to stop producing in order to maximize (3). Solving this problem, we derive an 
optimal decision rule and the value of the firm. 

0P 0C

2.2.The difference between “The investment timing problem” and “the shut-down 
problem” 

At first sight, two problems seem to be identical, but they are not so. In the investment 
timing problem (R.McDonald and D.Siegel 1986), the project’s costs is only installed once at 
time t – the time to invest, during the life of the project. Thus the expected present value of 

the payoff is E[ ] and the investment timing problem want to maximize it. With 
regarding to the shut-down problem, at each time t, the costs always is installed and the 
revenue always achieves continuously until the stopping time t*. Therefore, the time zero 

expected value of the firm is not E [

)( tCtPrte −−

)( tCtPrte −− ], which is only the expected present value 
of the firm at one time t. In fact, the firm wishes to maximize the total of the time zero 
expected of the payoffs it obtained until it shuts down. In mathematical aspect, integral signal 
is added to the objective function in the shut-down problem like the formula (3). This 
suggests that the shut-down problem can be solved by the approach similar to the investment 
timing problem if the integral signal is relaxed. We are going to solve it by applying the 
approach in the following parts.  
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3. The price of unit is stochastic and the cost of unit is constant 

 We begin with the simple case of the price of commodity  following (1) but the cost 
of its is constant C. The problem becomes:  

tP

V(P)= E[ |
Ct

Max
,P, 0

∫ −−
t

t
rt dtCPqe

0
)( PP =0 ]                        (4) 

Where = exp[tP 0P 1
²

)
2

( tp
p

p Bt σ
σ

μ +− ] because  is a geometric Brownian motiontP 1. 

By arbitrage, over an interval dt , the total expected return from production must be 
equal to . This expected value of the firm includes two components, an expected 
value , and a flow of revenue (

rVdt
dVE0 )dtCP − . By Ito’s Lemma,  

dtPPVdtPVPdVE p
p )(')("²

2

2

0 μ
σ

+=  

So in the continuation region  must satisfy the following differential equation: )(PV

0)(')("²
2

2

=−+−+ CPrVPPVPVP p
p μ

σ
                             (5) 

We can see the equation (5) includes 2 parts: one part is homogeneous and the other part is 
nonhomogeneous. Dixit (1989) found the general solution of the equation like above one. 
That is to take linear combination of the solutions of the homogeneous part, and add on any 
particular solution of the full equation. The homogeneous part are easy to obtain the solution, 

and a simple substitution showed ( )
r
C

r
P

p
−

− μ
 satisfied the equation. 

    Assuming that pr μ≠ , try a solution of the equation (5) with the form of  

r
C

r
P

PPV
p
−

−
+=

μ
α)(                                        (6) 

Substitute (6) into (5), we get the equation below: 

 0)1(
2
1)( 2 =−+−= rh pp αμαασα                                 (7) 

If the volatility pσ 0≠ , this is a quadratic equation of α  with 02)²
2

( ²
²

>+−=Δ rp
p

p σ
σ

μ 2 

guaranteeing that it has two roots 1α  and 2α . Since h(0)=-r <0 and 0
2

)("
²
>= ph

σ
α , one root 

must be greater than 0 and one root is negative. Written out explicitly: 

                                                 
1 See Tomas Bjork, Arbitrage theory in continuous time(1998), p.55 
2 Since r>0 
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0
)

2
(

²

²

1 >
Δ+−−

=
p

p
p

σ

σ
μ

α (7) and  0
)

2
(

²

²

2 <
Δ−−−

=
p

p
p

σ

σ
μ

α  

Thus we can write the general solution of (5) as =)(PV
r
C

r
PBPAP

p
tt −

−
++

μ
αα 21 . 

Dealing with (4), we can see that when  is very small,  becomes nearly worthless. 

Thus, we need B=0 and the solution is:  =

tP )(PV

)(PV
r
C

r
PAP

p
t −

−
+

μ
α1  (8). 

In the stopping region, the firm decides to stop producing and it does not earn the 
flow of revenue. Thus we have the value matching condition:  

)(PV  = 0                                                    (9) 

and smooth-pasting condition: 

0)(' =PV                                                   (10) 

Substituting the solution (8) in equations (9) and (10), we obtain 

)1(
)(

1

1*

α
μα
−

−
=

r
rC

P p
t  where 11 ≠α                           (11) 

As a result, if the growth rate of price pμ  is not equal to the discount rate, it is 

optimal for the firm to stop producing as soon as tP ≤
)1(

)(

1

1*

α
μα
−

−
=

r
rC

P p
t  where 1α is given 

by (7). 

3. Both the price of unit and the cost of unit are stochastic 
We still consider the same problem, except that the price of commodity is also the stochastic 
process (2). The issue in section II is only a simple case of that in section III. The problem is 
formulated as: 

V(P,C)= E[ |
0C

Max
,Pt, 0

∫ −−
t

tt
rt dtCPqe

0

)( CCPP == 00 ; ]                        (12) 

We are having a function with two stochastic variables. Our objective now is to alter 
the function in equation (12) to equivalent function with a variable following a Brownian 
process. Based on that, we hope it is possible to solve the problem in this section by the 
similar approach in above section.  

4.1 In order to apply easily the used method in the part 2 of section II, we transform 
equation (12) from two-stochastic variables to one stochastic variable. 

Denote 
t
t

t P
CZ =  proves that  is also a geometric Brownian motion latter. Now, we 

would like to rewrite equation (12) according to : 

tZ

tZ
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V(Z)= E[ |
0C

Max
,Pt, 0

∫ −−
t

tt
rt dtZqPe

0

1 )(
P
CZ =0 ]                        (13) 

Since  and  are under geometric Brownian motion, they can be written as an 
exponential function of time below

tP tC
3:  

tP = exp[0P 1
²

)
2

( tp
p

p Bt σ
σ

μ +− ]     (14) 

 =tC ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
− ²1

²
0 ²1

2
exp ttc

c
c BBtC ρρσ

σ
μ    (15) 

Substitution equation (14) into equation (13), we get 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∫

−−
t

t
p

tp
tr

C
ZZZtBeqEPMaxZV p

0
0

1
0 1

20

²
)(

,Pt,
exp)(

0

σ
σμ    (16) 

We see that equation (16) is nearly similar to the problem in section 2, except for the 

term 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
− tB p

tp 2
exp

²
1 σ

σ . It is lucky that we can apply Girsanov’s theorem to transform it. 

Below is its application. 

 

We know that { } ∞<≤ttB 0
1 is a standard Brownian motion under the probability 

measure P and let { } ∞<≤ℑ tt 0  be the associated Brownian filtration. Under P, the process 

(t)= Λ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
− tB p

tp 2
exp

²
1 σ

σ is a martingale with respect to { } ∞<≤ℑ tt 0 . The formula 

( F )P tEFQ 1)()( Λ=  defines a new probability measure Q. The distribution of the stochastic 

process { } ∞<≤ttB 0
1  under the new probability is described as  

tBW ptt σ−= 11                                            (17) 

The Girsanov’s theorem said that under the new probability Q, the stochastic process 
{ } ∞<≤ttW 0

1  is also a standard Wiener process. 

Let  (18).  22
tt BW =

Since and  are the independent standard Brownian motion processes under the 

probability measure P,  given by equation (18) is also a standard Wiener process under 
the new probability Q. 

2
tB 1

tB
2

tW

                                                 
3 See Tomas Bjork, Arbitrage theory in continuous time(1998), p.55 
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Now, the problem (16) under the probability measure P turns out  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=−= ∫

−−
ZZdtZeEPMaxZV

t

t
tr

Q
C

p
0

0
0 1

0

)(

,Pt, 0

)(
μ                  (19) 

under the new probability measure Q. 

It is clear that if  in equation (19) also follows a geometric Brownian motion then 
the solution of (19) appears to nearly alike to that in section 2. Fortunately it is true and the 
proof of this is relegated to the Appendix.  

tZ

We can write  as a stochastic process: tZ

( )[ ]tpctt dWdtZdZ σμμ +−=                                      (20) 

where  

pcpc σρσσσσ 2²² −+=       (21) 

( )[ ]²1 ²11
tctpct WWW ρσσρσ

σ
−+−=       (22) 

It is easy to realize that  is a Wiener process with normally distributed which has 
zero mean and standard variance t because  is a linear function of two Brownian processes 

and .  

tW

tW
1
tW 2

tW

Thus we say  is a geometric Brownian motion. In the following part, we use the 
same method in section 2 but the characteristic of the boundary at which the firm shuts down 
production is not the same. 

tZ

4.2.Solution of the transformed problem 

The problem we have been considering involves choosing a boundary Z* to the 
equation (19). The argument establishes that the firm will stop production when the ratio 

P
CZ =  reaches the boundary z*.  

McDonald & Siegel, 1986 showed that the boundary is homogeneous of degree zero 
in P and C as well as independent of calendar time. Thus the correct rule is to shut down 
when the ratio C/P reaches a fixed boundary. The paper of McDonald & Siegel (1986) also 
proved that there are not multiple boundaries. Thus, the stopping region here is [z*, ) only.  ∞

Similar to the section 2, the firm operates under the condition of absence of arbitrage 
opportunity. Over an interval , the total expected return from producing must be equal to dt

Vdtr p )( μ− . This expected value has two components:  and . By Ito’s 
Lemma,  

dVE0 dtZ )1( −

dtZZVdtZVZdVE pc )(')()("²
2

2

0 μμ
σ

−+= . Thus in the continuation region, 

must satisfy the following differential equation: )(ZV
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( ) 0)1()()(')()("²
2
²

=−+−−−+ ZzVrzzVzVz ppc μμμσ
             (23) 

We can easily realize that a solution of the homogeneous part of the equation (23) is 
βZ  ,which both McDonald, Siegel (1985) and Dixit (1989) referred to. Thus, what this paper 

presents here is to find out a particular solution of the nonhomogeneous part in equation (23). 

A clear substitution ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

− pc rr
Z

μμ
1

 looks quite good in the equation. 

Thus, trying a solution of the equation (23) with the form  

pc rr
ZZzV

μμ
β

−
+

−
+=

1)(                                 (24) 

  Substituting (24) into (23), we get the quadratic equation of β  below: 

 0)()()1(
2
1)( 2 =−−−+−= ppc rg μβμμββσβ                    (25) 

If the volatility σ 0≠ , this is a quadratic equation of β  with 

0)(2)²
2

( ²
²

1 >−+−−=Δ ppc r μσ
σ

μμ 4 guaranteeing that it has two roots 1β  and 2β . 

Since (0)=g ( )pr μ−−  <0 and 0
2

)("
²

>=
σ

βg , one root must be greater than 0 and one 

root is negative.  Written out explicitly: 

0
)

2
(

²

1

²

1 >
Δ+−−−

=
σ

σ
μμ

β
pc

 (26) and  0
)

2
(

²

1

²

2 <
Δ−−−−

=
σ

σ
μμ

β
pc

 

Thus we can write the general solution of (23) as 

V(Z)=
pc rr

ZZBZA
μμ

ββ

−
+

−
+

1
21

11 . Dealing with (19), we can see that when  is very 

small, V( ) becomes nearly worthless. Thus, we need =0 and the solution is: 

V( )=

tZ

tZ 1B

tZ
pc

t rr
ZZA

μμ
β

−
+

−
+

1
1

1  (27).  

On the other hand, in the stopping region, the firm stops producing so that the revenue 
it gets is equal to zero. In other word, the value matching and smooth pasting follows 
respectively: 

)(ZV  = 0                                                    (28) 

0)(' =ZV                                                     (29) 

                                                 
4 In this section, we will only consider the case of r> pμ  and cr μ> . 

 7



Substituting the solution (27) in equations (28) and (29), we obtain 

( )r
r

Z
p

c
−−

−
=

μβ
μβ
)1(

)(

1
1*  where 11 ≠β 5                             (30) 

As a result, if the growth rate of price pμ  is less than the discount rate, it is optimal 

for the firm to stop producing as soon as Z≥ ( )r
r

Z
p

c
−−

−
=

μβ
μβ
)1(

)(1

1
*  where 1β is given by 

(26). 

5. Analytical Results 

We derived the results in two above sections but we ignored the relations between the 
discount rate and the expected growth rate of the output price and that of the costs.  These 
will be considered in this section with their economic interpretation. 

In section II, we used the assumption: the expected growth rate of the output price is 
different from the discount rate: pμ ≠  r. Now, we deal with the case of rp =μ ; A solution 
of the similar form to (6) is impossible to find; In other word, the equation (5) has no root 
(only considering the form of root is similar to solution (6)). And we cannot figure out the 
solution of the equation (5). This says that the firm will never stop producing when the 
expected growth rate of the output price is not different from the discount rate. 

Continued, we think about the case that the expected growth rate of the output price is 
less than the discount rate rp <μ  ⇒ 0)1( <−= rh pμ  11 <⇒α 0*>⇒ P . In the 

opposite case, rp >μ  we also obtain the same result 0*>P . It means that if the growth 

rate of the output price is different the discount rate, there always exists to a boundary such 
that the firms will shut down when the output price reaches it. 

 

                                                 
5 It means the growth rate of the variable costs cμ  is not equal to the discount rate r. 
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6. Conclusion 
The paper has studied the best time to stop producing for a firm, that is called the 

shut-down problem and shown the expected maximum value of the firm as well as the 
stopping time at which the firm makes a blackout decision. This problem is figured out 
thoroughly with the assumption of the constant variable cost. This paper presents the issue’s 
outcome exactly for each relationship between the growth rate of the output price and the 
discount rate. However, the solution of the situation where the variable cost follows (2) have 
just found under condition the growth rate of the outcome price is less than the discount rate. 
Otherwise, the answer is out of the paper’s reach.  

This paper still has another limitation. As noted, all analysis based on the assumption 
of the special geometric Brownian motion form for C, where the increment of a Wiener 
process is represented linearly by two independent standard increment of Brownian motions. 
Of course, this assumption is relaxed in section II because C is constant. Yet, it is mandatory 
to keep reasonable calculi after applying Girsanov’s theorem. The question raises the 
realizability of the variable cost, as described. Two assumptions of linearity and 
independence are obvious constraints. The low existence of the variable cost function as 
noted is synonymous with the low worth of the model. 

The analysis also imposes restriction on the constancy of quantity over time. This 
thing maybe only occurs in special industry such as weapon, but only in short-term too. In 
general, quantities of commodities are affected by many factors, especially by demand for 
commodities. Under uncertainty, the assumption of constancy of quantity seems less 
persuasive in long run. Suggest that the quantity of commodity can follows a continuous time 
stochastic process. The problem will become very complicated and the answer is also beyond 
the paper’s scope.  
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APPENDIX 

1. The continuous time stochastic process  represented by equation (2) is seen as 
a special case of geometric Brownian motion. 

tC

Dealing with  as a geometric Brownian motion of the form: tC

tC  = (tC cμ dt + cσ d )                                       (2’) tZ

where d  is a standard increment of Brownian motion. Let tZ ρ  be the coefficient of 

correlation between the two Wiener processes  and . tdZ 1
tdB

 However, the solution of the problem with  like equation (2’) is very complicated 
and is impossible for me at this time. Thus we choose one special case to solve it where  is 

transformed as a linear function of two independent Wiener processes d  and d  as 
follows: 

tC

tZ
1
tB 2

tB

tdZ = α 1
tdB + β 2

tdB                                            (2”) 

We find α  and β  in equation (2”).  

Since  and  are normally distributed with mean zero and variance dt, 

Cov( , ) = 

1
tdB tdZ

1
tdB tdZ ρ dt. 

On the other hand, we see that:  

Cov(d ,d )1
tB tZ 6 = Cov(d ,1

tB α 1
tdB + β d ) 2

tB

    = Cov(d ,1
tB α 1

tdB )+Cov(d ,1
tB β d ) 2

tB

    =Cov(d ,1
tB α 1

tdB )7

    = E8(d .1
tB α 1

tdB )-E(d )E(1
tB α 1

tdB ) 

    = α Var(d )1
tB 9  

    =α dt. 

Thus, α = ρ .   

Now, we consider below: Var(d ) = Var(tZ α d +1
tB β d )  2

tB

                                                        = ρ ²Var(d )+1
tB β ²Var(d ) 2

tB

                 =  dt  
                                                 
6 Cov( ): Covariance of  and  ji xx , ix jx
7 Since  and  are independent. 1

tB 2
tB

8 E(x): Expectation of x. 
 
9 Var(x): Variance of x 
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and we know Var(d ) = Var(d ) = dt  1
tB 2

tB β = ²1 ρ−  

Thus,  can be rewritten as follows:   tZ

d =tZ ρ d +1
tB ²1 ρ− d  2

tB

2. Proof:  is also a geometric Brownian motion. tZ

Substitution both equation (14) and equation (15) into the expanded , we get  as: tZ tZ

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−+−+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+−−== ²1

²²

0
0 ²1

22
exp tctpc

pc
pc

t
t

t BBt
P
C

P
C

Z ρσσρσ
σσ

μμ  (i.) 

Replace  and  inferred from equation (17) and equation (18) respectively in 
equation (i), we see: 

1
tB 2

tB

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−+−++

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−−== ²1

²²

0
0 ²1

22
exp tctpcpc

pc
pc

t
t

t WWtt
P
C

P
C

Z ρσσρσσρσ
σσ

μμ (ii.) 

The equation (ii) is reduced as: 

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −−= tpct Wt

P
CZ σσμμ

2
²exp

0
0             (iii.) 

where  

pcpc σρσσσσ 2²² −+=        

( )[ ]²1 ²11
tctpct WWW ρσσρσ

σ
−+−=        

It is easy to realize that  is a Wiener process with normally distributed which has 
zero mean and standard variance t because  is a linear function of two Brownian processes 

and .  

tW

tW
1
tW 2

tW

From equation (iii), we can write  

( )[ ]tpctt dWdtZdZ σμμ +−=                 

where σ  and  are given equation (21) and equation (22) respectively in the text. tW

Thus we say  is a geometric Brownian motion.  tZ
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