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Abstract

This article investigates the optimal taxation of a polluting exhaustible resource supplied by
an oligopoly in a partial equilibrium model. A single tax/subsidy scheme is sufficient to
correct both distortions arising from market power and pollution externality. Moreover, there
exists an infinite family of such optimal taxation instruments. Then, I study how this set is
affected by the degree of concentration of the resource suppliers. In particular, the more
concentrated the extraction sector, the less falling (or the more rising) over time the optimal
tax rate. Finally, although concentration tends to increase the total rent of the extraction
sector, it reduces the potential tax revenues to be earned by the regulator while inducing
efficiency.
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1. Introduction

Fossil fuels are exhaustible resources. Their burning in the production process generates
�ows of pollutants accumulating in a stock of atmospheric pollution. Moreover, the ex-
tractors of these resources are concentrated so that they are often considered to enjoy
some market power. These two latter features generally imply that the pace of depletion
of fossil fuels won't be optimal as soon as the decisions of suppliers or consumers are de-
centralized. The two sources of distortions that are resulting from a pollution externality
and market power are two arguments for the regulation of markets for these resources.
The economics literature has studied in particular how this can be implemented by the
taxation of fossil fuels.

Nevertheless, the contributions to this issue have mostly focused on the causes of
market failure separately. As a consequence, the polluting nature and the concentration
in the supply side of a non-renewable resource have not been considered together. The
purpose of this paper is to study the optimal taxation of a fossil fuel with its main
features, all together: exhaustibility, polluting use and market power in supply side. Our
contribution is thus at the crossing point of di�erent strands of the literature on fossil
fuels taxation.

First, Bergstrom (1982) proposes an analysis of the e�ects of a tax on a non-renewable
resource. He shows that it typically transfers a part of the mining rent from the producers
to the �scal authorities.

A second strand of the literature focuses on the optimal taxation of a polluting ex-
haustible resource. Sinclair (1992 and 1994) and Ulph and Ulph (1994) model pollution
as a stock �lled by �ows of carbon rejected in the atmosphere by the use of the resource.
They show how the optimal tax rate should evolve over time. Daubanes and Grimaud
(2007) �nd moreover that there is a family of such optimal tax schemes, each of them
capturing a greater or lower part of the mining rent.

Another strand studies the optimal regulation through a taxation policy of a de-
pletable resource when there is some market power in the extraction sector. The re-
lated articles concentrate on the polar case of a monopolist extractor. Bergstrom, Cross
and Porter (1981), in the case of a regulator able to precommit, and Karp and Liver-
nois (1992), without the precommitment assumption, show the existence of a family of
e�ciency-inducing tax/subsidy schemes. More recently, Daubanes (2007) shows that it
may be possible for the regulator to raise tax revenues while taxing optimally.

Finally, the optimal taxation of a polluting good supplied by an imperfectly competi-
tive sector has been studied in models where the resource is not explicitly non-renewable.
In this context, Benchekroun and Long (1998) show that a single taxation instrument is
su�cient to correct both distortions from pollution externality and market power. In the
case of a monopoly, Benchekroun and Long (2002) insist on the multiplicity of optimal
tax/subsidy paths. However, none of these papers considers the exhaustibility of the
resource so that the �rms are standard producers and pollution comes from by-product
emissions.

Modeling the market for a polluting exhaustible resource supplied by an imperfectly
competitive sector o�ers a framework to deal with the interactions between pollution and

1



market power and their incidences on the properties of the optimal taxation policies. In
particular, it allows to show that a single taxation instrument is su�cient to regulate
both sources of distortions and that there is a family of such taxes bounded by the need
to preserve the participation of the extractors. One can also study how the degree of
concentration of the producers a�ects the evolution over time of the optimal taxation
schemes. Finally, one can focus on the tax/subsidy pro�le under which the regulator
collects the largest tax revenues and study how the largest tax revenues are a�ected by
concentration.

To tackle these issues, I use a partial equilibrium model of a polluting resource deple-
tion when it is supplied by an oligopoly. I assume standard functional forms: isoelasticity
of the demand function, Cournot competition in resource supply, constancy of unit ex-
traction cost, constancy of the pollution rate of decay and quadratic damage function.
In order to get analytical and exploitable results, I assume the precommitment ability of
the regulator.

In this framework, my main results are the following: an in�nity of environmental
time-dependant tax/subsidy pro�les, adjusted by the market structure, implements the
optimal allocation of the resource. The more concentrated the extraction sector, the
more rising (or less falling) the optimal tax rate. A particular optimal taxation policy
allows the regulator to collect a greater or lower part of the mining rent. Concentration
increases this rent but decreases the potential tax revenues of the regulator.

The paper is organized as follows. Section 2 introduces the model and the optimal ex-
traction path. In section 3, I solve the optimal taxation problem under market power and
pollution externality and examine the set of optimal tax/subsidy schemes. In particular,
I address the question of how concentration modi�es the tax pro�les, how it a�ects the
total mining rent and the tax revenues that can be captured through an optimal policy.
Section 4 concludes.

2. A partial equilibrium model

2.1 Basics

At each time t ≥ 0, the �ow of extraction in units of resource is R(t) ≥ 0. Let S(t) be
the size of the reserves remaining at date t. Then,

S(t) = S(0)−
∫ t

0

R(s) ds, S(t) ≥ 0, S(0) = S0 given. (1)

The use of the extracted �ow of resource generates a �ow of emissions �lling a stock
of atmospheric pollution, Z(t). The dynamics of this stock obeys1:

Ż(t) = R(t)− δZ(t), Z(0) = Z0 ≥ 0 given, (2)

where δ ≥ 0 is the rate of decay of the stock of pollution.

1The derivative with respect to time of any variable X is denoted by Ẋ. Its rate of growth is denoted
by gX = Ẋ/X.
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The unit cost of extraction is constant and denoted by c ≥ 0. Hence the total cost
function is C(R) = cR.

There is a unitary mass of identical households whose inverse demand function for
the resource is stationary2 and iso-elastic: P (R) = R−1/α, α > 0. Let me take their
instantaneous utility from resource consumption to be the area under this demand curve:
U(R) = α

α−1
R

α−1
α . Moreover, the harm caused by the stock of pollution is represented by

the quadratic damage function H(Z) = γ
2
Z2.

Hence, the net instantaneous aggregate surplus is W = U(R)−H(Z)−C(R) and the
social welfare is the discounted stream of these surpluses:

V =

∫ +∞

0

( α

α− 1
R(t)

α−1
α − γ

2
Z(t)2 − cR(t)

)
e−rt dt, (3)

where r ≥ 0 is the rate of discount.

2.2 Social planner's ideal

If a utilitarian "social planner" were to control the extraction sector, her objective would
be to choose the pace of extraction3 {R∗(t)}t≥0 which maximizes (3) under the law of
motion of the reserves resulting from (1), Ṡ(t) = −R(t), the dynamics of pollution (2)
and the initial conditions S(0) = S0 and Z(0) = Z0. This is a standard optimal control
problem with an in�nite horizon. Let λ∗ ≥ 0 and µ∗ ≤ 0 denote the present-value costate
variables associated respectively to the reserves and the atmospheric pollution.

Since the resource is necessary in the sense that limR 7→0W = +∞, the extraction �ow
is always positive in optimum: R∗(t) > 0, for all t ≥ 0. Hence, the �rst-order conditions
of the social planner's program are:(

R∗(t)−1/α − c
)

=
(
λ∗(t)− µ∗(t)

)
ert, (4)

λ̇∗(t) = 0, (5)

µ̇∗(t) = γZ(t)e−rt + δµ∗(t), (6)

and the transversality conditions are:

lim
t→+∞

λ∗(t)S(t) = 0, (7)

lim
t→+∞

µ∗(t)Z(t) = 0. (8)

Since R∗(t) > 0 for all t, the constant (from condition (5)) costate variable associated
to the resource needs to be strictly positive: λ∗ > 0. Hence, from (7), the resource is
asymptotically exhausted: ∫ +∞

0

R∗(t) dt = S0. (9)

2The results can be easily extended to the case of a regular technical improvement in the use of the
resource.

3Let me use superscript ∗ to mean optimum.
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Integrating equations (2) and (6), one gets:

µ∗(t) = eδt
[
µ∗(0) +

∫ t

0

γZ(s)e−(r+δ)s ds
]
, (10)

Z(t) = e−δt
[
Z0 +

∫ t

0

R(s)eδs ds
]
. (11)

Substituting these expressions into (8) gives the initial value of the shadow cost of pollu-
tion µ∗(0) = −

∫ +∞
0

γZ(t)e−(r+δ)t dt. Then:

µ∗(t) = −eδt
∫ +∞

t

γZ(s)e−(r+δ)s ds < 0. (12)

Di�erentiating (4) gives the optimal Hotelling rule. After rearranging, this results in
the di�erential equation:

g∗R(t) = −αr + αrcR∗(t)1/α + αµ̇∗(t)R∗(t)1/αert, (13)

where µ̇∗(t) is found from (12). Equation (9) leads to the implicit boundary condition
R∗(0) = R∗0(S0). This condition and di�erential equation (13) determines uniquely the
optimal extraction path.

3. Correcting pollution externality and market power

Let me consider a market for the resource. Let p(t) denote the associated consumer price.
Pollution is a public bad. There is no uncertainty and all agents perfectly foresee the
future.

There are n ∈ N∗ identical extractors indexed by i = 1, ..., n. They are respectively
endowed with a stock Si0 = S0/n and they respectively extract Ri, i = 1, ..., n. The
aggregate extraction �ow is R =

∑
1≤i≤nRi. These extractors play a Cournot game.

Hence, the oligopoly captures the polar cases of monopoly (n = 1) and perfect competition
(n 7→ ∞).

I de�ne the tax/subsidy scheme the regulator sets to correct the distortions that may
arise due to market power and pollution externality as follows. Let {θ(t)}t≥0 be an ad
valorem producer tax so that the producer price is p(t)τ(t) = p(t)

(
1 − θ(t)

)
. Assume

that θ(t) < 1 so that τ(t) > 0 and let me restrict attention to tax pro�les di�erentiable
with respect to time4,5. Suppose that the regulator is able to announce credibly {θ(t)}t≥0

from date 0 on.
Each oligopolist maximizes the discounted stream of her spot pro�ts subject to her

exhaustibility constraint, Ṡi(t) = −Ri(t). Strategically, she internalizes the e�ect of

4This assumption is made for simplicity. One can show that all the optimal tax pro�les are indeed
di�erentiable with respect to time.

5For the sake of notational simplicity, I use the multiplicative tax denoted by τ instead of the ad

valorem tax denoted by θ. In the following, I shall interpret the results in terms of the ad valorem tax.
Hence, remind that τ and θ and their respective derivatives evolve in opposite directions.
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its decision on the market price. The Hamiltonian of extractor i is Hi(Si, Ri, λi, t) =(
τ(t)(Ri +

∑
j 6=iRj)

−1/αRi − cRi

)
e−rt − λiRi, where λi ≥ 0 is her present-value costate

variable.
The previous problem has a solution only if the gross revenue is concave. That is

why I assume α > 1. The same way as in section 2, due to the necessity of the resource,
the aggregate extraction �ow will always be strictly positive, whatever is the pace of
taxes/subsidies: R(t) > 0, ∀t ≥ 0. Hence, in symmetric equilibrium, Ri(t) = R(t)/n >
0, ∀t ≥ 0, thus requiring λi(t) > 0, ∀t ≥ 0, what implies asymptotic exhaustion of all
stocks and then: ∫ +∞

0

R(t) dt = S0. (14)

The equilibrium extraction path under oligopoly then satis�es:(
τ(t)

αn− 1

αn
R(t)−1/α − c

)
e−rt = λ, (15)

where λ is a strictly positive constant.
In this equation, λ is the discounted marginal pro�t of the oligopoly, independent of

time at each oligopolist's optimum. For a given tax scheme {τ(t)}t≥0, it is decreasing in
the degree of concentration. It is moreover determined by the level of the tax.

The di�erentiation of the latter condition leads to a modi�ed equilibrium Hotelling
rule which is a di�erential equation. Given a certain tax pro�le, {τ(t)}t≥0, the solution to
this di�erential equation under the boundary condition (14) gives uniquely the extraction
path under oligopoly. The resulting dynamics of extraction obeys:

gR(t) = −αr + αgτ (t) + αrc
αn

αn− 1
R(t)1/ατ(t)−1. (16)

This equation tells how the time-pro�le of the tax a�ects the dynamics of extraction.
The next subsection will show that a family of tax/subsidy schemes {τ ∗(t)}t≥0 correct

all distortions, thus implementing the optimal allocation of the resource. Each of these
optimal taxation policies determines a unique λ, and their set is thus bounded by the
condition that λ must be positive.

3.1 Optimal tax policies

The objective is to design a tax/subsidy scheme {τ ∗(t)}t≥0 which induces the oligopolistic
extraction sector to reproduce the optimal extraction path of section 2. I am thus looking
for all tax pro�les such that the solution to (15), for any positive λ and under (14), is
{R∗(t)}t≥0, i.e. all positive functions τ

∗(t) that satisfy:(
τ ∗(t)

αn− 1

αn
R∗(t)−1/α − c

)
e−rt = λ, (17)

where λ is any strictly positive constant6.

6The strict positivity of λ is a sort of participation constraint. Indeed, this variable is the marginal
net pro�t of the oligopoly. If the regulator wants the latter to choose the optimal extraction path, he
has to ensure that, under his tax policy, this marginal pro�t is positive.
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These functions are:

τ ∗(t) = R∗(t)1/α
(
τ ∗(0)R∗0(S0)

−1/αert + c
αn

αn− 1
(1− ert)

)
, t ≥ 0, (18)

where:
τ ∗(0) > τ ≡ c

αn

αn− 1
R∗0(S0)

1/α. (19)

Let Θ∗ denote the set of these tax functions.

Proposition 1 There exists an in�nite family of e�ciency-inducing tax/subsidy paths:
Θ∗ =

{
{τ ∗(t)}t≥0 : (18) and τ ∗(0) > τ

}
.

Proof of proposition 1 See the appendix.

Correcting several distortions generally requires the use of as many tax instruments.
Proposition 1 illustrates that regulating market power in the extraction sector and correct-
ing the environmental distortion can be done by a single instrument: a market structure-
adjusted environmental tax. The reasons why it is so are that (1) both imperfections
a�ect the same extraction path and only this path, and that (2) a time-dependent tax
can induce almost any extraction path.

Moreover, proposition 1 tells that there exists an in�nity of such instruments. This is
due in particular to the exhaustibility of the resource. This constraint that the extractors
face implies that the extraction problem is an exhaustion problem: the choice of each
extractor is not how much to supply but when to supply. Hence, the relevant instrument
to induce a certain behavior is the di�erence between the tax rates at di�erent dates
rather than the level of the tax rates7.

From now, one can study how the environmental tax should adjust to the market
structure, that is what the e�ects of n on the optimal tax pro�les are. Log-di�erentiating
equation (17) and rearranging, one �nds that the motion of any optimal tax obeys:

g∗τ (t) =
1

α
g∗R(t) + r − rc αn

αn− 1
R∗(t)1/ατ ∗(t)−1, (20)

where this growth rate appears to be increasing in the number of extractors, n. It follows
that an optimal ad valorem tax under a more concentrated industry is less falling over
time (or more rising) than the initially identical optimal tax under a less concentrated
structure.

The reason for that is the following. First, a monopoly (n = 1) tends to be more
conservative than a competitive sector (n 7→ +∞) (Stiglitz, 1976). Consistently, an
oligopoly has an intermediate behavior and the more concentrated the sector, the more
conservative it is. For instance, the growth rate gR of equation (16) can be shown to be
decreasing in n. Second, the more falling an ad valorem taxation pro�le, the stronger
the incentives it provides the society with to postpone the extraction of the resource.

7For another illustration, see Daubanes (2007).
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Internalizing the e�ect of market power on the rate of depletion thus implies that the
optimal ad valorem tax should be less falling (or more rising)8.

3.2 On the rent of the oligopolistic extractor

The question addressed in this subsection is how the concentration of the extractors
a�ects the total pro�t of the sector. Hence, let me de�ne all variables as functions of the
number of extractors, n ∈ N∗.

In what follows, let the taxation policy be any given tax/subsidy scheme {τ(t)}t≥0.
An oligopolistic extractor globally earns two sorts of rents: a standard scarcity rent

and a market rent. Both are closely related since the former depends on the way the
mine is exploited and thus on the way market power is exercised. Hence, they are not
analytically identi�able. However, one can see how the pro�t of an oligopoly (n �nite)
di�ers from the pro�t of a competitive sector (n 7→ +∞). Indeed, using (15), the total
pro�t of the oligopoly, π =

∫ +∞
0

R(t)
(
τ(t)P (R(t))− c

)
e−rt dt, can be written:

π(n) = λ(+∞)S0 +
(
λ(n)− λ(+∞)

)
S0 +

1

αn

∫ +∞

0

R(n, t)(α−1)/αe−rt dt. (21)

In this expression, λ(+∞)S0 is the value of the mine when exploited by a competitive
sector9. The rent of the oligopoly di�ers from this value in two ways: �rst, the mine is not
exploited e�ciently and, second, market power is exercised. The analysis of expression
(21) then reveals two opposite e�ects on π(n): λ(n) is decreasing and the term on the far
right is increasing in the degree of concentration.

Proposition 2 Under any taxation policy, the greater the number of oligopolists, the
lower the total pro�t of the whole extraction sector, i.e. ∀{τ(t)}t≥0 : τ(t) > 0,∀t ≥ 0,
π(n) is decreasing in n.

Proof of proposition 2 See the appendix.

This also yields that the total pro�t of the oligopoly increases as the number of
extractors decreases. It may have some implications about the cost of regulating the
oligopoly to correct market power and pollution externality. Since the taxation of a
non-renewable resource typically transfers rents between the resource holders and the
regulator, it may be that concentration of the formers, and thus a larger total pro�t, is
good news for the latter. Indeed, it might be easier to collect tax revenues from a rich
sector.

3.3 Cost of regulation

The regulator may not only care about e�ciency. In particular, he may not be indi�erent
to the distribution of the social surplus resulting from his taxation policy. When choosing
one optimal tax/subsidy path in the family Θ∗, the regulator may prefer not to subsidize

8Sinclair (1994) proposes informally a similar argument.
9It can be shown from (21) that the second and third terms of right-hand side disappear as n tends

to the in�nity, so that π(+∞) = λ(+∞)S0
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the oligopolists to a large extent and would even prefer to raise tax revenues from the
extraction industry. Let me refer to Benchekroun and Long (2004) for the reasons why
economies in regulation through taxes/subsidies may be desirable.

The question addressed in this subsection is how the market structure a�ects the
maximum tax revenue the regulator can extract from (or the minimum subsidy transfer
he has to give up to) the mine industry while inducing e�ciency.

Among the family of optimal tax/subsidy schemes of proposition 1, one can show
(see the proof of the next proposition) that the cheapest one binds the initial restriction
τ ∗(0) > τ . Let {τ ∗(t)}t≥0 denote this particular tax/subsidy scheme. From (19), the
threshold τ is decreasing in n. This suggests that the more concentrated the industry is,
the harder it is to raise funds from it while optimally regulating.

However, from above, remind that an optimal ad valorem tax under a more concen-
trated industry is less falling over time (or more rising) than the initially identical optimal
ad valorem tax under a less concentrated structure.

Overall, the more concentrated the industry is, the larger τ must initially be whereas
the more decreasing τ should be over time. Let K denote the maximum tax revenue
(or, if negative, the minimum subsidy transfer) discounted at date 0 the regulator can
raise from the extraction sector under an optimal tax/subsidy policy: K =

∫ +∞
0

(1 −
τ ∗(t))P (R∗(t))R∗(t)e−rt dt. The following proposition assesses the e�ect of the number
of extractors on K, and thus on the cost of regulation.

Proposition 3 The more concentrated the extraction sector is, the more expensive it is
to regulate it, i.e. K is increasing in n.

Proof of proposition 3 See the appendix.

The total rent of the extraction sector is generally all the larger as this sector is
concentrated. However, it is then more di�cult for the regulator to capture these potential
tax revenues if he wants to induce e�ciency. In spite of the �exibility of time-dependent
taxation policies and the fact that the regulator can exploit the exhaustibility constraint,
the standard result that inducing an imperfectly competitive sector to be e�cient is all
the more expensive as it is concentrated still holds.

4. Conclusion

In a standard partial equilibrium model, I have solved and studied the optimal taxation
of a fossil fuel (polluting exhaustible resource) under oligopolistic extraction.

A single taxation instrument is su�cient to correct the distortion of the extraction
path due to the external e�ect of pollution and market power: a market structure-adjusted
environmental tax. The family of such optimal taxation policies is in�nite. However, the
regulator is limited by the need to leave a positive marginal instantaneous pro�t to the
extractors. The examination of how this family is a�ected by the degree of concentration
of the extraction sector reveals that: (1) the stronger the concentration, the less falling
(or the more rising) the optimal tax rate, and (2) concentration increases the total rent
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of the sector while it reduces the potential tax revenues to be earned by the regulator
through an e�ciency-inducing taxation policy.

Further research in this �eld naturally includes the determination and analysis of
the subgame perfect optimal taxation schemes. However, their explicit characterization
is technically extremely di�cult. Another interesting extension is to consider the entry
decision of the oligopolists to deal with the e�ects of environmental policies on the market
structure of the extraction sector. I am currently working on both of these projects.

Appendix

Proof of proposition 1 � Log-di�erentiating equation (17) and rearranging gives the
di�erential equation: gτ (t) = 1

α
g∗R(t) + r − rc αn

αn−1
R∗(t)1/ατ(t)−1. The solutions of this

equation are given by (18).
Among these functions, let me now eliminate those which are not strictly positive ( i.e.

such that ∃t ≥ 0 : τ(t) ≤ 0) and those which don't ensure the participation constraint
λ > 0.

From (18), τ ∗(t) > 0, ∀t ≥ 0 is equivalent to τ ∗(0)R∗0(S0)
−1/α + (e−rt − 1)αnc/(αn−

1) > 0, ∀t ≥ 0, which is equivalent to τ ∗(0)R∗0(S0)
−1/α−αnc/(αn−1) > 0, i.e. τ ∗(0) > τ .

λ is constant. Hence, from (17), it is equal to λ = τ ∗(0)R∗0(S0)
−1/α(αn− 1)/(αn)− c.

Then, λ > 0 is equivalent to τ ∗(0) > τ . �

Proof of proposition 2 � Let all the critical variables write as functions of parameter
n.

To examine the e�ects of n, one can consider that n is a continuous variable, i.e.
n ∈ IR, n ≥ 1. Indeed, since the parameter n, de�ned as a continuous variable, a�ects
continuously λ(n), R(n, t),∀t ≥ 0 and π(n), if any of these variables is monotonous in
n, then, it is also monotonous in n, de�ned as a discrete variable.

Let me �rst prove expression (21). On the one hand, from (15),
λ(n) =

(
τ(t)R(n, t)−1/α − c − (1/(αn))τ(t)R(n, t)−1/α

)
e−rt. Rearranging, one obtains:(

τ(t)R(n, t)−1/α−c
)
e−rt = λ(n)+(1/(αn))τ(t)R(n, t)−1/αe−rt. On the other hand, π(n) =∫ +∞

0
R(n, t)

(
τ(t)P (R(n, t)) − c

)
e−rt dt =

∫ +∞
0

R(n, t)
(
τ(t)R(n, t)−1/α − c

)
e−rt dt. Using

the former equation and substituting in the latter, one �nds: π(n) =
∫ +∞

0
R(n, t)

(
λ(n) +

(1/(αn))τ(t)R(n, t)−1/αe−rt
)
dt. Since λ(n) is constant over time, the pro�t rewrites:

π(n) = λ(n)
∫ +∞

0
R(n, t) dt + (1/(αn))

∫ +∞
0

τ(t)R(n, t)(α−1)/αe−rt. Using eventually (14)
and adding and subtracting λ(+∞)S0, one gets expression (21).

Let me now study the e�ect of an increase in n on λ(n). Rearranging (15), one gets:

R(n, t) = τ(t)α(αn/(αn − 1))−α
(
λ(n)ert + c

)−α
. Integrating both sides, one �nds: S0 =∫ +∞

0
τ(t)α(αn/(αn−1))−α

(
λ(n)ert+c

)−α
dt. Since S0 is given exogenously, independently

of n, and αn/(αn− 1) is decreasing in n, this implies that ∂λ(n)/∂n > 0.
Next, let me examine how n a�ects π(n). From above,

π(n) = λ(n)S0 + (1/(αn))
∫ +∞

0
τ(t)R(n, t)(α−1)/αe−rt dt. Hence, ∂π(n)/∂n =(

∂λ(n)/∂n
)
S0 − (α/(αn)2)

∫ +∞
0

τ(t)R(n, t)(α−1)/αe−rt dt+

((α−1)/(α2n))
∫ +∞

0
τ(t)R(n, t)−1/α

(
∂R(n, t)/∂n

)
e−rt dt. Note, from (15), that ∂λ(n)/∂n
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= (α/(αn)2)τ(t)R(n, t)−1/αe−rt − ((αn − 1)/(α2n))τ(t)R(n, t)−1−1/α
(
∂R(n, t)/∂n

)
e−rt.

Thus,
(
∂λ(n)/∂n

)
S0 =

∫ +∞
0

R(n, t)
(
∂λ(n)/∂n

)
dt =

(α/(αn)2)
∫ +∞

0
τ(t)R(n, t)(α−1)/αe−rt dt

− ((αn − 1)/(α2n))
∫ +∞

0
τ(t)R(n, t)−1/α

(
∂R(n, t)/∂n

)
e−rt dt. Substituting the latter ex-

pression in the above expression of ∂π(n)/∂n, one gets:
∂π(n)/∂n = ((1− n)/(αn)

∫ +∞
0

τ(t)R(n, t)−1/α
(
∂R(n, t)/∂n

)
e−rt dt.

In the latter equation, let me show that the integral is positive. The binding ex-
haustibility constraint,

∫ +∞
0

R(n, t) dt = S0, implies:
∫ +∞

0

(
∂R(n, t)∂n

)
dt = 0. Recall-

ing ∂gR(n, t)/∂n < 0, ∀t ≥ 0, it also implies: ∃T > 0 : ∂R(n, t)/∂n ≥ (≤)0,∀t ≤
(≥)T and

∫ T
0

(
∂R(n, t)/∂n

)
dt = −

∫ +∞
T

(
∂R(n, t)/∂n

)
dt > 0. Moreover, from (16),

gτ − (1/α)gR − r < 0, thus implying that τ(t)R(n, t)−1/αe−rt is decreasing in t, and then:
∀(t, t′) ∈ [0, T [×]T,+∞[, τ(t)R(n, t)−1/αe−rt > τ(t′)R(n, t′)−1/αe−rt

′
. Hence, from above,∫ T

0
τ(t)R(n, t)−1/α

(
(∂R(n, t)/∂n

)
e−rt dt > −

∫ +∞
T

τ(t)R(n, t)−1/α
(
∂R(n, t)/∂n

)
e−rt dt,

what implies eventually that
∫ +∞

0
τ(t)R(n, t)−1/α

(
∂R(n, t)/∂n

)
e−rt dt > 0 and, then, since

1− n ≤ 0, ∂π(n)/∂n < 0.
Using ∂λ(n)/∂n > 0 and ∂π(n)/∂n < 0, one deduces from (21) that the term on the

far right of equation (21) is decreasing in n. �

Proof of proposition 3 � From (18), one can easily show that two di�erent taxes of
Θ∗ cannot cross, i.e. ∀

(
{τ ∗(t)}t≥0, {τ ∗

′
(t)}t≥0

)
∈ Θ∗2, τ ∗(0) 6= τ ∗

′
(0),@T > 0 : τ ∗(T ) =

τ ∗
′
(T ). Hence, {τ ∗(t)}t≥0 ∈ Θ∗, τ ∗(0) = τ , is such that ∀{τ ∗(t)}t≥0 ∈ Θ∗, τ ∗(t) ≤

τ ∗(t),∀t ≥ 0. Note that, by de�nition, each element of Θ∗ results in the same outcome
{R∗(t)}t≥0 and thus {P (R∗(t))}t≥0. The tax/subsidy scheme {τ ∗(t)}t≥0 thus maximizes
on Θ∗ the discounted tax revenues (or minimizes the discounted subsidy transfers) of the
regulator:

∫ +∞
0

(1−τ ∗(t))P (R∗(t))R∗(t)e−rt dt. From (18), τ ∗(t) = R∗(t)1/αcαn/(αn−1).

Hence, K =
∫ +∞

0
R∗(t)e−rt

(
R∗(t)−1/α− cαn/(αn− 1)

)
dt, which appears to be increasing

in n. �
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