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Abstract

When testing for stationarity in panel data several tests are available. These tests differ in
degree to which they allow for serial correlation in the series under the null hypothesis. In the
current paper, a serial correlation test for panel data is proposed. The suggested test can be
used to choose between the available stationarity tests, and provides a statistical ground for
choosing an appropriate framework when investigating the stationarity hypothesis in panel
data situations.
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1 Introduction

When testing for stationarity in panel data, one can choose from a variety of tests. Hadri
(2000) suggests a test that is valid asymptotically, e.g. as the time-series dimension (T)
tends to infinity followed by the cross-sectional dimension (N), regardless of whether or
not serial correlation is present in the considered series under the null hypothesis. For
finite-sample situations, more specifically for the case of a fixed time-series dimension,
Hadri and Larsson (2005) suggest a test that can be used when no serial correlation is
present. For a third case where serial correlation is allowed for, while the time-series
dimension is finite, Jönsson (2005) suggests a modification of the Hadri (2000) test that
can be used to improve its finite-T size properties.

All of these panel data stationarity tests are based on the stationarity test of Kwiatkowski
et al. (1992).1 As such, the tests are not only sensitive to the actual presence of serial
correlation, but also sensitive to the use of the so-called long-run variance estimator,
even if no serial correlation is present. If no serial correlation is present, the use of the
long-run variance estimator, and hence the choice of a test that allows for serial corre-
lation, reduces the power of the test by inflating the variance of the test statistic under
the null hypothesis. Since all of the properties of the KPSS test carries over to the panel
data stationarity setting, and even aggregates over cross sections, the test Hadri (2000)
and Jönsson (2005) incur unnecessary power losses if no serial correlation is present but
allowed for. On the other hand, is serial correlation is present but not accounted for, the
tests will have exhibit nuisance parameter-dependence and size distortions that remain
even asymptotically. Hence, it is of great interest to test whether or not serial correlation
is present in a cross section of time series before choosing the appropriate panel data
stationarity test.

In this paper, a panel data test for serial correlation is suggested. The proposed test
assists the researcher when choosing between the available panel data stationarity tests.
The test that we suggest is very easy to calculate and obtained by pooling the p-values
for cross-section specific serial correlation tests, along the lines of reasoning suggested by
Maddala and Wu (1999). Monte Carlo simulations reveal that the autocorrelation test
has good size and power properties in small-sample situations, making the test useful for
practitioners that are to choose a stationarity test in the panel data framework.

The rest of this paper is organized as follows. In Section 2, the econometric framework
is presented, while the serial correlation test is discussed in Section 3. In Section 4, we
present finite-sample size and power properties of the test obtained from Monte Carlo
simulations. Finally, Section 5 offers some concluding remarks.

2 The panel data model

In this paper, we consider a panel data test for serial correlation in the following econo-
metric model:

yi,t = δ0,i + δ1,it + εi,t (1)

1The test of Kwiatkowski et al. (1992) is often referred to as the KPSS test, so also in this paper.
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In (1), yi,t are the series that are stationary under the null hypothesis of Hadri (2000),
Hadri and Larsson (2005) and Jönsson (2005). αi denotes an intercept in the series yi,t,
while the term δit is a time trend. Finally, εi,t is a stochastic disturbance term, which
is assumed to be normally distributed, independent across cross sections and fulfill the
linear process assumption of Phillips and Solo (1992).

The expression in (1), describes the evolvement of a stationary time series in the con-
text of Kwiatkowski et al. (1992), Hadri (2000), Hadri and Larsson (2005) and Jönsson
(2005). A key question when choosing between these tests are whether or not the distur-
bance series εi,t are serially correlated. If this is the case, a long-run variance estimator,
such as the the one suggested by Newey and West (1987), has to be employed to test
the null hypothesis of stationarity. The appropriate panel data stationarity test would
be that of Hadri (2000) or Jönsson (2005). If no serial correlation is present, the variance
estimator σ̂2

ε,i = T−1
∑T

t=1 ε̂2
i,t can be used and the panel stationarity test of Hadri and

Larsson (2005) can be employed. The use of the latter estimator reduces the number
of parameters that have to be estimated when performing the stationarity test. Hence,
once size has been controlled for, power gains can be obtained by not having to embark
in long-run variance estimation. Such power gains aggregates across cross sections and
becomes larger as the cross-sectional dimension of the panel increases. However, in order
to abandon the long-run variance estimator, the researcher has to make sure that no
autocorrelation is present in εi,t. This issue is addressed next.

3 The serial correlation test

In order to test the null hypothesis that no serial correlation up until order k is present
in the disturbances εi,t for any i ∈ {1, . . . , N}, we suggest that the Ljung and Box (1978)
statistic in (2) should be calculated for each cross-section and for each l ∈ {1, . . . , k}.

Qi,l = T (T + 2)(T − l)−1

∑T
j=l+1 ei,jei,j−l∑T

j=1 ei,jei,j

(2)

In (2), ei,t is the least squares estimate of εi,t in (1), which is obtained by detrending
yi,t with either an intercept or an intercept and a time trend. The test statistic in (2)

can now be used to construct a cross-section test statistic, Qi =
∑k

l=1 Qi,l, which can be
applied to test the null hypothesis of serially uncorrelated disturbances up until order k
against the alternative that there exist serial correlation in the error terms for some order
0 < l ≤ k for cross section i.

The test statistic, Qi, has been shown to have an asymptotic χ2
(k) distribution as

T →∞. However, basing a serial correlation test on Qi for some i ∈ {1, . . . , N}, implies
that a test for serial correlation in the i:th cross section, not in the entire panel, is
performed. In order to obtain a panel data test for serial correlation, the p-values of the
cross-section specific Qi statistics could be pooled over cross sections. More specifically,
in the current papers it is suggested that the ’combining p-values test’ of Maddala and
Wu (1999) should be used to test the null hypothesis that none of the cross-sectional
disturbance series are serially correlated against the alternative that at least one of the
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cross-section disturbance series display serial correlation. The suggested panel data test
statistic is given in (3).

λ = −2
N∑

i=1

ln(πi) (3)

In (3), πi is the p-value for Qi, which is obtained from the χ2
(k) distribution. The test

statistic λ will have an asymptotic χ2
(2N) distribution as T → ∞ for fixed N (see e.g.

Maddala and Wu, 1999).
The fact that approximate p-values are readily obtainable for the cross-section specific

test statistics, Qi, together with the fact that both critical values and p-values are easy to
obtain for the panel data serial correlation test, makes the test very easy to calculate and
hence very attractive to implement. However, the attractiveness of the test in finite-T
situation depends critically on the small-sample performance of the test.

In the next section, it is investigated how well the asymptotic approximations, needed
to obtain p-values and critical values for the panel data test, work in finite samples.
Furthermore, the power properties of the test are also investigated.

4 Monte Carlo simulation

The computational simplicity of the panel data serial correlation test presented in the
previous section is of course very attractive. However, the price paid for the easy calcu-
lations is approximation errors that arise as a consequence of the fact that the individual
test statistics, Qi, have a finite-sample distribution that may differ from the asymptotic
one. In order to assess the importance of such discrepancies, we simulate the size of the
panel data serial correlation test of Section 3.

To investigate the size of the serial correlation test we set k = 1, and generate data
series under the null hypothesis that no serial correlation is present. More specifically, the
series are constructed as yi,t = α0,i + α1,it + εi,t, where α0,i ∼ U [0, 10], α1,i ∼ U [0, 2] and
εi,t ∼ IIDN(0, 1).2 When only an intercept is considered, we let α1,i = 0 ∀i. The data
is generated for i ∈ {1, 2, . . . , N} and t ∈ {1, 2, . . . , T}, where N ∈ {5, 10, 15, 20} and
T ∈ {50, 100, 250}. Both the size and the power properties presented below are based on
5,000 generated data sets.

In Table 1, we present the size of the panel data serial correlation test, at the 5%
significance level. As seen in the table, the size of the panel data serial correlation test
is very close to 5% for all sample sizes when only an intercept is present. The small
size distortions that are observed become smaller as the ratio N/T decreases. When
both an intercept and a time trend are present, the size distortions for the panel data
serial correlation test become somewhat larger. However, the size distortions are small
in absolute value and quickly becomes smaller as N/T decreases. For example when
T = 100, the largest size distortion is 2.1 percentage points, while it is only 0.3 percentage
points when T=250.

Besides having good size properties, it is desirable that the panel data serial correlation
test has good power properties. That is, when disturbances of at least one cross-sectional

2We let U [a, b] denote the uniform distribution over the interval [a, b].
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unit displays serial correlation, the test should reject the null hypothesis that all cross-
sectional units have serially uncorrelated disturbances.

In order to test the power of the test, we generate N − 1 cross-sectional units with
serially uncorrelated disturbances and 1 cross-sectional unit with serially correlated dis-
turbances. The latter cross-section time series are generated as described above, with
the only difference being that εi,t is generated either according to an AR(1) or a MA(1)
process. The AR and the MA parameters are set to 0.5, while the innovation driving the
processes are set to be IIDN(0, 1).

By letting only one cross section have serially correlated disturbances, we study the
power of the test under a minimal deviation from the null hypothesis that all time series
have serially uncorrelated disturbances.

In Table 2, we present the power of the serial correlation test. As seen in the table, the
power is high, around 65%, when N = 5 and T = 50 in the case of AR(1) disturbances,
and somewhat lower, although still high, when errors are of the MA(1) form. From Table
2, it can also be seen that the power decreases as the number of cross sections increase.
This is a natural consequence of the fact that only one cross section with serially correlated
disturbances is considered, regardless of the total number of cross sections in the panel.
Hence, the influence that the one and only cross-section time series generated under the
alternative hypothesis have on the panel data test decreases as N increases. If more cross
sections were to displays serially correlated disturbances, the power of the test would
increase correspondingly.

From Table 2 it can also be seen that the power of the panel data serial correlation
test is somewhat lower when a linear trend is present, as compared to the case when only
an intercept is present, but as before the power increases as T becomes larger.

The overall conclusion from studying Table 2 is that the test has good power to detect
situations where serially correlated disturbances are present. The high power reduces the
risk of incurring size distortions, due to erroneous omission of serial correlation, in the
panel data stationarity framework.

The good size and power properties of the panel data serial correlation test, together
with its computational simplicity, makes it a valuable tool when we are to choose tests
in the panel data stationarity testing framework.

5 Concluding remarks

The current paper suggests a panel data test for serial correlation that can be applied
to choose between panel data stationarity tests. The panel data serial correlation test
provides guidance when choosing panel data stationarity test in such a way that seri-
ally correlated disturbances are not neglected when present, but neither superfluously
accounted for when absent. The former aspect of the test helps preserve the size of the
panel data stationarity test, while the latter avoids the risk of unnecessary reductions in
power. Finite-sample simulations indicate that the serial correlation test has good size
properties in small samples, while still providing power when only one cross-sectional unit
displays serial correlation.

As a final remark it should be noted that the results in the current paper can be
generalized without altering the main results of the paper.
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First, the current test for serial correlation can be implemented also in the panel data
unit root test of Im et al. (2003) when choosing the number of lagged first differences
that are to be used for augmenting the Dickey-Fuller test regressions.

Second, the number of autocorrelations, k, that are used to test for serial correlation
in the disturbance terms, needs not to homogeneous over the cross section. That is, the
number can vary between cross sections, as long as the degrees of freedom that are used
to obtain the p-values are altered correspondingly.

Third, under some circumstances, it can be unrealistic to assume that all cross-section
time series are serially uncorrelated. However, the test proposed in the current paper, can
be equally well used to test the null hypothesis that a subset of the cross sections have
serially uncorrelated series. If it is found that some of the cross-sectional unit consist of
serially uncorrelated series, the panel data stationarity test is implemented by using the
variance estimator of Section 2 for these cross sections, while e.g. the Newey and West
(1987) estimator is applied for the cross-sectional units that display serially correlated
time series.

Finally, the current test can be used also when allowing cross-sectional correlation
in the panel data stationarity framework, as long as the cross-sectional correlation is
handled prior to implementing the test (e.g. through defactoring the cross-section time
series along the lines of Shin and Snell (2006) or Bai and Ng (2004).
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Table 1: Size of panel data serial correlation test.

Intercept
T=50 T=100 T=250

N=5 0.052 0.048 0.047
10 0.051 0.049 0.046
15 0.052 0.053 0.047
20 0.052 0.048 0.051

Intercept and trend
T=50 T=100 T=250

N=5 0.064 0.059 0.046
10 0.071 0.059 0.053
15 0.076 0.064 0.055
20 0.079 0.071 0.053

Table 2: Power of panel data serial correlation test.a

AR(1) disturbances
Intercept Intercept and trend

T=50 T=100 T=250 T=50 T=100 T=250
N=5 0.682 0.970 1.000 N=5 0.620 0.958 1.000

10 0.520 0.906 1.000 10 0.478 0.885 1.000
15 0.428 0.843 1.000 15 0.402 0.817 1.000
20 0.373 0.788 0.999 20 0.370 0.760 0.999

MA(1) disturbances
Intercept Intercept and trend

T=50 T=100 T=250 T=50 T=100 T=250
N=5 0.462 0.869 1.000 N=5 0.422 0.846 1.000

10 0.323 0.711 0.999 10 0.318 0.696 0.998
15 0.266 0.611 0.992 15 0.276 0.605 0.992
20 0.240 0.521 0.983 20 0.252 0.516 0.980

Notes: aThe power is studied by letting one of the cross-section time series contain
serial correlation.
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