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Abstract

Given a game admitting an exact potential, affine transformations of utilities are described
that do or do not destroy the property. All weighted potentials of a game admitting one are
described.
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1 Introduction

Monderer and Shapley (1996a) developed their notion of a potential game in both car-

dinal and ordinal versions. Most attention was paid to the former; more precisely, to

exact potentials. However, an obvious objection can be raised against that very notion:

a von Neumann–Morgenstern utility is defined up to a strictly increasing affine transfor-

mation, and such transformations can easily destroy (or create) an exact potential.

Apparently aware of this objection, Monderer and Shapley also defined a weighted

potential, which is indeed an attribute of a game with NM utilities (the observation was

explicit in Morris and Ui, 2004). Actually, all interesting results on mixed extensions of

potential games (Sela, 1992; Monderer and Shapley, 1996b; Huang, 2002; Morris and Ui,

2004) require the presence of a weighted potential.

This note investigates the relationship between cardinal potentials and affine trans-

formations of utilities. Proposition 5 establishes an additive structure of exact potentials,

which helps describe transformations that do or do not destroy the presence of such po-

tentials (Theorem 1). Similar considerations help us describe all weighted potentials of a

game (Theorem 2). The point is Monderer and Shapley showed that two exact potentials

of the same game differ in a constant. A weighted potential obviously survives a strictly

increasing affine transformation, but it would be generally wrong to assert that only such

transformations are allowed.

The next section contains basic definitions and auxiliary results. The additive struc-

ture of exact potentials is introduced in Section 3. The main results are in Section 4.

2 Basic notions

A strategic game Γ is defined by a finite set of players N (we denote n = #N), and

strategy sets Xi and utility functions ui : XN → R for all i ∈ N , where XN =
∏

i∈N Xi is

the set of strategy profiles. For each I ⊆ N , we denote XI =
∏

i∈I Xi; instead of XN\{i}
and XN\I , we write X−i and X−I , respectively. Given I ⊆ N and xI ∈ XI , we define a

reduced game Γ(xI) with N \ I as the set of players, the same strategy sets and utilities

u′i(x−I) = ui(x−I , xI) for every i ∈ N \ I and x−I ∈ X−I .

A strategic game Γ′ is NM-equivalent to Γ if N ′ = N and X ′
i = Xi for each i ∈ N ,

whereas for each i ∈ N there is a strictly increasing affine transformation, λi(v) = aiv + bi

(ai > 0), such that

u′i(xN) = λi ◦ ui(xN)

for every xN ∈ XN .

Monderer and Shapley (1996a) defined an exact potential of a game Γ as a function

P : XN → R such that

ui(yN)− ui(xN) = P (yN)− P (xN) (1)
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whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. A weighted potential of Γ is a function

P : XN → R satisfying

∀i ∈ N ∃wi > 0∀yN , xN ∈ XN

[
y−i = x−i ⇒ ui(yN)− ui(xN) = wi ·

(
P (yN)− P (xN)

) ]
.

(2)

Clearly, (2) is invariant under strictly increasing affine transformations of utility functions,

which cannot be said about (1).

Proposition 1 (Voorneveld et al., 1999). A function P : XN → R is an exact potential

of Γ if and only if for every i ∈ N there is a function Qi : X−i → R such that

ui(xN) = P (xN) + Qi(x−i)

for every xN ∈ XN .

Proposition 2 (Monderer and Shapley, 1996a). Let P be an exact potential of a

game Γ. Then a function P ′ : XN → R is an exact potential of Γ if and only if there is

C ∈ R such that P ′(xN) = P (xN) + C for all xN ∈ XN .

Proposition 3 (Monderer and Shapley, 1996a). A game Γ admits an exact potential

if and only if for every i, j ∈ N (i 6= j), x′i, x
′′
i ∈ Xi, x′j, x

′′
j ∈ Xj, and x−ij ∈ X−{i,j}, there

holds

ui(x
′′
i , x

′
j, x−ij)− ui(x

′
i, x

′
j, x−ij) + uj(x

′′
i , x

′′
j , x−ij)− uj(x

′′
i , x

′
j, x−ij) +

ui(x
′
i, x

′′
j , x−ij)− ui(x

′′
i , x

′′
j , x−ij) + uj(x

′
i, x

′
j, x−ij)− uj(x

′
i, x

′′
j , x−ij) = 0. (3)

Proposition 4 (Morris and Ui, 2004). Let Γ be a game and P be a function XN → R.

Then P is an exact potential of a game NM-equivalent to Γ if and only if P is a weighted

potential of Γ.

Proof. Indeed, if P satisfies (2), then it satisfies (1) for u′i = (1/wi) · ui. Conversely, if P

satisfies (1) for u′i = ai · ui + bi, then it satisfies (2) with wi = 1/ai.

3 Additive structure

Given a game Γ, we define two binary relations on the set N . First, we say that j

influences i, and denote the fact j ° i, if i = j or there are x′i, x
′′
i ∈ Xi, x′j, x

′′
j ∈ Xj, and

x−ij ∈ X−{i,j} such that

ui(x
′′
i , x

′
j, x−ij)− ui(x

′
i, x

′
j, x−ij) 6= ui(x

′′
i , x

′′
j , x−ij)− ui(x

′
i, x

′′
j , x−ij). (4)

Second, we set j ∼= i if and only if there are i0, i1, . . . , im ∈ N such that i0 = i, im = j, and,

for each k, either ik+1 ° ik or ik ° ik+1 (i.e., ∼= is the symmetric and transitive closure of

°). Clearly, ∼= is an equivalence relation, hence N is partitioned into equivalence classes;
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we denote N the set of the classes. Whenever I ∈ N , i ∈ I 6 3 j, x′i, x
′′
i ∈ Xi, x′j, x

′′
j ∈ Xj,

and x−ij ∈ X−{i,j}, there holds

ui(x
′′
i , x

′
j, x−ij)− ui(x

′
i, x

′
j, x−ij) = ui(x

′′
i , x

′′
j , x−ij)− ui(x

′
i, x

′′
j , x−ij). (5)

It is important for the following to note that both ° and ∼= are invariant under strictly

increasing affine transformations of utilities, i.e., both relations and the partition N are

the same in NM-equivalent games.

When Γ admits an exact potential, (3) and (4) together imply that the relation ° is

symmetric. In particular, if ui = const (player i is a dummy), then {i} ∈ N .

Proposition 5. Let P be an exact potential of a game Γ; then for each I ∈ N there is a

function PI : XI → R such that

P (xN) =
∑
I∈N

PI(xI) for all xN ∈ XN . (6)

If there is also a list of functions P ′
I : XI → R, I ∈ N , such that (6) holds when PI

are replaced with P ′
I , then there are constants CI ∈ R such that

∑
I∈N CI = 0, and

P ′
I(xI) = PI(xI) + CI for all I ∈ N and xI ∈ XI .

Proof. Let I ∈ N and #I = m. We fix one-to-one mappings σ : {1, . . . , m} → I and

σ′ : {1, . . . , n − m} → N \ I. Combining (1) and (5) for i = σ(k) (k = 1, . . . , m) and

j = σ′(h) (h = 1, . . . , n−m), we obtain

P (x′′I , x
′
−I)− P (x′I , x

′
−I) =

m∑

k=1

[
P (x′′σ({1,...,k}), x

′
σ({k+1,...,m}), x

′
−I)− P (x′′σ({1,...,k−1}), x

′
σ({k,k+1,...,m}), x

′
−I)

]
=

m∑

k=1

[
uσ(k)(x

′′
σ({1,...,k}), x

′
σ({k+1,...,m}), x

′
−I)− uσ(k)(x

′′
σ({1,...,k−1}), x

′
σ({k,k+1,...,m}), x

′
−I)

]
=

m∑

k=1

[
uσ(k)(x

′′
σ({1,...,k}), x

′
σ({k+1,...,m}), x

′′
σ′(1), x

′
σ′({2,...,n−m}))−

uσ(k)(x
′′
σ({1,...,k−1}), x

′
σ({k,k+1,...,m}), x

′′
σ′(1), x

′
σ′({2,...,n−m}))

]
= · · · =

m∑

k=1

[
uσ(k)(x

′′
σ({1,...,k}), x

′
σ({k+1,...,m}), x

′′
σ′({1,...,h}), x

′
σ′({h+1,...,n−m}))−

uσ(k)(x
′′
σ({1,...,k−1}), x

′
σ({k,k+1,...,m}), x

′′
σ′({1,...,h}), x

′
σ′({h+1,...,n−m}))

]
= · · · =

m∑

k=1

[
uσ(k)(x

′′
σ({1,...,k}), x

′
σ({k+1,...,m}), x

′′
−I)− uσ(k)(x

′′
σ({1,...,k−1}), x

′
σ({k,k+1,...,m}), x

′′
−I)

]
=

m∑

k=1

[
P (x′′σ({1,...,k}), x

′
σ({k+1,...,m}), x

′′
−I)− P (x′′σ({1,...,k−1}), x

′
σ({k,k+1,...,m}), x

′′
−I)

]
=

P (x′′I , x
′′
−I)− P (x′I , x

′′
−I) (7)
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for all x′′I , x
′
I ∈ XI and x′′−I , x

′
−I ∈ X−I . Fixing x0

N ∈ XN , we define

PI(xI) = P (xI , x
0
−I)−

#N − 1

#N P (x0
N) and Q(xN) =

∑
I∈N

PI(xI). (8)

Now for every i ∈ I ∈ N and yN , xN ∈ XN such that x−i = y−i (hence x−I = y−I) we

have ui(yN) − ui(xN) = P (yN) − P (xN) = P (yI , x
0
−I) − P (xI , x

0
−I) = PI(yI) − PI(xI) =

Q(yN)−Q(xN), the first equality following from (1), the second from (7), the last two from

(8). Therefore, Q is an exact potential of Γ; by Proposition 2, Q(xN) − P (xN) = const.

Since Q(x0
N) = P (x0

N), we have Q(xN) = P (xN) for all xN ∈ XN .

To prove the second statement, we notice that if P is an exact potential of Γ and

(6) is valid, then each PI is an exact potential of the reduced game Γ(x0
−I) (regardless of

the choice of x0
N ∈ XN): If i ∈ I ∈ N , yN , xN ∈ XN and x−i = y−i then ui(yI , x

0
−I) −

ui(xI , x
0
−I) = P (yI , x

0
−I) − P (xI , x

0
−I) = PI(yI) − PI(xI). Therefore, P ′

I(xI) − PI(xI) =

const by Proposition 2 applied to Γ(x0
−I).

4 Main results

Theorem 1. Let Γ be a game admitting an exact potential P , and Γ′ be a game NM-equiv-

alent to Γ (with strictly increasing affine transformations λi(v) = aiv + bi, i ∈ N ). Then

Γ′ admits an exact potential if and only if ai = aj whenever j ∼= i. If the condition is

satisfied, then P ′(xN) =
∑

I∈N aI · PI(xI) is an exact potential of Γ′ whenever (6) holds

(aI , naturally, denotes the common value of ai for i ∈ I).

Proof. If the condition on λi’s is satisfied and a representation (6) is given, we define

P ′(xN) =
∑

I∈N aI ·PI(xI) for all xN ∈ XN . Let i ∈ I ∈ N , yN , xN ∈ XN , and y−i = x−i;

then u′i(yN)− u′i(xN) = aI

(
ui(yN)− ui(xN)

)
= aI

(
PI(yN)− PI(xN)

)
= P ′(yN)− P ′(xN),

i.e., P ′ is an exact potential of Γ′.

Let the condition be violated: there are i′, i′′ ∈ N such that i′ ∼= i′′, but ai′ 6= ai′′ . By

the definition of ∼=, there are i, j ∈ N , x′i, x
′′
i ∈ Xi, x′j, x

′′
j ∈ Xj, and x−ij ∈ X−{i,j} such

that (4) holds, but ai 6= aj. By Proposition 3, (3) holds; it can be rewritten as

ui(x
′′
i , x

′
j, x−ij)− ui(x

′
i, x

′
j, x−ij) + ui(x

′
i, x

′′
j , x−ij)− ui(x

′′
i , x

′′
j , x−ij) =

− [uj(x
′′
i , x

′′
j , x−ij)− uj(x

′′
i , x

′
j, x−ij) + uj(x

′
i, x

′
j, x−ij)− uj(x

′
i, x

′′
j , x−ij)],

which is not 0 by (4). Multiplying ui by ai and uj by aj, and taking into account that

ai 6= aj, we immediately see that (3) is violated for u′i and u′j. By Proposition 3, Γ′ cannot

admit an exact potential.
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Proposition 6. For every game Γ, the following statements are equivalent.

1. Every game NM-equivalent to Γ admits an exact potential.

2. Each I ∈ N is a singleton.

3. For each i ∈ N , there are functions Pi : Xi → R and Qi : X−i → R such that

ui(xN) = Pi(xi) + Qi(x−i) for every xN ∈ XN .

Proof. The equivalence Statement 1 ⇐⇒ Statement 2 immediately follows from Theo-

rem 1. If Statement 3 holds, then we obtain Statement 1 by the sufficiency part of Propo-

sition 1. Finally, if Statement 2 holds, then there is an exact potential by Statement 1,

hence Proposition 5 and the necessity part of Proposition 1 imply Statement 3.

Theorem 2. Let P be a weighted potential of a game Γ, and P ′ be a function XN → R.

Then the following statements are equivalent.

1. P ′ is a weighted potential of Γ.

2. There is a representation (6) and a strictly increasing affine transformation λI : R→
R for every I ∈ N such that

P ′(xN) =
∑
I∈N

λI ◦ PI(xI) for all xN ∈ XN . (9)

3. For every representation (6), there are strictly increasing affine transformations

λI : R→ R (I ∈ N ) such that (9) holds.

Proof. By Proposition 4, we may assume that P is an exact potential of Γ.

Let Statement 1 hold; by Proposition 4, P ′ is an exact potential of a game Γ′ NM-equiv-

alent to Γ. Given a representation (6), we apply Theorem 1, obtaining that ai = aj when-

ever j ∼= i. The second statement of Theorem 1 implies that P ′′(xN) =
∑

I∈N aI · PI(xI)

is also an exact potential of Γ′. By Proposition 2, there is C ∈ R such that P ′(xN) =

P ′′(xN)+C for all xN ∈ XN . Picking a list of 〈bI〉I∈N such that
∑

I∈N bI = C and defining

λI(v) = aI · v + bI , we obviously obtain (9). Therefore, Statement 3 holds.

If Statement 2 holds, then the second statement of Theorem 1 immediately implies

that P ′ is an exact potential of a game NM-equivalent to Γ, hence is a weighted potential

of Γ by Proposition 4.

Corollary. Let Γ be a game in which N is a singleton, P be a weighted potential of

Γ, and P ′ be a function XN → R. Then P ′ is a weighted potential of Γ if and only if

there is a strictly increasing affine transformation λ such that P ′(xN) = λ ◦P (xN) for all

xN ∈ XN .
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