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Abstract

The concept of Granger-Causality (GC) is widely used to draw inference concerning

causality in applied economics. Stationary series are the term of reference used in GC testing,
which is generally studied by means of a standard Dickey-Fuller test. We prove that, when
the Data Generating Process (DGP) of the variables is either Broken-Trend Stationary (BTS)
or Broken-Mean Stationary (BMS), correct inference can not be drawn from a standard
Granger-Causality test and may identify inexistent causal relationships, even if the former
variables are differenced. Asymptotic and finite-sample evidence in this sense is provided.
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1 Introduction

The roots of our modern concept of causality can be found in Aris-
totle’s “efficient cause” (”the primary source of the change or rest”).
Moreover, one of the explicit assumptions commonly made in regard
to causality-in econometrics-is that the future can not cause the
past. Granger’s (1969) seminal article is currently a basic notion in
the study of dynamic relationships between time series. Causality, in
the Granger sense, is typically defined in terms of the predictabil-
ity of a vector of variables one period ahead.! Paradoxically, GC
tests are commonly practiced by means of in-sample F-tests (Chao,
Corradi, and Swanson 2001).

There are two different approaches taken in empirical works to draw-
ing inference with regard to the causality among economic variables:
the first is credited to Marshall-Neyman-Rubin, whilst the second is
attributed to Wiener-Granger-Sims.? We focus on that of Wiener-
Granger-Sims,® which, to the best of our knowledge, appears to be,
the most widely accepted approach. The thorough study of GC
during the last decades has led to the identification of a number of
issues concerning temporal aggregation bias [which may arise when
the time series are not collected frequently enough to fully cap-
ture the movements of economic variables; see McCrorie and Cham-
bers (2006)], and measurement errors in variables (Andersson 2005),
which may cause the GC test to fail to reject the null hypothesis of
no Granger-Causality more often than it should (when the Granger-
caused variable is measured with error).

Nonstationarity is a foremost issue in causality inference. Chris-
tiano and Ljungqvist (1988) computed a simulation experiment and
found that drawing inference from the GC test with nonstation-
ary variables-unit root with drift processes-may result in a non-
standard distribution of the F-statistic under the null hypothesis of
no Granger-Causality. The authors further argue that when work-
ing with differenced variables, the GC may reflect the lack of power
to detect GC but not GC itself. Sims, Stock, and Watson (1990)
provide a theoretical basis for such findings: they assert that, when

I Assumption taken by Granger on his definition of causality (Granger 1969, Granger,
Swanson, Watson, and Ghysels 2001).

2For a thorough study on the key differences between these, see (Lechner 2006) and
(Heckman 1999).

3Wiener (1956), Granger (1969), and (Sims 1972).



the variables are not cointegrated and, moreover, are dominated by
a deterministic trend, the F statistic does not converge to a stan-
dard distribution and includes nuisance parameters. Furthermore,
if the variables do cointegrate, the F-statistic converges to a stan-
dard distribution.* The problem of non-stationary variables in the
performance of GC tests is best illustrated in the literature concern-
ing the neutrality of money. There are a considerable number of
works dealing with the money-output dynamic relationship. Hayo
(1999), for instance, asserts that there is statistical evidence that
money Granger-causes output, whether such inference is drawn from
level or differentiated series. In contrast, Christiano and Ljungqvist
(1988) argue that such a causal relationship can only be inferred
by using log-level variables. Stock and Watson (1987) acknowledge
the perplexing and sometimes contradictory results obtained in the
literature-even when the specifications differ only slightly. By apply-
ing Sims, Stock, and Watson’s (1990) results, the authors do not find
evidence to support the neutrality of money (Mehra 1989). Since
Perron’s (1989) seminal paper, structural breaks have also played
an important role in the unit-root testing literature. The existence
of such breaks biases the usual tests for a unit root toward nonrejec-
tion. Deterministic-possibly broken-trends are not the sole possible
DGP; the problem arises even in mean stationary series with level
shifts, as documented in Perron and Vogelsang (1992). Such BMS
processes may be useful in the study of the Power Purchasing Par-
ity hypothesis, as well as in the evaluation of the behavior of price
index time series in countries where a targeting policy is applied.
Stationarity and shifts are thus key elements in GC test litera-
ture. Most works dealing with GC use the ADF testing procedure
to evaluate the stationarity of the variables (Mehra 1989, Foresti
2006, Hayo 1999, Giles, Tedds, and Werkneh 2002, McCrorie and
Chambers 2006, Chao, Corradi, and Swanson 2001, Stock and Watson
1987). Therefore, in the next section, we study the stationarity in-
ference drawn from a Dickey-Fuller test when the DGP is a BTS, a
differenced BTS, and a BMS. We then study the asymptotic prop-
erties of the GC test when the variables used to perform it are
generated by those same DGPs.

4Dufour and Renault (1998) provide an excellent explanation of the theory underlying
Granger-causality. They further research the notion of Granger-Causality where the horizon of
predictability of a vector of variables is an arbitrary number of periods ahead (Lutkepohl 1993).



2 Asymptotic Results

We focus on two empirically relevant—in economics-DGPs: Broken-
Trend Stationarity process (BTS), and Broken-Mean Stationary pro-
cess (BMS), defined in equations (1), and (2), respectively. These
processes have been used to model growing variables, both real and
nominal, such as output, consumption, prices, and exchange rates
(Perron 1989, Perron 1997, Lumsdaine and Papell 1997, Mehl 2000):

Wy = Hw + 6wt + 'YwDth + Ut (1)
Wy =y + ‘ngth + Ut (2)

Where (., Bw, and 7, are constants, u,, is white noise, and DU,
and DT, are dummy variables allowing changes in the level and
the slope, respectively; that is, DU, = (1)1(t > T}, ) and DT, =
(t — Tp,)1(t > Ty, ), where 1(-) is the indicator function, and T}, is
the unknown date of the break in w. We denote the break fraction
as Ay = (Tp,,/T) € (0,1), where T is the sample size.

In the previous section, we documented the extended use of the DF
to pretest variables prior to the GC test. The DF test specification
may vary, for which reason we study three different variations that
are commonly practiced:

Aw, = Tiwey +uy (3)
Aw, = a4+ Towe1 + (4)
Aw;, = o+ w1 + 0t + uy (5)

Since Perron’s (1989) seminal article, it has been well-known that
structural breaks bias the DF test, which in turn over-accepts the
null hypothesis of unit root. We investigate further along those lines,
by studying the behavior of such bias:

Proposition 1 Let y; be a series generated by DGP (1) and the
three DF' specifications, (3,4, and 5), be estimated. We denote the
DF t-statistic associated as tz, fori=1,2,3; then as T — oo:

1. Specification without trend or intercept (eq. 3): t:, = O, (T"?);
the sign of the asymptotic value of the t-statistic is always pos-
wtive.



2. Specification with intercept (eq. 4): tz, = O, (T"/?); the sign
of the asymptotic t-statistic depends upon the values of the pa-
rameters in DGP (1).

3. Specification with trend and intercept (eq. 5):

o When A# 0.5, t: =0, (T1/2) and the sign of the asymp-
totic value of the t-ratio is positive (negative) when the
break is in the first (second) half of the sample.

o When A=0.5,t;, =0, (T*1/2).
Where T is the size of the sample.

Proof: See Appendix A

Proposition 1 asserts that the BTS process may, under many cir-
cumstances, be mistakenly considered as a unit-root process; the
t-ratio diverges to infinity in the specification with neither trend
nor intercept, which will lead us, as the sample grows, to accept the
null hypothesis of a unit root in the process. When the DF specifi-
cation that includes an intercept is used, the asymptotic behavior of
the t-test is unreliable; it might accept or reject the null hypothesis
of a unit root depending on the values of DGP (1), as we can see in
figure (1).
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Figure 1: t;, against 8, and -, in DGP (1) when A = 0.36.

Finally, in the specification with trend and intercept, the t-ratio
diverges to infinity except in the unlikely event of a break located



exactly in the middle of the sample.> Whichever the case, the ac-
ceptance or rejection of the null hypothesis is dependent upon the
location of the break. The test is thus unreliable under this DF
specification.

It might be expected that anyone seeking to find stationary series
by using a DF test might spuriously find unit roots processes and
thus difference the series in order to render these stationary. First-
differenced BTS series are then:

Ath = ﬁw + ’YwDUw,t + €xt (6)

for w = z,y, where DU,y = 1(t > T}, ) and €, = (Ut — U t—1)
We then obtain the asymptotics of the DF test on the differenced
series:

Proposition 2 Let w, be a series generated by equation (1) and
first-differenced as in eq. (6); denote t;, for i = 1,2,3 the Dickey-
Fuller t-ratio associated to 7; in equations, (3), (4), and (5). Then,
as T — oo tz, = O, (T"?) for i = 1,2,3. Moreover, the sign of
the asymptotic value of t;, is always negative.

Proof: See Appendix A

The above proposition indicates that, asymptotically, one would re-
ject the hypothesis of a unit root in the differenced BTS series.
As with differenced BTS processes, the same conclusion is drawn
when the underlying DGP is a BMS. Further details can be found
in Ventosa-Santaularia and Gomez (2006).

3 Granger-Causality

The basic methodology of the GC test in a bivariate case can be
found in most text books. A time-series variable, x;, is said to fail
to Granger-Cause another variable, y;, if the Mean-Squared Error
(MSE) of a forecast of y; 1, based on U}* = {&y, 21, ..., yt, Y1, .- -}
is equal to the MSE of a forecast based on ¥} = {y;,y;1,...}. In
practice, as mentioned previously, GC tests are commonly instru-
mented by means of in-sample F-tests. Due to of computational

5When the break is in the middle of the sample, the statistic collapses to zero. This would
lead us to reject the null hypothesis and determine that there is a unit root in the series.



limitations, we focus on the most simple GC regression specification
test:

V¢ = MUi—1 + V2Zi—1 + U (7)
Ve = YIU1 + Up (8)

Where vy, 2; are generated indistinctly by DGPs (1) and/or (2); the
former DGP may or may not be differenced as in (6). Eq. (7)
accounts for the unrestricted model whilst eq. (8) is the restricted
model. A “multiple” linear-restriction test, i.e. an F test, is then
calculated on the hypothesis Hy : 72 = 0 against the alternative,
Ha :v2 # 0. The test statistic is constructed as follows:

RRSS —URSS
Fo= URSS/ (T — 1) ()

where RRSS and URSS are the sum of least squares residuals from
the restricted and the unrestricted models, respectively. We study
the asymptotic performance of the GC test when the variables are
generated either by DGP (1) or (2) and obtain the following results:

Theorem 1 Let y;, and x; be two independent series generated in-
distinctly by DGPs (1) or (2); the former may or may not be dif-
ferentiated as in eq. (6); let the F statistic (eq. 9) be constructed
based on the sum of residuals in (7) and (8). Then, as T — oo:

F = Op(T>

Proof: See Appendix A

The properties of the F-statistic ensure its positiveness; therefore,
according to theorem (1), we will reject the null hypothesis of no
Granger-causality between the variables in all cases as the sample
size grows.

We present finite-sample evidence of the behavior of the GC test.
This Monte Carlo simulation exercise is twofold. On the one hand,
the F-statistic associated with the GC test is computed and com-
pared with the corresponding critical value at a 5% level. Sur-
prisingly, nonsense rejection of the null hypothesis of no Granger-
Causality occurs almost systematically with such small sample sizes,



i.e. those of 50 observations or fewer [see Table (1)]. On the other
hand, we computed an experiment where the “Granger-caused” vari-
able pertains to the historical Nelson and Plosser macroeconomic
dataset. More precisely, we applied the GC to test the hypoth-
esis that a simulated BTS variable (whether differentiated or not)
Granger-causes either the Real GNP or the monetary aggregate M.
The experiment, repeated 10,000 times, revealed that it is highly
possible to reject the null of no Granger-Causality between these
variables and simulated data [see Table (1)].The specification of the
Monte Carlo experiment, together with the details of the historical
dataset, can be found in appendix B.

K | 50 [ 100 | 250 [ 500 |
BTS vs BTS 0.99 [ 1.00 [ 1.00 [ 1.00
ABTS vs BTS 1.00 | 1.00 | 1.00 | 1.00
BTS vs ABTS 0.37 [ 0.98 | 1.00 | 1.00
ABTS vs ABTS [ 0.93 | 1.00 [ 1.00 | 1.00

Real and simulated data

GNP vs BTS 1.00
AGNP vs BTS 1.00
AGNP vs ABTS 1.00
My vs BTS 1.00
AMs vs BTS 1.00
AM;y vs ABTS 1.00

Table 1: Rejection rates of the F-statistic GC test.

4 Concluding Remarks

As a limited concept of causality, circumscribed to the predictabil-
ity of a variable relative to the information included in another,
Granger-Causality has proved to be a remarkably useful tool in ap-
plied economics. It provides an important methodological tool in
the answering of the typical scientific question ”What happens to y
when x moves?” Here we have proved that a simple GC test fails
to accept the null hypothesis of no Granger-Causality between two
independent Broken-Trend or Broken-Mean time series, whether the
former series are differentiated or not. Hence, it should be clear that
such tests should not be used when the series appear to be generated
by this DGP. Sadly, it is also well-documented that the most popular



unit-root test, the Dickey-Fuller, provides biased results when the
true DGP is a BTS. Further unit-root research using more sophis-
ticated tests is therefore recommended, although the identification
of structural breaks remains elusive. Hence, a warning call becomes
evident: pre-testing for unit roots and deterministic trends (with
breaks) is imperative before drawing inference as regards Granger-
Causality.

A Proof of Propositions 1 and 2, and Theorem
1

We present a guide on how to obtain the order in probability of a
certain combination of DGPs; namely z; and y, are generated by
DGP (1). The expressions needed to compute the asymptotic value
of the GC F statistic are:%. Since x, is independent from y;, we do
not use the lag of x; to calculate the asymptotics, but rather the
variable in levels, with no loss of generality.

SAll sums are from ¢t = 1 to T unless otherwise specified. z = z,9y; Ay = A\x — Ay; we
assume, for simplicity, that Az > Ay.
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As for the stochastic sums, most results can be found in Phillips
(1986), Durlauf and Phillips (1988) and Phillips and Ouliaris (1990).
The remainder can be easily obtained:
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T
= Z DTytuyt ‘I— Uy)\yT + Z Uyt —

t=XAyT+1
UyT — T (1 — )‘y) UyT
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These elements allow for the programming of all those sums required
to study the asymptotic behavior of the restricted and unrestricted

regressions: ny, Zytxt, Eytyt—la ny_p and, Zyt—lwt; For
example:

Sy = mT+8) P+y Y DT+ us+2u,8, >
——

Op(T)
+2/0 Yy Z DT, + 2p, Z Uyt +28y7y Z DTt
——
Oy (T%)
+208, Y "yt +27v, > DTy,
O (T%) Op (T%)

These programs can be downloaded from:
http: //www.ventosa-santaularia.com/GC_vsvv_2008. zip.

B Data Generating Processes of the Simulations

The parameter values used for each simulation included in this ar-
ticle are as follows:

Figure 1: Ty = g + Lot + Ve DTpe + gy
pz = T7; Br € [-10,10]; v, € [-10,10]
Az = 0.36; ugzy ~ N(0,1)
Table 1: Wi = fhy + Bt + Yo DTt + Ut
te = 0.75; py, = 0.5; B8, = 0.03
By = 0.05; v, = —0.01; v, = 0.02
Az = 0.3; Ay = 0.7; uyy ~ N(0,1)

The variables GNP (1909-1988) and M, (1889-1988) correspond to
the Real Gross National Product (Billions of 1958 dollars) and the
money aggregate (Billions of dollars, annual averages), respectively.
Both series are in natural logs. We use the Nelson and Plosser
macroeconomic dataset updated to 1988 by Herman van Dijk, which
can be found at the JBES 1994 dataset archives. The data are
annual.
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