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Abstract

It is well known that, in a multinomial probit, only the covariance matrix of the location and
scale normalized utilities are identified. In this note, we explore the relation between these
identifiable parameters and the original elements of the covariance matrix, to find out what
can be learnt about the correlations between the stochastic components of the non-normalized
utilities.
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1. Introduction

In the context of discrete choice modelling, the multinomial probit model (MNP) is
often adopted as a way to avoid the well known limitations of the simpler multinomial
logit. Unlike the multinomial logit, the MNP does not impose any restrictions on the
covariance matrix of the stochastic components of the utilities. However, due to the
fact that in any random utility model the utility functions are only identified up to
scale and location (Dansie, 1985), in a MNP it is not possible to identify the elements
of the covariance matrix. Indeed, all that is possible to identify are the parameters in
the covariance matrix of the normalized utilities. These parameters are functions of
the original elements of the covariance matrix but are unfit to be given an economic or
behavioural interpretation.
In this note, we show that certain combinations of the identified parameters from the

covariance matrix of the errors of the normalized stochastic utilities imply the existence
of correlations between the errors of the original (non-normalized) utilities. Although we
focus on the MNP, our result is easy to extend to other models, like the mixed multinomial
logit of McFadden and Train (2000), or the heterogeneity adjusted logit of Chesher and
Santos Silva (2002).

2. Identified parameters in the MNP

For simplicity, we present the MNP for the three alternative case (J = 3), but all
the results can be generalized to models with larger choice-sets. The model assumes that
individuals select one of three mutually exclusive alternatives. The random utility of
individual i, i = 1, ..., N , for choice j, j = 1, 2, 3, is formulated as

uij = αj + x0iβj + εij

where xi is a (k × 1) vector of explanatory variables for individual i, which may contain
both individual specific characteristics and alternative specific attributes faced by indi-
vidual i, and εi = (εi1, εi2, εi3)

0 is a vector of stochastic terms which is assumed to be
distributed as a trivariate normal, identically and independently across theN individuals,
with zero mean and covariance matrix

Σ = Cov(εi) =

⎛⎝σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎞⎠
with σjj > 0, ∀j. Unfortunately, it is not possible to get unique maximum likelihood
estimates of the parameters α = (α1, α2, α3)

0, β = (β01, β
0
2, β

0
3)
0 and Σ, as they are not

identified (Dansie, 1985).
One source of the identification problem is that the observed choices are only infor-

mative on the differences of the utilities. For example, taking the third alternative as
the reference state and using the superscript (j) to denote the chosen reference state, we
obtain

u∗(3)ij = uij − ui3 = α∗(3)j + x0iβ
∗(3)
j + ε∗(3)ij
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where, α
∗(3)
j = αj − α3, β

∗(3)
j = βj − β3, ε

∗(3)
ij = εij − εi3, j = 1, 2, 3. As a

consequence, u∗(3)i3 = 0 and the relevant distribution of the disturbances is the bivari-
ate distribution of ε∗(3)i = (ε

∗(3)
i1 , ε

∗(3)
i2 )

0, which is normal with zero mean and covariance
matrix

Σ∗(3) = Cov(ε
∗(3)
i ) =

Ã
σ
∗(3)
11 σ

∗(3)
12

σ
∗(3)
21 σ

∗(3)
22

!
with σ

∗(3)
jk = E(εij − εi3)(εik − εi3), j, k = 1, 2.

The other source of the identification problem is that the data provides no information
on the scale of the utilities. To achieve identification, it is necessary to impose a restriction
on Σ∗(3), and only two out of the three parameters of the bivariate covariance matrix are
identified. The usual way of imposing this identification restriction is to standardize in
order to have the first utility disturbance with unit variance, i.e., the utilities become

u
∗∗(3)
ij =

u∗(3)ijq
σ
∗(3)
11

= α
∗∗(3)
j + x0iβ

∗∗(3)
j + ε

∗∗(3)
ij

with α
∗∗(3)
j = α

∗(3)
j

.q
σ
∗(3)
11 , β

∗∗(3)
j = β

∗(3)
j

.q
σ
∗(3)
11 , ε

∗∗(3)
i = ε

∗(3)
i

.q
σ
∗(3)
11 , j = 1, 2,

u
∗∗(3)
i3 = 0 and

Σ∗∗(3) = Cov(ε
∗∗(3)
i ) =

Ã
1 σ

∗∗(3)
12

σ
∗∗(3)
21 σ

∗∗(3)
22

!

with σ∗∗(3)jk = σ
∗(3)
jk

.
σ
∗(3)
11 , j, k = 1, 2. Notice that changing the reference state adopted for

estimation allows the identification of two other covariance elements in the corresponding
(2× 2) matrix Σ∗∗(j), namely σ∗∗(1)12 = σ

∗(1)
12

.
σ
∗(1)
11 and σ

∗∗(2)
12 = σ

∗(2)
12

.
σ
∗(2)
11 where

σ
∗(1)
12 =E(εi2 − εi1)(εi3 − εi1) = σ23 − σ12 − σ13 + σ11

σ
∗(2)
12 =E(εi1 − εi2)(εi3 − εi2) = σ13 − σ23 − σ12 + σ22

σ
∗(1)
11 =E(εi2 − εi1)

2 = E(εi1 − εi2)
2 = σ

∗(2)
11 .

It has been noted in empirical applications of the MNP that the estimation results on
the identified parameters of the covariance matrix are not useful for inferring individual
preferences and are difficult to interpret from an economic perspective. This is a direct
consequence of the identification problem of the econometric model, which only permits
the estimation of particular functions of the parameters of interest.

3. Inference on covariance patterns
The following proposition shows that there is a region of the identified covariance

matrix parameter space of the MNP which corresponds to the existence of at least one
non-zero covariance between the errors of the non-normalized utilities.
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Proposition 1 Non positiveness of one of the identified covariance elements across the
reference states is a sufficient condition for the existence of a non-null covariance among
the error terms of the original stochastic utilities. That is σ∗∗(j)12 ≤ 0 for some j (j =
1, 2, 3) =⇒ σkl 6= 0 for some k, l (k, l = 1, 2, 3; k 6= l).

Proof: Consider the identified covariance elements obtained with reference state 3
σ
∗∗(3)
12 ≤ 0⇔ σ

∗(3)
12 = σ12−σ13−σ23+σ33 ≤ 0⇔ σ33 ≤ −σ12+σ13+σ23. As σ33 > 0, the

case of all σjk being simultaneously equal to zero must be ruled out. The same applies
to the identified covariance elements σ∗∗(2)12 and σ∗∗(1)12 , obtained with alternative reference
states. ¥
The proposition above states that the sign of the identified covariance element has

an informational content about the covariance structure of the stochastic utilities in the
original space: if, across all possible reference states, it is possible to find an identified
covariance element which is equal to zero or negative, this implies that the original
covariances can not all be equal to zero.
Fortunately, this proposition can be made operational without having to estimate

the MNP with different reference states. The inequalities σ∗∗(j)12 ≤ 0 (j = 1, 2, 3) can be
transformed in order to make them dependent only on the identified covariance matrix
elements corresponding to a chosen reference state. To show this, it is useful to go back
to the one-star notation denoting only normalization of location, but not of scale, and
write

σ∗(1)12 =E(εi2 − εi1)(εi3 − εi1) = E [(εi2 − εi3) + (εi3 − εi1)] (εi3 − εi1) = −σ∗(3)12 + σ∗(3)11

σ
∗(2)
12 =E(εi1 − εi2)(εi3 − εi2) = E [(εi1 − εi3) + (εi3 − εi2)] (εi3 − εi2) = −σ∗(3)12 + σ

∗(3)
22 .

These two relations allow us to express the three inequalities above as functions of σ∗∗(3)12

and σ∗∗(3)22 , i.e., the parameters of the identified covariance matrix after location and scale
normalization, taking the third alternative as reference state. Indeed,

σ
∗∗(1)
12 ≤ 0⇔ σ

∗(1)
12

σ
∗(1)
11

≤ 0⇔ −σ
∗(3)
12 + σ

∗(3)
11

σ
∗(3)
11

σ
∗(3)
11

σ
∗(1)
11

≤ 0⇔ 1− σ
∗∗(3)
12 ≤ 0

σ
∗∗(2)
12 ≤ 0⇔ σ∗(2)12

σ
∗(2)
11

≤ 0⇔ −σ
∗(3)
12 + σ∗(3)22

σ
∗(3)
11

σ∗(3)11

σ
∗(2)
11

≤ 0⇔ σ
∗∗(3)
22 − σ

∗∗(3)
12 ≤ 0

σ
∗∗(3)
12 ≤ 0.

Let S(3) be the admissible region of the identified covariance matrix elements with

reference state 3, which is defined by the condition σ∗∗(3)22 −
³
σ
∗∗(3)
12

´2
> 0. Then, using the

symbols ∨ and ∧ to denote respectively the OR and AND logical operators, the result
above implies the following partition of S(3) = D(3) ∪D(3)

, with D(3) ∩D(3)
= ∅ and

D(3) : (σ
∗∗(3)
12 ≤ 0) ∨ (σ∗∗(3)12 ≥ 1) ∨ (σ∗∗(3)12 ≥ σ

∗∗(3)
22 )

D
(3)
: (0 < σ∗∗(3)12 < 1) ∧ (σ∗∗(3)12 < σ∗∗(3)22 ),

where D
(3)
is an inconclusive region, being consistent with both dependence or indepen-

dence patterns, while points in D(3) correspond to the existence of some dependence.
Figure 1 illustrates the partition of S(3).
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FIGURE 1 ABOUT HERE

The inconclusive region in Figure 1 contains the point
³
σ
∗∗(3)
12 = 0.5, σ

∗∗(3)
22 = 1

´
, which

defines the so-called independent multinomial probit (IMP), which is characterized by
homoskedastic and independent errors.1 Therefore, it appears that this point in the
inconclusive region actually implies absence of correlation among the errors of the non-
normalized utilities. However, it is perhaps not widely appreciated that the identified
covariance structure of the IMP is indistinguishable from the identified covariance struc-
ture corresponding to a MNP with equicorrelated and homoskedastic errors. Actually, as
the following proposition shows, this applies to any homoskedastic discrete choice model
whose identification requires normalization of location and scale.

Proposition 2 Equicorrelation and non-correlation are observationally equivalent in any
homoskedastic discrete choice model identified through normalization of location and scale.

Proof: Consider a random utility model whose errors are equicorrelated and ho-
moskedastic, with original covariance matrix ΣHE characterized by diagonal elements
σjj = τ , τ > 0 for all j = 1, ..., J and off-diagonal elements σjk = γ. After normalizing
the location with respect to alternative J, the errors are of the type ε

∗(J)
ij = εij − εiJ and

σ
∗(J)
jk = E(εij − εiJ)(εik − εiJ) = τ − γ for all j, k. The variance elements are all equal

to σ
∗(J)
jj = E(εij − εiJ)

2 = 2(τ − γ). Therefore, after normalization of scale is performed,
we obtain the following identified covariance matrix

Σ∗∗HE

(J−1)×(J−1)
=

⎡⎢⎢⎢⎣
1 0.5 · · · 0.5
0.5 1 0.5

...
... 0.5

. . . 0.5
0.5 · · · 0.5 1

⎤⎥⎥⎥⎦ .
The particular case of independence is obtained setting γ = 0 and it is straightforward to
see that this restriction has no impact on the structure of the identified covariance matrix
(cf . Terza, 1998, p. 7). ¥
The set of inequalities defining D(3) can be formally tested using the procedures

initially developed by Perlman (1969), or the alternative method proposed by Hansen
(2003). However, these methods are not particularly attractive for routine use by practi-
tioners. Fortunately, it is possible to use much simpler tools to check whether the data are
compatible with a matrix Σ∗∗(3) whose identified elements belong to D(3). It is important
to notice, however, that the procedure proposed below is not a specification test, nor is
it designed to assess the validity of the IMP. Rather, its purpose is simply to provide the
researcher with some additional information about the structure of the covariance matrix
of the non-normalized utilities.
Let σ̂∗∗(3)12 and σ̂

∗∗(3)
22 denote the maximum likelihood estimates of the identified el-

ements of Σ∗∗(3) and let V̂ denote an estimator of their covariance matrix. Defining
δ = (δ1, δ2)

0, with δj = σ̂
∗∗(3)
j2 − σ

∗∗(3)
j2 , j = 1, 2, standard asymptotic results imply that

1Throughout, homoskedasticity is interpreted as meaning that the stochastic component of the utility
has the same variance for all alternatives.
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δ0V̂ −1δ ∼̇ χ2(2). Then, using q
(v)
1−α to denote the 1 − α quantile of the χ2(v) distribution,

the inequality δ0V̂ −1δ < q
(2)
1−α defines a confidence region of level 100 (1− α)% for the

vector
³
σ
∗∗(3)
12 , σ

∗∗(3)
22

´0
. If this confidence region does not overlap with D

(3)
, this provides

evidence supporting the existence of at least one non-zero covariance between the errors
of the non-normalized utilities.
The inconclusive region is defined by a set of J(J−1)(J−2)/2 inequalities and, for J >

3, visual inspection is not appropriate to check whether it overlaps with the confidence
ellipsoid. In this case, information on the possible overlapping of the two regions can be
obtained by minimizing the quadratic form defining the confidence region, with respect
to the elements of Σ∗∗(J), subject to the restriction that these belong to the inconclusive
region. If the minimum obtained is smaller than q

(v)
1−α, with v = [(J − 1)J/2] − 1 being

the number of identified elements of Σ∗∗(J), one concludes that there is an overlapping of
the two regions.

4. An empirical illustration

To illustrate the application of our results, we use data from the 2002 U.S. Medical
Expenditure Panel Survey (MEPS) and estimate a model of health insurance choice. Our
dataset consist of a sample of 22, 283 individuals aged between 18 and 64, for which we
have information on insurance status (any private insurance, only public insurance, no
insurance), as well as on a set of standard covariates. Descriptive statistics for these
variables, and the dataset itself, can be obtained from the authors upon request.
In the specification we adopt, the stochastic utilities associated with the three alterna-

tives depend on all the available regressors, whose parameters vary across the alternatives.
Table 1 presents the main estimation results obtained using “no insurance” as the refer-
ence state for normalization. The names of the covariates are self-explanatory, and we
notice that the omitted geographic region is West.

TABLE 1 ABOUT HERE

The pair
³
σ̂
∗∗(3)
12 , σ̂

∗∗(3)
22

´
falls into D(3), which is compatible with the existence of some

dependence between the error terms of the non-normalized stochastic utilities. In order
to check the strength of this evidence, we follow the procedure described in the previous
section to check whether a 95% confidence region for

³
σ
∗∗(3)
12 , σ

∗∗(3)
22

´
overlaps with D̄(3).

Minimization of δ0V̂ −1δ with respect to σ
∗∗(3)
12 and σ

∗∗(3)
22 , subject to the restriction that

these parameters belong to D
(3)
, leads to δ0V̂ −1δ = 9.254, for σ∗∗(3)12

∼= 1 and σ
∗∗(3)
22
∼= 1.

Since 9.254 > q(2)0.95 = 5.99, the 95% confidence region does not overlap with D̄(3). This
provides evidence in favour of the existence of non-zero covariances between the errors of
the original utilities attached with each insurance status.
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5. Concluding remarks

Horowitz (1981) and Terza (1998) proposed specification tests which allow the re-
searcher to choose between the IMP and MNP. Our results complement this sort of tests.
While Proposition 2 clarifies the meaning of their null hypothesis, Proposition 1 pro-
vides additional information on the structure of the covariance matrix of the errors of the
non-normalized utilities when the null is rejected. Naturally, the procedure we propose
and illustrate for multinomial probit model has a broader scope of application and can
be useful in the context of other multinomial choice models, like the mixed multinomial
logit.
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Fig. 1 - The partition of S(3).

Table 1. Trinomial probit results for health insurance choice
Any private Only public

Regressors Coef. St. err. Coef. St. err.
Intercept −0.79305 0.07489 −0.68841 0.07473
Family size −0.01488 0.00606 −0.02104 0.00800
North East 0.25538 0.03474 0.26283 0.03856
Mid West 0.30107 0.03253 0.23135 0.05630
South −0.07510 0.02572 −0.14101 0.05249
Age 0.00592 0.00083 0.00686 0.00109
Female 0.26078 0.02110 0.31775 0.04561
Black 0.06038 0.03045 0.18853 0.09215
Years of education 0.07909 0.00437 0.05456 0.01532
Personal income 0.01406 0.00665 0.00466 0.00665

Covariance parameters Estimate St. err.

σ
∗∗(3)
12 1.12512 0.09264

σ
∗∗(3)
22 1.32076 0.28646

Cov
³bσ∗∗(3)12 , bσ∗∗(3)22

´
0.02645

Log-likelihood −15260.6

8


