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Abstract

This note provides an AECM (alternating expectation conditional maximization) algorithm
for calculating maximum-likelihood estimates of stratified error-components models. An
advantage it has over other algorithms is that it can be easily modified to incorporate useful
restrictions on the variance components. The new algorithm is applied in an example that
illustrates the variance restrictions.
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1. Introduction

In a strati�ed error-components model the conditional regression error variance changes across
some but not all cross sections. Speci�cally, consider the error-components model

yi t D � C x 0i t� C ui t ; ui t D �i C vi t .t D 1; : : : ; T; i D 1; : : : ; N /;

where xi t is a K � 1 vector of regressors, b D .�; � 0/0 is a .K C 1/ � 1 vector of regression
parameters, and �i and vi t are error components. The distinctive feature of a strati�ed error-
components model is that �i and vi t are assumed to have conditional variances � 2� j and �

2
v j given

the i th cross section is drawn from the j th subpopulation or stratum ( j D 1; : : : ; q), implying that
cross-sectional errors from different cross sections can exhibit different dispersion. This model
captures dispersion heterogeneity across cross sections while avoiding the incidental parameters
problem (see Neyman and Scott, 1948) that would arise if the conditional variances of �i and vi t
were allowed to vary without restriction across cross sections (see Phillips, 2003).
There are at least two types of applications where allowing for such dispersion heterogeneity

can be important. One is when forecast intervals for future values of yi t are sought and the amount
of dispersion in ui t differs across cross sections. Another is when one wishes to classify cross
sections in terms of the dispersion in ui t . Such an exercise might be useful, for example, in appli-
cations in which dispersion can be interpreted in terms of risk and the researcher wants to classify
cross sections into risk categories. In general it will not be known a priori which cross sections
belong to which strata, but after the model is estimated one can use posterior probabilities to assign
cross sections to strata.
In the model studied in Phillips (2003), both the conditional variance of �i and the conditional

variance of vi t are allowed to change across strata. However, differing conditional variances of the
�is across strata has a different interpretation than when the conditional variances of the vi ts differ.
Speci�cally, if the conditional variance of vi t changes across two strata that says the dispersion of
the remainder term vi t differs across some cross sections, whereas if the conditional variance of �i
changes across strata, then those cross sections belonging to the stratumwith the largest conditional
variance for �i have cross-sectional speci�c effects, �is, that are outliers.
In a given application there may be outlying �is, or cross sections with more dispersion in the

remainder terms, or both. The model considered in Phillips (2003) allows for both. But in some
applications there may be only outlying �is. In other applications there may be no outlying �is,
but the remainder terms may exhibit more dispersion for some cross sections than for others. In
other words, in a given application, it may be of interest to check whether or not the restrictions
� 2v1 D �

2
v2 D � � � D �

2
vq are satis�ed or whether the restrictions � 2�1 D �

2
�2 D � � � D �

2
�q hold.

Furthermore, other equality restrictions may be of interest. For example, consider a model that
allows for four strata that are characterized as follows: a small � 2v j and small �

2
� j stratum, a small

� 2v j and large �
2
� j stratum, a large �

2
v j and small �

2
� j stratum, and, �nally, a large �

2
v j and large

� 2� j stratum. These four possibilities can be captured by setting q D 4 and using the restrictions
� 2v1 D �

2
v2 and �

2
v3 D �

2
v4 (where �

2
v1 < � 2v3) and �

2
�1 D �

2
�3 and �

2
�2 D �

2
�4 (with �

2
�1 < � 2�2),

from which we see that four possible outcomes can be modeled with only four distinct variance
components.
Unfortunately, however, the EM (expectation-maximization) algorithm proposed by Phillips

(2003) for computing maximum-likelihood estimates of the parameters of a strati�ed error-
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components model is not easily modi�ed to incorporate equality restrictions on the variance com-
ponents. This note recti�es this shortcoming. In the next section an AECM (alternating expeca-
tion conditional maximization) algorithm is provided. This algorithm, like the previous algorithm
suggested in Phillips (2003), calculates maximum-likelihood estimates with �tted variance com-
ponents that are guaranteed to be non-negative, but, unlike that algorithm, it can also be easily
modifed to incorporate equality restrictions on the variance components. In Section 3 the algo-
rithm is applied in an example.

2. An AECM algorithm

The presence of latent strata implies that if we draw randomly across strata, then yi D
.yi1; : : : ; yiT /0 comes from a mixture of distributions. In particular, when �i and the compo-
nents of vi D .vi1; : : : ; viT /

0 are independent, mean zero normal random variables conditional on
both x 0i D [xi1 � � � xiT ] and on their being drawn from the j th stratum, the joint density of yi
conditional on only xi is a �nite mixture of multivariate normal densities:

p.yi jxi I / D
qX
jD1

� j f .yi jxi I b; � 2v j ; �
2
� j /

(see Phillips 2003). Here

f .yi jxi I b; � 2v j ; �
2
� j / D .2�/

�T=2j6 j j
�1=2 exp

h
�.yi � X ib/06�1j .yi � X ib/=2

i
;

 D .b0; � 0/0 D .b0; � 2v1; : : : ; �
2
vq; �

2
�1; : : : ; �

2
�q; �1; : : : ; �q/

0, X i D [�T xi ], 6 j D � 2v j IT C
� 2� j �T �

0
T , IT is a T -dimensional identity matrix, �T is a T � 1 vector of ones, and � j is the fraction

of cross sections in the population belonging to the j th stratum. Phillips (2003) showed that the
likelihood `. / D

QN
iD1 p.yi jxi I / is bounded provided the variance components are constrained

to be non-negative. Moreover, that paper provided a constrained EM (expectation maximization)
algorithm for maximizing `.�/ subject to these constraints.
Although the objective of this note is to provide an algorithm for maximizing the likelihood

`. / subject to equality restrictions on the variance comonents, the computational approach de-
scribed here yields relatively simple and stable algorithms regardless of whether or not restrictions
are applied. This section therefore �rst describes how to calculate estimates without imposing re-
strictions on the variance components and then shows how these calculations are modi�ed in order
to calculate estimates subject to equality restrictions on the variance components.
The computational strategy suggested in this note relies on the AECM algorithm (see Meng and

van Dyk, 1997), an extension of the EM algorithm. Like the EM algorithm, the AECM algorithm
simpli�es computations via data augmentation. The data are augmented during the E (expectation)
step, a step that builds an imputed log-likelihood by taking the expectation of the log-likelihood
based on the augmented or complete data while conditioning on the observed or incomplete data
and while using the current �t of the parameters as the parameters of the conditional distribution.
A standard EM algorithm then applies the M (maximization) step, which maximizes this imputed
log-likelihood, and this, in turn, produces an increase in the actual log-likelihood (see, e.g., Meng
and van Dyk, 1997). An AECM algorithm, on the other hand, replaces the M step with a sequence
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of conditional maximization (CM) steps. Moreover, the CM steps may rely on different amounts
of data augmentation.
Two CM steps suf�ce to calculate maximum-likelihood estimates of the strati�ed error-

components model. In the �rst CM step the observed data y D .y01; : : : ; y
0
N /
0 are augmented

with the unobserved �data� � D .�1; : : : ; �N /
0 and d D .d 01; : : : ; d

0
N /
0, where the q � 1 vector

di D .di1; : : : ; diq/0 equals ! j�a vector of zeros except for a one in the j th position�if the i th
cross section is drawn from the j th stratum. Like �, the vector d is unobserved, for we do not
know a priori which cross sections are drawn from which strata.
Using the complete-data�y, �, and d�execution of the E step consists of taking the ex-

pectation of the complete-data log-likelihood�that is, the log-likelihood for y, �, and d�while
conditioning on y (and on x D [x 01 � � � x

0
N ]
0) and while using the current �t of the parameters as the

parameters of the conditional distribution. This E step produces the imputed log-likelihood

Q1. I c/ D const C
qX
jD1
ln.� j /

NX
iD1

Pi j . c/�
1
2

qX
jD1
ln.� 2� j /

NX
iD1

Pi j . c/

�
1
2

qX
jD1

NX
iD1

E c.di j�2i jyi ; xi /=�
2
� j �

T
2

qX
jD1
ln.� 2v j /

NX
iD1

Pi j . c/

�
1
2

qX
jD1

NX
iD1

E c.di jv0ivi jyi ; xi /=�
2
v j :

Here  c denotes the current �t of the parameter vector  , Pi j . c/ is the posterior probability
Pi j . / D � j f .yi jxi I b; � 2v j ; �

2
� j /=p.yi jxi I / evaluated at  

c, and E .�jyi ; xi / denotes a condi-
tional expectation using  as the parameter vector of the conditional distribution.1
The �rst CM step consists of maximizing Q1.�I c/ conditional on b D bc while also imposing

the restriction
Pq

jD1 � j D 1. The details of this step are provided in CM Step 1. (See the appendix
for the derivations leading to the formulas appearing in CM Step 1.)
CM Step 1: Compute the residuals uci D yi � X ibc (i D 1; : : : ; N ), the posterior prob-

abilities Pi j . c/ ( j D 1; : : : ; q , i D 1; : : : ; N ), and .� 2j /
c D .� 2� j /

c C .� 2v j /
c=T and a j D

.� 2� j /
c.� 2v j /

c=[T .� 2j /
c] ( j D 1; : : : ; q). Then, for j D 1; : : : ; q , compute

�Cj D
1
N

NX
iD1

Pi j . c/; (1)

.� 2� j /
C D

1
N�Cj

NX
iD1

Pi j . c/
h
.� 2� j /

c�0T u
c
i =.T .�

2
j /
c/
i2
C a j ; (2)

1Derivation of the imputed log-likelihood Q1. I c/ relies on the observation that the conditional density of yi
given �i , di , and xi is

Qq
jD1f.2�/

�T=2.� 2v j /
�T=2 exp[�v0ivi=.2�

2
v j /]g

di j , the conditional density of �i given di and xi
is
Qq
jD1f.2�/

�1=2.� 2� j /
�1=2 exp[��2i =.2�

2
� j /]g

di j , and the probability mass function of di given xi is
Qq
jD1 �

di j
j .
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and

.� 2v j /
C D

1
NT�Cj

NX
iD1

Pi j . c/
�
uc0i Qu

c
i C

h
.� 2v j /

c�0T u
c
i =.T .�

2
j /
c/
i2
=T
�
C a j ; (3)

where Q D IT � �T �0T =T .
The second CM step relies on less data augmentation. For this step, the observed data y

are augmented with only d. This is the amount of data augmentation used to derive the EM
algorithm described in Phillips (2003), and thus, for this step, the imputed log-likelihood is
similar to that used in Phillips (2003). Speci�cally, upon setting � 2j D � 2� j C � 2v j=T and
Wi .�/ D

Pq
jD1 Pi j . 

C=2/[Q=� 2v j C �T �
0
T =.�

2
jT
2/], the imputed log-likelihood is

Q2. I C=2/ D const C
NX
iD1

qX
jD1
Pi j . C=2/ ln.� j /�

1
2

NX
iD1

qX
jD1
Pi j . C=2/ ln.� 2j /

�
T � 1
2

NX
iD1

qX
jD1
Pi j . C=2/ ln.� 2v j /�

1
2

NX
iD1
.yi � X ib/0Wi .�/.yi � X ib/

(see Phillips 2003). Note that the current �t is now taken to be  C=2 D .bc0; �C0/0 D
.bc0; .� 2v1/

C; : : : ; .� 2vq/
C; .� 2�1/

C; : : : ; .� 2�q/
C; �C1 ; : : : ; �

C
q /
0.

Maximizing Q2.�I C=2/ while conditioning on � D �C produces

bC D

 
NX
iD1

X i 0Wi .�C/X i

!�1 NX
iD1

X i 0Wi .�C/yi (4)

This is CM Step 2.
After the new �t  C D .bC0; �C0/0 is calculated, it is made the current �t, i.e., we set  c D  C,

and the two CM steps are repeated, and so on, until convergence.
This algorithm has important advantages over available alternatives. Consider, for example,

the Newton-Raphson algorithm, an obvious candidate for calculating the extremum of a nonlinear
function. The Newton-Raphson algorithm does not always exhibit stable convergence (see, e.g.,
Greene 2003, p. 938), and, when �tting an error-components model, it can produce negative
variance estimates (see Meng and van Dyk, 1998). This is a potentially serious drawback when
�tting a strati�ed error-components model, for there may be several component variances and the
likelihood becomes unbounded should the algorithm stray into a region of the parameter space
where one or more variance components are negative (see Phillips 2003). On the other hand,
the constrained EM algorithm described in Phillips (2003) guarantees the actual log-likelihood
does not decrease from one iteration to the next and the �tted variance components must be non-
negative. The AECM algorithm has these properties as well. But the AECM algorithm has an
important advantage over the constrained EM algorithm: it can be easily modi�ed to incorporate
equality restrictions on the variance components.
In order to see how equality restrictions can be incorporated, let f j1; j2; : : : ; jr g � f1; 2; : : : ; qg

be a collection of indexes such that � 2� j1 D � 2� j2 D � � � D � 2� jr and let fk1; k2; : : : ; ksg �
f1; 2; : : : ; qg be a set of indexes such that � 2vk1 D � 2vk2 D � � � D � 2vks . Moreover, let wn
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(n D 2; : : : ; r ) and zn (n D 2; : : : ; s) denote r � 1 and s � 1 Lagrangean multipliers and set

Q�1. I 
c/ D Q1. I c/C

rX
nD2

wn.�
2
� jn�1 � �

2
� jn/C

sX
nD2

zn.� 2vkn�1 � �
2
vkn/:

Then upon applying the method of Lagrangean multipliers and exploiting the fact that � 2� jn D �
2
� j1

(n D 2; : : : ; r ), one obtains

.� 2� j1/
C D

1
N
Pr
nD1 �

C
jn

NX
iD1

rX
nD1

Pi jn. 
c/
n
.� 2� jn/

c�0T u
c
i =[T .�

2
jn/
c]
o2

C
1Pr

nD1 �
C
jn

rX
nD1

�Cjna jn (5)

and .� 2� jn/
C D .� 2� j1/

C (n D 2; : : : ; r ), where the formulas for �Cj , Pi j . 
c/, uci , .�

2
j /
c, and a j are

the same as before. Also, upon using the fact that � 2vkn D �
2
vk1 (n D 2; : : : ; s), we get

.� 2vk1/
C D

1
NT

Ps
nD1 �

C
kn

NX
iD1

sX
nD1

Pikn. 
c/
n
uc0i Qu

c
i C [.�

2
vkn/

c�0T u
c
i =.T .�

2
kn/
c/]2=T

o
C

1Ps
nD1 �

C
kn

sX
nD1

�Cknakn (6)

and .� 2vkn/
C D .� 2vk1/

C (n D 2; : : : ; s). (The derivations leading to equations (5) and (6) are
provided in the appendix.) Moreover, if a particular � 2� j is not restricted to be equal to any other
cross-sectional speci�c effect variance, then .� 2� j /

C is calculated according to the formula in (2);
similarly, if � 2vk is unrestricted, then .�

2
vk/

C is calculated according to (3).
The new �t for bC is still given by (4).

3. Application

The AECM algorithm, with and without equality restrictions imposed on the variance compo-
nents, was applied to calculate estimates of a model previously considered by Baltagi and Grif�n
(1983, 1988) and Phillips (2003). The model relates the logarithm of gasoline consumption per
car (Gas=Car ) to the logarithms of real per capita income (Y=N ), lagged real gasoline prices
(PMG=PGDP ), and cars per capita (Car=N ):

ln
�
Gas
Car

�
i t
D � C �1 ln

�
Y
N

�
i t
C �2

nX
jD1

! j ln
�
PMG
PGDP

�
i;t� j

C �3 ln
�
Car
N

�
i t
C ui t :

Using annual data for 18 OECD countries covering the period 1969 to 1978 this model was esti-
mated using several different strati�ed error-components models.2

2For a description of data sources and the construction of the variables see Phillips (2003).
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Table 1: Strata Membership and Maximum Posterior Probabilities

Maximum Posterior Maximum Posterior
Country Probability Country Probability

First Stratum (b� v1 D 0:032,b��1 D 0:060,b�1 D 0:293)
Belgium 0.834 Norway 0.836
France 0.815 Switzerland 0.751
Germany 0.857 U.K. 0.721

Second Stratum (b� v2 D 0:032,b��2 D 0:493,b�2 D 0:278)
Canada 1.000 Spain 0.996
Ireland 1.000 U.S.A. 1.000

Third Stratum (b� v3 D 0:067,b��3 D 0:060,b�3 D 0:429)
Austria 0.997 Japan 1.000
Denmark 1.000 The Netherlands 0.995
Greece 1.000 Sweden 0.597
Italy 0.861 Turkey 1.000

In Phillips (2003) maximum-likelihood estimates were calculated for this model with q D 2
and with the � 2� js and �

2
v js left unconstrainted using the EM algorithm described in that paper.

When the AECM algorithm was applied to the same model, I obtained estimates that were the
same as those reported in Phillips (2003). The estimates indicated that the large � 2� j is associated
with the small � 2v j ; in other words, those cross sections with more dispersion in �i have less
dispersion in vi t .
A model that allows for more possibilities while increasing the number of free parameters

by only two (speci�cally, it introduces �3 and �4) is obtained by setting q D 4 and imposing the
restrictions � 2v1 D �

2
v2, �

2
v3 D �

2
v4, �

2
�1 D �

2
�3, and �

2
�2 D �

2
�4 (with �

2
v1 < � 2v3 and �

2
�1 < � 2�2).

This model allows for a small � 2v j and small �
2
� j stratum, a small �

2
v j and large �

2
� j stratum, a

large � 2v j and small �
2
� j stratum, and a large �

2
v j and large �

2
� j stratum. However, when this model

was estimated, there was no evidence supporting the presence of a large � 2v j and large �
2
� j stratum.

In particular, the estimate of �4 was virtually zero.
Therefore, a more parsimonious model with q D 3 and the restrictions � 2v1 D � 2v2 and �

2
�1 D

� 2�3 was estimated. An unrestricted model with q D 3 was also estimated, but the log-likelihood
value for the unrestricted model was only marginally larger than the log-likelihood of the model
with the restrictions � 2v1 D � 2v2 and �

2
�1 D � 2�3 imposed. When these restrictions were imposed,

the estimates of long-run demand elasticity with respect to per capita income, price, and cars per
capita were 0:472, �0:486, and �0:627. As for the estimates of � v j , �� j , and � j ( j D 1; 2; 3),
they are provided in Table 1 along with estimated maximum posterior probabilities.
Estimates of the posterior probablities Pi j . / (i D 1; : : : ; N , j D 1; : : : ; q) can be used to
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Figure 1: Conditional Means of Cross-Sectional Speci�c Effects

classify the sample countries into strata. Assigning each country to that stratum for which the
posterior probability Pi j . / is largest minimizes the assignment error rate (see McLachlan and
Basford, 1988, p. 11). According to the estimates provided in Table 1, Canada, Ireland, Spain, and
the U.S.A. are outliers in terms of the country speci�c effects (�is), for they are assigned to the
stratum corresponding tob��2, which is over eight times the size ofb��1 (D b��3).
We can estimate the country speci�c effects for Canada, Ireland, Spain, and the U.S.A., as

well as for the other sample countries, with estimates of the posterior means E .�i jyi ; xi / (i D
1; : : : ; q). Straightforward calculations give that

E .�i jyi ; xi / D
qX
jD1
Pi j . /� 2� j �

0
T .yi � X ib/=.T�

2
j /: (7)

An estimate of E .�i jyi ; xi / can therefore be obtained by replacing the unknown elements of  
on the right-hand side of (7) with maximum-likelihood estimates.
Figure 1 plots the estimated posterior means obtained when the model was estimated with q D

3 while imposing the restrictions � 2v1 D �
2
v2 and �

2
�1 D �

2
�3. According to these estimates, during

the period 1969 to 1978 Canadians and Americans consumed about 72 percent more gasoline
per car, on average, than the average amount consumed in the other OECD countries even after
controlling for per capita income, gasoline prices, and cars per capita. Gasoline consumption per
car was also higher in Ireland by 35 percent, but lower in Spain by 24 percent on average.
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Appendix

This appendix provides the derivations for the formulas of the AECM algorithm.
In order to maximize Q1. I c/ with respect to the � js while imposing the restrictionPq
jD1 � j D 1 consider the Lagrangean function

Pq
jD1 ln.� j /

PN
iD1 Pi j . c/ C z.1 �

Pq
jD1 � j /,

where z is the Lagrangean multiplier. The �rst-order conditions for maximizing this function yields
the solutions �Cj D

PN
iD1 Pi j . c/=zC ( j D 1; : : : ; q). The restriction that

Pq
jD1 �

C
j D 1 implies

zC D N .
Maximizing Q1. I c/ with respect to � 2� j gives .�

2
� j /

C D
PN
iD1 E c.di j�2i jyi ; xi /=.N�

C
j /.

And, on exploiting the law of iterated expectations we �nd that E .di j�2i jyi ; xi / D
E [di j E .�2i jyi ; xi ; di /jyi ; xi ] D E .�2i jyi ; xi ; di D ! j /Pr .di D ! j jyi ; xi /, and Pr .di D
! j jyi ; xi / D Pi j . /. Also, E .�2i jyi ; xi ; di D ! j / D [E .�i jyi ; xi ; di D ! j /]2 C
var .�i jyi ; xi ; di D ! j /, and since �i and yi are jointly normal conditional on xi and
di D ! j , it follows from multivariate normal theory (see, e.g., Greene, 2003, p. 872) that
E .�i jyi ; xi ; di D ! j / D � 2� j �

0
T6

�1
j ui (with ui D yi � X ib) and var .�i jyi ; xi ; di D ! j / D

� 2� j

�
1� � 2� j �

0
T6

�1
j �T

�
. Upon using 6�1j D Q=� 2v j C �T �

0
T =.�

2
jT
2/ (see, e.g., Hsiao, 1990,

p. 35, Eq. (3.3.8)), �0T Q D 0, and some manipulations, we obtain E .�i jyi ; xi ; di D ! j / D
� 2� j �

0
T ui=.T�

2
j / and var .�i jyi ; xi ; di D ! j / D � 2� j�

2
v j=.T�

2
j /. These observations imply Eq.

(2).
Maximizing Q1. I c/ with respect to � 2v j gives .� 2v j /

C DPN
iD1 E c.di jv0ivi jyi ; xi /=.NT�

C
j /. Applying the law of iterated expectations we obtain

E .di jv0ivi jyi ; xi / D E .v0ivi jyi ; xi ; di D ! j /Pi j . /: Furthermore, E .v0ivi jyi ; xi ; di D
! j / D E .v0i jyi ; xi ; di D ! j /E .vi jyi ; xi ; di D ! j / C tr [Var .vi jyi ; xi ; di D ! j /], where
Var .�jyi ; xi ; di D ! j / denotes a conditional variance-covariance matrix using  as the
parameter vector of the conditional distribution. It follows from multivariate normal theory that
E .vi jyi ; xi ; di D ! j /] D � 2v j6

�1
j ui and Var .vi jyi ; xi ; di D ! j / D � 2v j .IT � � 2v j6

�1
j /.

And, some manipulations give � 4v ju
0
i6

�1
j 6

�1
j ui D u0iQui C [� 2v j �

0
T ui=.T�

2
j /]
2=T , while

tr [� 2v j .IT � �
2
v j6

�1
j /] D �

2
v j [1� �

2
v j=.T�

2
j /] D �

2
v j�

2
� j=�

2
j . These results imply Eq. (3).

To obtain (5) �rst observe that
Pr
nD1 @Q�1. I 

c/=@� 2� jn D
Pr
nD1 @Q1. I c/=@� 2� jn . Next,

let  C=2 satisfy the �rst-order condtions that @Q�1. 
C=2I c/=@� 2� jn D 0 (n D 1; : : : ; r ). Then it

follows from the foregoing that

rX
nD1

@Q1. C=2I c/=@� 2� jn D 0: (8)

Upon setting .� 2� jn/
C D .� 2� j1/

C (n D 2; : : : ; r ), we can solve equation (8) for .� 2� j1/
C, which

8



gives

.� 2� j1/
C D

1
N
Pr
nD1 �

C
jn

NX
iD1

rX
nD1

E c.di jn�
2
i jyi ; xi /

D
1

N
Pr
nD1 �

C
jn

NX
iD1

rX
nD1

Pi jn. 
c/E c.�2i jyi ; xi ; di D ! jn/

D
1

N
Pr
nD1 �

C
jn

NX
iD1

rX
nD1

Pi jn. 
c/
n
.� 2v jn/

c�0T u
c
i =[T ..�

2
jn/
c]
o2

C
1Pr

nD1 �
C
jn

rX
nD1

�Cjna jn :

Veri�cation of (6) is similar.
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