
Which null hypothesis do overidentification restrictions
actually test? 

Rembert De Blander
EcRu, U.C.Louvain and CES, K.U.Leuven

Abstract

In this note I investigate which alternatives are detected by over-identifying restrictions tests,
when we test the null hypothesis that all excluded instruments are exogenous. A reformulated
null hypothesis will result in a consistent test.
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1. Introduction

It is well-known that over-identifying restrictions tests are not consistent against all al-
ternatives when they are used to test the null hypothesis, say H0, that all excluded
instruments are exogenous (see, for instance, Newey, 1985). Here we use the standard
notion of test consistency whereby a test is consistent (of significance level α) against
some alternative if it is asymptotically of level α and the power of the test at this (fixed)
alternative goes to one with increasing sample size, say N . This test is said to be consis-
tent if it is consistent against all fixed alternatives. See for example van der Vaart (2000,
p.193).

An inconsistent test, thus, has alternatives which it does not detect with power going
to one for N → ∞. We will show that, in the case of over-identifying restrictions tests,
this inconsistency could be termed a blind spot, in the sense that certain alternatives,
no matter how far from H0, will not increase the power of the test statistic. This is
unfortunate, since a “failure to reject” results are inherently ambiguous. In addition,
results of the “failure to reject” kind can be considered stronger, the broader the class
of alternatives is with respect to which one fails to reject. As a consequence, consistent
tests are to be preferred over inconsistent ones.

One way to deal with an inconsistent test, is to add extra, a priori, assumptions which
make the test consistent. In the instrumental variable context it is common to assume
the presence of as much exogenous instruments as there are endogenous variables in the
outcome equation. Instead of the latter strategy, one could try to identify the set of
parameter combinations, say S0, for which the considered test statistic has the same
asymptotic distribution. It is possible that the null hypothesis of an inconsistent test
does not coincide with S0. In such a case, a reformulation of the null hypothesis (as
G0, say) is in order. If we subsequently show that the power of the test goes to one
for N → ∞ at every fixed element of GA (the reformulated alternative hypothesis),
this simple reformulation of the null hypothesis is enough to result in a consistent test.
This course of action has the added advantage (over adding extra assumptions) that
fundamentally untestable alternatives (with respect to the initial null H0) are are made
explicit.

In the context of the over-identifying restrictions tests considered here, the new null G0

will be expressed in terms of those parameters which seem most natural: those of the
structural outcome equation and those of the reduced form for the treatment variables. In
this context, a test of G0 versus GA still can be interpreted in terms of over-identification
(exclusion of the instruments from the structural outcome equation).

2. Framework

Consider the N × 1 stacked observations of the outcome yi to be given by

Y = Xαx + Zαz + E, (1)

where the N×K1 matrix X contains exogenous variables xi, possibly including a constant
term, and E stacks the N error terms εi. The N × L matrix Z contains the treatment,
choice or otherwise endogenous variables, which can be represented by the reduced form

Z = XBx +WBw + V, (2)
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where the N × K2 matrix W fulfills K2 ≥ L and rank (E [W ′Z]) = L. These familiar
identification restrictions allow the use of W as a set of instruments for Z.

Remark. The first-stage parameters of the excluded instruments, i.e. Bw, will play a
crucial role in the reformulation of the null hypothesis.

In the remainder of the text, the more compact notation R = (X,Z) is used to denote
the explanatory variables in the outcome equation (1) and S = (X,W ) for the exogenous
variables in (2). Furthermore, following assumptions1 are maintained.

Assumption 1. The observations (rows) of (S,E, V ) are IID.

Assumption 2. The outcome disturbances E are mean-independent of S, i.e.

E [E | S] = 0.

Assumption 2 is crucial for consistency of the IV estimator

α̂IV =
(
R′S (S ′S)

−1
S ′R

)−1 (
R′S (S ′S)

−1
S ′Y

)
.

While E [E | X] = 0 is untestable within this framework due to the imposed orthogonality
between regressors and residuals by all LS estimators, the assumption E [E | W ] = 0 is
(partly) testable. The latter tests are commonly called over-identifying restrictions tests
or instrument validity tests and will be treated in the following section.

3. Some over-identifying restrictions tests

Two well-known such tests are the Sargan (1958)-Hansen (1982) J -test and the LM or
score test as described by Magdalinos (1988). The J -test uses the minimized optimal
GMM criterion as test statistic, which is, under homoskedasticity, given by

J =
(
Ê ′S

)
· (S ′S)

−1 ·
(
S ′Ê

)
/σ̂2

ε , (3)

with σ2
ε = Var [ε], the error variance of the outcome equation (1). Under the null that

all K2 instruments are valid, the minimized optimal GMM criterion is asymptotically
distributed as a central chi-square distribution with K2 − L degrees of freedom. The
LM -statistic to test the null hypothesis that all instruments are exogenous is an omitted
variable test for the variables W in the outcome equation (1)2. It is given by

LM = N−1
(
Ê ′W

)
Ω̂−1

(
W ′Ê

)
(4)

where Ω is the covariance matrix of N−1E ′Ŵ . Under the hypothesis that the instruments
W are validly restricted from the outcome equation (1), it holds that LM d−→ χ2

K2−L (0),
as well.

1Throughout this note it is implicitly assumed that the instruments are not weak. See, for instance,
Shea (1997) for a way to detect weak instruments.

2Under homoskedasticity, above LM test is identical to Wooldridge’s (1990) procedure to test for
omitted variables in the outcome equation, where the variables under test here as being omitted are the
excluded instruments.
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All such validity tests have one weakness in common: they are inconsistent when used
for testing the null hypothesis H0 : E [E | W ] = 0. This means that, even for growing
sample size N , not all departures from H0 are detected3. In other words, these tests have
a blind spot. Some alternatives, no matter how far from H0, will leave the test statistics
unaffected. Sometimes correct application of over-identifying restrictions tests is stated
as follows:

If at least L instruments are exogenous, then it is possible to test the null
hypothesis that all instruments are exogenous against the alternative that at
least one (but no more than K2 − L) is endogenous (Stock 2001).

Such statements, by adding the extra assumptions that “at least L instruments are ex-
ogenous”, produce a consistent test in the sense that now all alternatives (falling within
the added assumptions) are detected with power going to one for growing sample size.
However, they incorrectly characterize the class of alternatives for which over-identifying
restrictions tests are inconsistent if we do not wish to make the assumption that “at least
L instruments are exogenous”. Furthermore, they discourage the use of IV estimators,
since they suggest that their use is somehow founded on the untestable belief in the pres-
ence of at least L exogenous instruments. In the next section, I will characterize the set of
alternatives to H0, for which over-identifying restrictions tests, as currently formulated,
are inconsistent. This will then lead to a reformulated null hypothesis, G0, which, in
combination with either of the test statistics (3) or (4) above, will constitute a consistent
test.

4. Inconsistency

Consider again the outcome equation (1). Under the alternative hypothesis that not all
instruments are exogenous, we can write the error term as

E = Wκ+ U (5)
E [U | W ] = 0N×1. (6)

The L × 1 vector κ the indicates which linear combination of the instruments the error
term E is maximally correlated with, i.e. κ = E [W ′W ]−1 E [W ′E]. The null hypothesis
H0 : E [E | W ] = 0N×1 can be reformulated as H0 : κ = 0K2×1. The following theorem
characterizes the set of alternatives to H0, for which over-identifying restrictions tests
have power equal to size and the set of alternatives for which said test is consistent.

Theorem. Over-identifying restrictions tests, consisting of test statistics (3) or (4) and
null hypothesis H0 : κ = 0K2×1, have asymptotic power equal to size against alter-
natives of the form E = (WBw) γ + U , with γ ∈ RL. They are consistent against
alternatives of the form Wδ, for which B′wΣwδ = 0L×1, where Σw = Var [w].

Proof. Consider model (1)-(2) where the covariates X are partialed out for ease of expo-
sition (and without loss of generality)

Ỹ = Z̃αz + Ẽ (7)
Z̃ = W̃Bw + Ṽ , (8)

3This observation is well-known, see Newey (1985), for instance.
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i.e. where Ỹ denotes4 QXY . Under HA : E
[
Ẽ | W̃

]
6= 0, we can write (7) as

Ỹ = Z̃αz + W̃κ+ Ũ , (9)

with E
[
Ũ | W̃

]
= 0 by (6). Now, IV of Ỹ on Z̃ using W̃ as instruments is identical to

OLS of PW̃ Ỹ on PW̃ Z̃. To investigate its properties rewrite (9) as

PW̃ Ỹ = PW̃ Z̃αz + PW̃ W̃κ+ PW̃ Ũ .

Defining

ˆ̃Z = PW̃ Z̃

= W̃ B̂w, (10)

where B̂w =
(
W̃ ′W̃

)−1

W̃ ′Z̃ is the OLS estimator of Bw, we have that

PW̃ Ỹ = PW̃ Z̃αz + PW̃ W̃κ+ PW̃ Ũ

= ˆ̃Zαz + W̃κ+ PW̃ Ũ

= ˆ̃Zαz + P ˆ̃Z
W̃κ+Q ˆ̃Z

W̃κ+ PW̃ Ũ ,

where the first equality follows from (10) and the identity W̃ = PW̃ W̃ and the last
equality follows from the identity A = PBA + QBA, which holds for all conformable
matrices A and B. We have in general that P ˆ̃Z

W̃ = ˆ̃ZΛ for some matrix Λ ∈ RL×K2 and,
thus,

PW̃ Ỹ = ˆ̃Z (αz + Λκ) +Q ˆ̃Z
W̃κ+ PW̃ Ũ . (11)

Now, IV of Ỹ on Z̃ using W̃ as instruments, results in α̂z;IV =
(

ˆ̃Z ′ ˆ̃Z
)−1 ( ˆ̃Z ′PW̃ Ỹ

)
.

Expression (11) informs us that

1. αz is not identified unless Λ = 0L×K2 or κ = 0K2×1.

2. Q ˆ̃Z
W̃κ will be part of the residual, since ˆ̃Z ′Q ˆ̃Z

W̃ = 0L×K2 . Thus, unless Q ˆ̃Z
W̃κ =

0N×1, tests based on W̃ ′ ˆ̃E, with ˆ̃E = Ỹ − Z̃α̂z;IV the stacked IV residuals, will pick
up departures from H0.

We will now determine under which conditions it holds that Q ˆ̃Z
W̃κ = 0N×1, i.e. for

which alternatives to H0 the power of the over-identifying restrictions statistics (3) and
(4) remains equal to their size.

• Given the definition (10), we have that P ˆ̃Z
W̃ B̂w = P ˆ̃Z

ˆ̃Z = ˆ̃Z = W̃ B̂w, which shows
that the row space of P ˆ̃Z

is given by W̃ B̂wγ, with γ ∈ RL. Since the row space of
P ˆ̃Z

is identical to the null space of Q ˆ̃Z
, we have that

Q ˆ̃Z
W̃ B̂wγ = 0N×1.

4The projection operator PD on any N ×M matrix D of rank M is defined as PD = D (D′D)−1
D′.

Its complement QD is given by IN −PD. See Seber (2008) for the definition and properties of projection
matrices.
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• Conversely, the null space of P ˆ̃Z
and, thus, the row space of Q ˆ̃Z

consists of all

N × 1-vectors D for which ˆ̃Z ′D = B̂′wW̃
′D = 0L×1. Within this row space we are

looking for linear combinations W̃κ of the instruments W̃ . Consequently, K2 × 1
parameter vectors κ satisfying B̂′wW̃ ′W̃κ = 0L×1 generate linear combinations W̃κ
lying within the row space of Q ˆ̃Z

.

We now turn to the asymptotic distribution of the considered test statistics.

• In case κ = B̂wγ, equation (11) simplifies to

PW̃ Ỹ = ˆ̃Z (αz + γ) + PW̃ Ũ ,

and the IV residuals ˆ̃E = Ỹ − Z̃α̂z;IV are asymptotically given by

ˆ̃E = Z̃αz + ˆ̃Zγ + Ũ − Z̃α̂z;IV

p−→ Z̃αz +
(
Z̃ − Ṽ

)
γ + Ũ − Z̃ (αz + γ)

= Ũ − Ṽ γ

since B̂w
p−→ Bw and α̂z;IV

p−→ αz+γ. As a consequenceN−
1
2 W̃ ′ ˆ̃E

d−→ N (0K2×1,ΣI),
where ΣI = Var [w̃ (ũ− ṽ′γ)]. Any test based on W̃ ′ ˆ̃E, such as the Sargan-Hansen
J -test (3) and the LM -test (4), will asymptotically have power equal to size against
alternatives of the form Ẽ =

(
W̃Bw

)
γ + Ũ . For the LM -test (4) the formal proof

is given by Rao and Mitra (1971, Theorem 9.2.3, p.173), for the J -test the proof is
given by Newey (1985, Theorem 1)5.

• Alternatively, if B′wW̃ ′W̃κ = 0L×1
6, the IV residuals ˆ̃E = Ỹ −Z̃α̂z;IV are asymptot-

ically given by ˆ̃E = W̃κ+ Ũ− Ṽ Λκ. Consequently, N−
1
2 W̃ ′ ˆ̃E

d−→ N (δ,ΣII), where
Σw̃ = Var [w̃], δ =

√
NΣw̃κ and ΣII = Var [w̃ (w̃′κ+ ũ− ṽ′Λκ)]. Following Rao

and Mitra (1971, Theorem 9.2.3, p.173), we have that LM d−→ χ2
K2−L

(
δ′Σ−1

II δ
)
,

which is in accordance with Newey (1985). This shows that alternatives W̃κ for
which B′wW̃

′W̃κ = 0L×1, are detected by both tests with probability one, for
N → ∞, since non-centrality parameter δ′Σ−1

II δ ∼ N (in Bachmann-Landau no-
tation7).�

The consequences of above Theorem are clear. For a model (1)-(2) with (5), the parameter
subspace consisting of κ = B̂wγ, γ ∈ RL has identical asymptotic distribution for each
of the test statistics considered. In addition, in the complement of this subspace the J
and LM test statistics have power going to one for N → ∞. Reformulation of the null
hypothesis as G0 : κ = B̂wγ, γ ∈ RL thus results in a consistent test.

5. Discussion
5This proof is valid for any J -test, not only for (3), which is only applicable under homoskedasticity

of the errors.
6It holds that B̂′wW̃ ′W̃κ

p−→ B′wΣw̃κ, where Σw̃ = Var [w̃].
7x ∼ y denotes that ∃C ∈ R : limN→∞

x
y = C (Knuth, 1976).
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Contrary to common formulations of over-identification tests, in the presence of K2 > L
instruments, it is possible to test against alternatives where all instruments are endoge-
nous. However these tests are inconsistent when used for testing H0 : E [E | W ] = 0N×1,
in that they have no power against alternatives whereby the conditional mean of the
disturbance E, given the instruments W is identical to a linear combination of the con-
ditional mean(s) of the endogenous regressor(s) Z, given the instruments.

To illustrate, consider a model with one single variable of interest Z. Alternatives of
the form Ẽ =

(
W̃Bw

)
c + Ũ = ˆ̃Zc + Ũ , with c any scalar, go undetected. When the

(incorrectly) excluded instruments appear in the (structural) outcome equation in the
same proportion as they appear in the reduced form for Z, this violation of H0 goes
undetected. In other words, we can not distinguish the effect of Z̃ on Ỹ from the effect
of ˆ̃Z on Ỹ . This is an example of the equivalence between (non-)testability and (non-
)identification (Dufour, 2003). All other departures from H0, however, are testable.
Consider some K2 × 1 vector λ for which B′wλ = 0. It clearly holds that P ˆ̃Z

W̃λ = 0

and thus Q ˆ̃Z
W̃λ 6= 0, since the null-space of PA is equal to the row space of QA, for any

matrix A. This type of alternative is thus clearly testable, although all instruments are
endogenous. The requirement that at least L exogenous instruments are needed, for an
over-identifying restriction test to work, thus seems to restrictive.

On the other hand, a priori assuming that L instruments are valid, is one way to ensure
that κ, having L elements equal to zero, will never be equal to Bwγ. Interpreted this
way, the inconsistency of the test is assumed away.

In contrast, I propose to formulate the different null G0 : Bwγ = 0L×1. Remark that
H0 ⊂ G0. This extended null, in combination with the test statistics (3) and (4) results
in a consistent test, as guaranteed by the above theorem.

The difference between both approaches can also be evaluated in terms of the dimen-
sionality of the space over which is tested. The space spanned by the K2 instruments
can be represented by RK2 . Making over-identifying restrictions tests consistent by extra
assumptions, reduces the space over which is tested to RK2−L. However, changing the
null from H0 to G0 leaves RK2 \RL alternatives testable, a clearly larger set. The validity
of our claims will be checked empirically in the next section.

6. Monte Carlo

In this section the results of a small Monte Carlo study nicely illustrate the findings from
previous sessions. The DGP consists of model (1)-(2)

Y = Xαx + Zαz +Wαw + U

Z = Xβx +Wβw + V,

with (K1, K2, L) = (2, 2, 1). The variables (x,w, u, v)′ ∼ NID (0; I6) βx = (1, 1), βw =
(1, 1), αx = (1, 1), αz = 1, αw = θ {φγw + (1− φ) βw}, where γw = (1,−1), θ = 0.1, 0.2
and φ = 0, 0.25, 0.5, 0.75, 1. The data were generated for the sample sizes N =
100, 200, 500, 1000 and the number of Monte Carlo replications was 5000.

It is easy to verify that θ = 0 corresponds to H0, the null that all instruments are
exogenous. The null G0 is given by (φ = 0)∪(θ = 0). The parameter θ can be interpreted
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N θ 0 0.1 0.2
φ / 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

J -statistic (3)
100 0.0656 0.0660 0.0698 0.0992 0.1398 0.1936 0.0628 0.1044 0.2074 0.3494 0.5204

200 0.0574 0.0592 0.0734 0.1208 0.1966 0.2920 0.0586 0.1236 0.3168 0.5722 0.7978

500 0.0530 0.0508 0.0864 0.2096 0.3982 0.6024 0.0552 0.2236 0.6544 0.9302 0.9920

1000 0.0518 0.0532 0.1418 0.3658 0.6630 0.8896 0.0532 0.4050 0.9110 0.9986 1.0000

LM -statistic (4)
100 0.0562 0.0578 0.0622 0.0870 0.1270 0.1760 0.0554 0.0926 0.1890 0.3246 0.4956

200 0.0530 0.0544 0.0692 0.1138 0.1880 0.2794 0.0548 0.1168 0.3060 0.5624 0.7866

500 0.0514 0.0500 0.0844 0.2074 0.3938 0.5966 0.0542 0.2188 0.6494 0.9276 0.9918

1000 0.0512 0.0530 0.1406 0.3634 0.6608 0.8882 0.0522 0.4016 0.9104 0.9986 1.0000

Table 1: Rejection percentages of H0 : κ = 0 for the different test statistics

as the degree to which H0 is violated. Similarly, θφ constitutes a measure of the distance
between the DGP and G0. According to the theorem above DGPs for which θ = 0 will
have power equal to size. DGPs for which θ = 1, have B′wΣwκ = β′wκ = 0, and have
thus power going to one for N → ∞. Intermediate values can be decomposed into an
undetectable component and a detectable component, the latter having power going to
one for N →∞.

In Table 1 the rejection percentages are given for both the J -statistic (3) and the LM -
statistic (4). The table clearly shows that rejection percentages are very close to their
nominal values for all parameter combinations that fall under G0, with the LM -test
staying slightly closer to its nominal size. In addition, for every column that falls under
GA, the power increases to one for increasing N . The difference between J and LM tests
is again negligible.

7. Conclusion

In a way, above result is comforting. When the inconsistency of validity tests is inter-
preted as an a priori requirement of L valid instruments (Stock, 2001), the seemingly
insurmountable burden of proof rests on the scientist applying IV, who has to argue why
these L instruments are exogenous. However, the assumption that the excluded instru-
ments W do not appear in the outcome equation (1) in some linear combination of Bw

seems much easier to defend and the burden of proof seems to rest on the critic, who has
to make the case why the instruments would appear in the outcome equation in exactly
this linear combination.
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