
k nearest-neighbor estimation of inverse density weighted
expectations 

David Jacho-Chávez
Indiana University

Abstract

This letter considers the problem of estimating expected values of functions that are inversely
weighted by an unknown density using the k-Nearest Neighbor method. L²-consistency is
established. The proposed estimator is also shown to be asymptotically semiparametric
efficient. Some limited Monte Carlo experiments show that the proposed estimator performs
as good as alternative methods in finite sample applications.
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1 Introduction

In this letter we address the problem of estimating quantities of the form

θ0 = E

[
Y

f (X)

]
, (1.1)

where f (X) represents the unknown marginal density of a continuous scalar random variable X, Y ∈ R,

and E represents expectation with respect the joint distribution of (Y,X). This problem is important

because many existing semiparametric estimators of limited dependent variable models make use of

inverse density-weighted expectations like 1.1, e.g. Lewbel (1998), Lewbel (2000), Lewbel (2006), and

Khan and Lewbel (2007).

If {Yi,Xi}n
i=1 represents a random sample from this distribution, a natural estimator of 1.1 is

θn =
1

n

n∑

i=1

Yi

fn (Xi)
, (1.2)

where fn (Xi) denotes the k -Nearest Neighbor (k -NN) density estimator of f (Xi), i.e.

fn (Xi) =
k

2nRn (Xi, k)
, (1.3)

and

Ri ≡ Rn (Xi, k)
def
=the Euclidean distance between Xi and the k-th nearest

neighbor of Xi among all the Xj ’s for j 6= i

for j = 1, . . . , n. Therefore, estimator 1.2 can be re-written as

θn =
2

k

n∑

i=1

YiRn (Xi, k) , (1.4)

The usage of nonparametric k-NN estimator of f (X), in place of a kernel estimator for example

is particularly helpful in 1.2, because 1.4 is theoretically easier to handle than 1.2, since it does not

involve the ratio of two random quantities. Another important advantage of the k-NN approach is its

local adaptation, a property that is not enjoyed by the kernel method for example.

1.1 An Ordered Data Estimator

The drawbacks of the kernel method partly motivated Lewbel and Schennach (2007) to propose an

estimator of 1.1 based on nearest neighbor spacings as follows:

θ̃n =
n−k∑

i=1

y[i]

(
x[i+k] − x[i]

)
/k, (1.5)

where (y[i], x[i]) denote the ith observation when the data are sorted in increasing order of x, i.e. x[i]

is the ith order statistics and y[i] is its concomitant. Lewbel and Schennach (2007) showed that under
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certain regularity conditions,
√

n(θ̃n − θ0)
d→ N(0, E[var(Y |X)/f2 (X)]) when k =o(ln n) as k → ∞.

They derived the semiparametric efficiency bound for regular estimators of θ0 and proves that θ̃n

achieves it.

Although similar in nature, estimators 1.4 and 1.5 are fundamentally different. In particular, k in

1.4 refers to the k-th order statistic from the (conditionally on Xi) i.i.d. sample {‖Xi − Xj‖}n−1
j=1 with

i 6= j, while k in 1.5 refers to the k-th order statistic from the original i.i.d. sample {Xi}n
i=1. These

differences also make their limiting distribution theory not applicable for fixed or increasing k.

In the next section, it is shown that if k = k (n) is a predetermined sequence of positive integers, not

dependent on the sample {Yi,Xi}n
i=1, such that k → ∞, and k/n → 0 as n → ∞, then estimator 1.4

is also
√

n–consistent, and semiparametric efficient. A small Monte Carlo experiment confirms these

predictions.

2 Asymptotic Properties

The derivation of the asymptotic properties of θn defined in 1.2–1.3 relies on the following assumptions:

Assumption A:

(A1) infx∈F f (x) ≥ η > 0, where Ω represents the finite support of f (x).

(A2) (i) f (x) is continuously differentiable up to the second order over the interior of ⊗. (ii) E[var(Y |X =

x)/f2(X)] < ∞.

(A3) As n → ∞, k → ∞, and k/n → 0.

Assumption A1 is usually made for inverse density weighted estimators such as 1.2, and can be

relaxed at the expense of more complicated proofs. Assumption A2-(i) is somehow unusual since

no continuity or smoothness are necessary for m (x) ≡ E[Y |X = x], but differentiability of f (x)

is assumed. Assumption A2-(ii) ensures
√

n-consistency. Assumption A3 is necessary in pointwise

asymptotic theory for k-NN estimators, since it guarantees that both bias and variance of k-NN converge

to zero as sample size increases.

Theorem 1 Under assumption A1–A3,

E [θn] = θ0 {1 + op (1)} ,

var
(√

nθn

)
= E[var(Y |X)/f2 (X)] {1 + op (1)}

as n → ∞.

Some remarks are in order:

Remark 1 Theorem 1 ensures the L2-convergence of 1.2. Furthermore, it also implies that var(
√

nθn)

→var(
√

nθ̃n) as n → ∞.
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Remark 2 We have been unable to establish limiting distribution theory for θn, since the statistical

dependence among {YiRn (Xi, k)}n
i=1 is of a form that is not covered by standard central limit theory for

dependent processes. However, we conjecture that results in Bickel and Breiman (1983) can be extended

to establish asymptotic normality of statistics of this form.

Remark 3 From the computational point of view, if T0 is the total number of operations necessary to

sort an n-dimensional array, θn would require at least nT0 such operations for its calculation.

Remark 4 Unlike the ordered estimator discussed in the previous section, θn can easily be adapted to

handle vector-valued X’s.

An important issue for both estimators is how k can be chosen in a given application. Techniques

presented in Jacho-Chávez (2007) can potentially answer this question, and remains a topic for future

research.

3 Monte Carlo Results

We consider the data generating process used in Lewbel and Schennach (2007). We draw xi, εi as inde-

pendent standard normals and construct yi = 2xi (1 + εi) I (0 < xi < 1), i = 1, 2, . . . , n. We then esti-

mate θ = E[y/f (x)] by computing 1.4 and 1.5 using each of the 10000 constructed samples {yi, xi}n
i=1

with n = 200, 400, and 600. Figure 1 shows the results. The bias, variance and Mean Squared

Error (MSE) of estimators 1.4 (black line) and 1.5 (gray line) are presented for different values of

k = 1, . . . , 40. Their performance are comparable in terms of MSE and variances at different values

of k. This observation reinforces the notion that k plays different roles in the construction of both

estimators. As predicted by theorem 1, both estimators have comparable variances, but θn seems to be

unbiased for this design, explaining why large values of k seems to improve its precision. As expected,

the MSE decreases for both estimators as sample size increases.

Appendix

Let ‖u‖ denote the Euclidean norm of the vector u. Set Sr = {v : ‖v − x‖ < r}, a ball centered at x

with radius r. G (r) = Pr{Xi ∈ Sr} is defined accordingly.

Lemma 1 Let h (r) = [rλGγ (r)]−1, λ and γ are integers such that E[h(Ri)] < ∞, then

E[h(Rn(Xi, k))|Xi] = (2f(Xi))
λ

(
k

n

)−λ−γ

{1 + op (1)}.

Proof. This corresponds to Lemma A.1 of Ouyang et al. (2006) with q = 1. See Liu and Lu (1997)

for a detailed proof.
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Proof of Theorem 1:

Let ǫ ≡ Y − m (x), then, by construction E[ǫ|X = x] = 0, and

θn =
2

k

n∑

i=1

m (Xi) Rn (Xi, k) +
2

k

n∑

i=1

ǫiRn (Xi, k)

≡ T1n + T2n,

where we have used the notation ǫi = Yi−m (Xi), and the definition of Tln (l = 1, 2) should be apparent.

Firstly, notice that E[T2n] = 0 by the law of iterated expectations. It then follows from assumption A1

(i) that

E[T1n] =
2

k

n∑

i=1

E [m (Xi)Rn (Xi, k)] = 2
n

k
E[m (X) E[Rn (X, k) |X]]

=
2n

k
E

[
m (X)

2f (X)

(
k

n

)]
{1 + op (1)} (A-1)

= E

[
E[Y |X]

f (X)

]
{1 + op (1)} = θ0 + op (θ) ,

where A-1 follows from Lemma 1 with λ = −1 and γ = 0. Similarly, by the tower property of conditional

expectations (see Billingsley (1986, Theorem 34.3)), it follows that

E[T 2
2n] =

4

k2

n∑

i=1

E
[
ǫ2
i R

2
n (Xi, k)

]
=

4n

k2
E

[
var(Y |X)E[R2

n (X, k) |X]
]

=
4n

k2
E

[
var(Y |X)

4f2 (X)

(
k

n

)2
]
{1 + op (1)} (A-2)

= n−1
E

[
var(Y |X)

f2 (X)

]
{1 + op(1)} = n−1σ2 + op

(
n−1σ2

)
,

where A-2 follows from Lemma 1 with λ = −2 and γ = 0.
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Figure 1: Monte Carlo results
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