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Abstract

It is well known that a competitive equilibrium may fail to exist when consumers' preferences
are possibly satiated. In this paper, we provide three new sufficient conditions for the
existence of a competitive equilibrium in the standard Arrow-Debreu pure exchange
economy with satiated consumers. We first consider a condition that restricts the behavior of
the excess demand correspondence on the boundary of a certain subset of the price domain.
Another two sufficient conditions are obtained by using the existence result under this
condition.
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1 Introduction

It is well known that a competitive equilibrium may fail to exist when consumers’
preferences are satiated. More precisely, if consumers’ preferences are satiated in the
individually feasible consumption sets, then, at every price, consumers may choose their
optimal consumption bundles in the interior of their budget sets. This leads to a violation
of the Walras Law, and hence, to the nonexistence of a competitive equilibrium. 1

Satiation occurs, for example, when preferences form a complete continuous preorder
and consumption sets are compact. Mas-Colell (1992) provides several examples of
economies in which consumption sets are naturally compact. Another example of sa-
tiation occurs in the capital asset pricing model (CAPM) without a riskless asset (see,
for example, Nielsen 1989).

Given satiation in individually feasible consumption sets, many authors investigate
the conditions that ensure the existence of a competitive equilibrium. The sufficient
conditions proposed in the literature may be classified according to whether they allow
consumers to have their satiation points only within the individually feasible consumption
sets (Polemarchakis and Siconolfi 1993, Won and Yannelis 2006, etc.), or not (Werner
1987, Sun 1999, Allouch and Le Van 2008, etc.).

Polemarchakis and Siconolfi (1993) consider a certain subset of the price domain in
which the aggregate excess demand satisfies the Walras Law, and propose a condition
that restricts the behavior of the aggregate excess demand at the prices that lie on the
boundary of the subset. Won and Yannelis (2006) study the existence of an equilibrium
with satiation in a more general setting: for example, in their model, consumption sets
are not necessarily bounded and preferences are allowed to be non-ordered. They propose
a condition that may be interpreted as a restriction of consumers’ behavior on a certain
subset of the price domain (which generally differs from the subset used in Polemarchakis
and Siconolfi 1993). Some other sufficient conditions which can be applied to the case
in which satiation occurs only within the individually feasible consumption sets, can be
found in the literature on the CAPM without a riskless asset, such as Nielsen (1990),
Allingham (1991) and Won et al. (2008).

In asset markets with short selling, Werner (1987) introduces a condition that requires
each consumer to have a consumption bundle that increases his or her satisfaction when
it is added to any given consumption bundle. Sun (1999) provides a similar condition in
the standard Arrow-Debreu production economy. It asserts that each consumer has at
least one good, consumption of which does not decrease his or her utility. Allouch and
Le Van’s (2008) condition, which is a generalization of the conditions in Werner (1987)
and Sun (1999), asserts that each consumer’s satiation area has an intersection outside
the individually feasible consumption set. Although these conditions cannot be applied
to the case in which there exists a consumer whose satiation area is a subset of the
individually feasible consumption set, they are imposed on the primitives of the model
and have natural economic interpretations.

In this paper, we provide three new sufficient conditions for the existence of a compet-
itive equilibrium in a pure exchange economy with satiated consumers. We first consider,
as in Polemarchakis and Siconolfi (1993), restricting the behavior of the aggregate de-
mand on the boundary of a certain subset of the price domain. Polemarchakis and
Siconolfi (1993) assume the strict quasi-concavity of utility functions, which implies that

1It is also known that the existence of a competitive equilibrium is ensured if satiation occurs only
outside the individually feasible consumption sets (see Bergstrom 1976).

1



each consumer has a unique satiation point. However, in our analysis, we assume weak
convexity of preferences, and consumers may thus have multiple satiation points. As a
result, we obtain a condition that contains Polemarchakis and Siconolfi’s (1993) condition
as a special case (Condition 1). It is worth noting that this condition can be applied to
the case in which satiation occurs only within the individually feasible consumption sets.
Moreover, by using the existence result under Condition 1, we obtain another two suffi-
cient conditions for the existence of a competitive equilibrium. In contrast to Condition
1, both of these conditions are imposed on the primitives of the model.

This paper is organized as follows. Section 2 describes the model and sets out our
assumptions. Section 3 introduces some additional notations. Section 4 presents the
new condition (Condition 1), and states the existence of a competitive equilibrium under
it. Section 5 presents the other two conditions. In Section 6, we prove that Condition
1 contains Polemarchakis and Siconolfi’s (1993) condition as a special case. Section 7
contains our concluding remarks. Some of the proofs are given in the Appendix.

2 Model and Assumptions

We consider a pure exchange economy E with ℓ commodities and n consumers (1 ≤
ℓ, n < ∞). For convenience, let I be the set of all consumers, that is, I = {1, · · · , n}. Each
consumer i ∈ I is characterized by a consumption set Xi ⊂ Rℓ, 2 an initial endowment
ωi ∈ Rℓ, and a preference relation %i on Xi. Let X =

∏
i∈I Xi and let x = (xi)i∈I denote

a generic element of X.
The pure exchange economy E is thus summarized by the list

E =
(
Rℓ, (Xi, %i, ωi)i∈I

)
.

An allocation x ∈ X is feasible if
∑

i∈I xi =
∑

i∈I ωi. Note that we do not allow
free disposal. For each i ∈ I, a consumption bundle xi ∈ Xi is individually feasible if
there exists (xj)j ̸=i ∈

∏
j ̸=i Xj such that xi +

∑
j ̸=i xj =

∑
j∈I ωj. Let X̂i be the set of all

individually feasible consumption bundles of consumer i.
We adopt the following standard definition of competitive equilibrium.

Definition 1. An element (x, p) ∈ X × Rℓ is a competitive equilibrium of E if

(a) for all i ∈ I, p · xi ≤ p · ωi, (b) for all i ∈ I, xi ≻i xi implies p · xi > p · ωi,

(c)
∑

i∈I xi =
∑

i∈I ωi.

In the definition, ≻i denotes the strict preference relation corresponding to %i, that is,
for any xi, yi ∈ Xi, we have yi ≻i xi if and only if yi %i xi and not xi %i yi. Note that
from Definitions 1 (a) and 1 (c), we have p · xi = p · ωi for each i ∈ I.

We make the following assumptions on the economy E .

Assumption 1. For each i ∈ I,

(a) Xi is convex, (b) Xi is compact, (c) ωi ∈ int Xi.

2We shall use the following mathematical notations. The symbol Rℓ denotes the ℓ-dimensional
Euclidean space, and Rℓ

+ denotes the non-negative orthant of Rℓ. For x, y ∈ Rℓ, we denote by
x · y =

∑ℓ
j=1 xjyj the inner product, by ∥x∥ =

√
x · x the Euclidean norm. Let B(x0, r) = {x ∈

Rℓ : ∥x − x0∥ < r} denote the open ball centered at x0 with radius r. For a ∈ R = R1, we denote by |a|
the absolute value of a. For a, b ∈ R with a ≤ b, we denote by (a, b) the open interval, and by [a, b] the
closed interval between a and b. For a set A ⊂ Rℓ, we denote by intA the interior of A in Rℓ, by bdA
the boundary of A in Rℓ and by coA the convex hull of A.
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Assumption 2. For each i ∈ I,

(a) %i is a complete preorder on Xi,
(b) %i is continuous, (c) %i is weakly convex.3

These assumptions are fairly standard in the literature, except for Assumption 1 (b),
which together with 2 (a) and 2 (b), guarantees that every consumer has at least one
satiation point on his or her consumption set.

3 Additional Notations

In order to state our main result, we introduce some additional notations.
For each p ∈ Rℓ, we define the budget set of consumer i ∈ I by Bi(p) = {xi ∈ Xi :

p · xi ≤ p · ωi}. For each i ∈ I, let Di : Rℓ → Xi be the demand correspondence of
consumer i ∈ I, that is, for each p ∈ Rℓ,

Di(p) = {xi ∈ Xi : xi ∈ Bi(p) and xi %i yi for all yi ∈ Bi(p)}.

Moreover, let Z : Rℓ → Rℓ be the excess demand correspondence, that is, for each p ∈ Rℓ,

Z(p) =
∑
i∈I

Di(p) −
∑
i∈I

ωi.

Note that p ∈ Rℓ is a competitive equilibrium price if and only if 0 ∈ Z(p).
Let Si be the set of all satiation points of consumer i ∈ I, that is,

Si = {xi ∈ Xi : xi %i yi for all yi ∈ Xi}.

For each i ∈ I and si ∈ Si, let

Qi(si) = {p ∈ Rℓ : p · si ≥ p · ωi}.

Since Si ̸= ∅ for all i ∈ I under Assumptions 1 and 2, the set Qi(si) is well defined. Note
that Qi(si) is a closed convex cone with vertex 0 for all i ∈ I and si ∈ Si.

For each s ∈ S =
∏

i∈I Si, let

Q(s) =
∩
i∈I

Qi(si).

It is clear that Q(s) is a closed convex cone with vertex 0 for all s ∈ S.
At the price p ∈ Q(s), the value of si is greater than or equal to that of ωi for every

consumer i ∈ I. Note that if p /∈ Q(s) for all s ∈ S, this p is not an equilibrium price.
Indeed, if p /∈ Q(s) for all s ∈ S, then there exists i ∈ I such that p · si < p · ωi for all
si ∈ Si, and thus, at the price p, consumer i’s optimal consumption bundles must be in
the interior of his or her budget set (recall that at an equilibrium price, each consumer’s
budget constraint must be held with equality). Therefore, if there exists an equilibrium
price, it must be in the set ∪s∈SQ(s).

Let Q0(s) denote the polar of Q(s), that is,

Q0(s) = {q ∈ Rℓ : q · p ≤ 0 for all p ∈ Q(s)}.

3A preference relation %i is weakly convex if yi %i xi implies that tyi +(1− t)xi %i xi for all t ∈ (0, 1).
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The set Q0(s) is also a closed convex cone with vertex 0 for all s ∈ S.

4 Main Result

We now propose the following sufficient condition for the existence of a competitive
equilibrium.

Condition 1. There exists s ∈ S satisfying
(a) int Q(s) ̸= ∅,
(b) for all p ∈ bd Q(s) \ {0}, if there exists z ∈ Z(p) ∩Q0(s) such that p · z = 0, then

0 ∈ Z(p).

Condition 1 (a) asserts that the set Q(s) is sufficiently large. Condition 1 (b) restricts
the behavior of aggregate demand on the boundary of Q(s).

It is worth noting that this condition allows Si to be contained in the individually
feasible set, unlike the conditions proposed by Werner (1987), Sun (1999), and Allouch
and Le Van (2008). Moreover, Condition 1 is an extension of the condition introduced
in Polemarchakis and Siconolfi (1993), where each consumer’s preference is assumed to
be strictly convex, 4 and thus, Si is a singleton for all i ∈ I. In section 6, we prove that
Condition 1 is equivalent to Polemarchakis and Siconolfi’s (1993) condition under the
strict convexity of consumers’ preferences.

The first and main result of this paper is the following proposition, the proof of which
is given in the Appendix.

Proposition 1. Under Assumptions 1 and 2 and Condition 1, there exists a competitive
equilibrium.

5 Another two sufficient conditions

By using the main result, we can obtain another two sufficient conditions for the
existence of a competitive equilibrium. Unlike Condition 1, these conditions are imposed
on the primitives of the model. The proofs of the propositions stated in this section are
provided in the Appendix.

We first provide a condition that implies Condition 1 under our assumptions.
For arbitrarily chosen s ∈ S, consider n vectors s1 − ω1, · · · , sn − ωn. Each vector

si −ωi indicates the direction from consumer i’s initial endowment to his or her satiation
point si. Condition 1 (a) may be violated for this s when the vectors s1−ω1, · · · , sn −ωn

point in widely different directions. Indeed, s violates Condition 1 (a) if for some i, j ∈ I,
two vectors si − ωi and sj − ωj point in the opposite directions. Conversely, however,
if all the vectors s1 − ω1, · · · , sn − ωn point in the same direction, s satisfies not only
Condition 1 (a) but also 1 (b).

More precisely, the following condition implies Condition 1 under our assumptions,
and is therefore another sufficient condition for the existence of a competitive equilibrium.

Condition 2. There exist s ∈ S and v ∈ Rℓ with ∥v∥ = 1 such that

si = ωi + αiv for all i ∈ I,

where αi = ∥si − ωi∥ ≥ 0 for each i ∈ I.

4A preference relation %i is strictly convex if yi %i xi implies that tyi +(1−t)xi ≻i xi for all t ∈ (0, 1).
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Condition 2 asserts that every consumer i ∈ I has at least one satiation point in
the direction v, which is common to all the consumers, from his or her initial endow-
ment. This condition is imposed on the primitives of the model and provides an intuitive
interpretation of Condition 1.

Proposition 2. Under Assumptions 1 (a) and 2 (c), Condition 2 implies Condition 1.

We next provide a condition that generalizes Bergstrom’s (1976) nonsatiation condi-
tion. The existence of a competitive equilibrium under the condition is shown by using
Proposition 1.

For each i ∈ I, let intXi
X̂i denote the interior of X̂i in the relative topology of Xi,

that is, xi ∈ intXi
X̂i if and only if there exists an open ball B(xi, r) centered at xi with

radius r such that B(xi, r) ∩ Xi ⊂ X̂i. Let xi ∈ X̂i and xi +
∑

j ̸=i xj =
∑

j∈I ωj for

(xj)j ̸=i ∈
∏

j ̸=i Xj. Then, it is easy to check that xi ∈ intXi
X̂i if xj ∈ int Xj for some

j ̸= i. Note also that since Xi is connected and intXi
X̂i ̸= ∅ for all i ∈ I under our

assumptions, if Xi ̸= X̂i, the set intXi
X̂i, which is open in Xi, does not coincide with X̂i,

which is closed in Xi.
Consider the following condition.

Condition 3. Si ∩ intXi
X̂i = ∅ for all i ∈ I.

Condition 3 asserts that each consumer’s preference is nonsatiated within the interior
(in the above sense) of the individually feasible consumption set. This condition gener-
alizes Bergstrom’s (1976) nonsatiation condition, which requires that Si ∩ X̂i = ∅ for
all i ∈ I, because our condition allows consumer i’s satiation points to be individually
feasible as long as they lie on the boundary of X̂i in Xi (i.e., X̂i \ intXi

X̂i).
Allouch and Le Van’s (2008) nonsatiation condition, which requires that Si ∩ (Xi \

X̂i) ̸= ∅ for all i ∈ I, also generalizes Bergstrom’s condition. While their condition allows
Si to intersect with intXi

X̂i, Condition 3 does not. However, Condition 3 allows Si to be
fully contained in the boundary of X̂i in Xi, while their condition does not.

We now state the existence of a competitive equilibrium under Condition 3. 5

Proposition 3. Under Assumptions 1 and 2 and Condition 3, there exists a competitive
equilibrium.

6 Relation to Polemarchakis and Siconolfi’s Result

Polemarchakis and Siconolfi (1993) investigate economies with satiated consumers and
propose a sufficient condition similar to Condition 1. However, their condition cannot be
applied to the case in which consumers have multiple satiation points, because in their
analysis, they assume the strict quasi-concavity of each consumer’s utility function, which
corresponds to the strict convexity of %i. In contrast, in Proposition 1 of this paper, we
only assume the weak convexity of preferences, which allows consumers’ demand functions
to be multivalued. Moreover, Condition 1 contains Polemarchakis and Siconolfi’s (1993)

5Condition 3 does not imply Condition 1 under our assumptions. Consider the following economy
with ℓ = n = 2. Let X1 = X2 = R2

+ and ω1 = ω2 = (1, 1). Consumers’ preferences are represented by
the utility functions u1(x1) = −(x11 − 2)2 − x2

12 and u2(x2) = −x2
21 − (x22 − 2)2. Then, s1 = (2, 0) and

s2 = (0, 2) are the unique satiation points of each consumer. It is easy to check that si /∈ intXi X̂i for
each i ∈ I. However, for s = (s1, s2) ∈ S, the set Q(s) is a one-dimensional linear subspace of R2, and
thus, intQ(s) = ∅.
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condition as a special case; in other words, Condition 1 and Polemarchakis and Siconolfi’s
(1993) condition are equivalent under the strict convexity of preferences. We prove this
fact in this section.

We first replace Assumption 2 (c) with

2 (c’) %i is strictly convex.

Under Assumption 2 (c’), the excess demand correspondence Z : Rℓ → Rℓ is single-
valued and Si is a singleton for each i ∈ I. Let si denote consumer i’s unique satiation
point, and let s = (si)i∈I .

For each p ∈ Rℓ, define a subset N(p) of Rℓ by

N(p) = {∑
i∈I λi(si − ωi) ∈ Rℓ : λi ≤ 0 and λip · (si − ωi) = 0 for all i ∈ I}.

Polemarchakis and Siconolfi (1993) propose the following sufficient condition for the
existence of a competitive equilibrium.

Condition PS.
(a) int Q(s) ̸= ∅,6

(b) for all p ∈ bd Q(s) \ {0}, if Z(p) ∈ N(p), then Z(p) = 0.

Theorem 1. Under Assumptions 1, 2 (a), 2 (b), and 2 (c’) and Condition PS, there
exists a competitive equilibrium.

We now prove the equivalence between Condition 1 and Condition PS under the strict
convexity of preferences. Note that under Assumption 2 (c’), Condition 1 (b) is restated
as

for all p ∈ bd Q(s) \ {0}, if Z(p) ∈ Q0(s) and p ·Z(p) = 0, then Z(p) = 0.

Proposition 4. Under Assumption 2 (c’), Condition 1 is equivalent to Condition PS.

Proof. We first prove that Condition PS implies Condition 1. Let p ∈ bd Q(s)\{0} and
Z(p) ∈ Q0(s) with p · Z(p) = 0. We prove that Z(p) ∈ N(p); then, from Condition PS,
we have Z(p) = 0.

From Florenzano and Le Van (2001) [Corollary 2.3.1, p.31] and the definition of Q0(s),
we obtain

Q0(s) = {∑
i∈I λi(si − ωi) ∈ Rℓ : λi ≤ 0 for all i ∈ I}. (1)

Thus, there exist n non-positive real numbers λ1, · · · , λn such that

Z(p) =
∑
i∈I

λi(si − ωi).

Since p ∈ Q(s) and p · Z(p) = 0, if λi < 0, then p · (si − ωi) = 0. Thus, we obtain
λip · (si − ωi) = 0 for all i ∈ I, which implies that Z(p) ∈ N(p).

The converse is immediate since N(p) ⊂ Q0(s) by equation (1) and p · y = 0 for all
y ∈ N(p).

6To be precise, Polemarchakis and Siconolfi (1993) impose not intQ(s) ̸= ∅ but Q(s) ̸= {0}. Although
Proposition 1 is still true even if we adapt Q(s) ̸= {0} instead of intQ(s) ̸= ∅, when intQ(s) = ∅,
imposing Conditions 1 (b) or PS (b) can be equivalent to imposing the existence of a competitive
equilibrium itself (consider the case when Q(s) is a one-dimensional linear subspace of Rℓ).
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7 Concluding Remarks

Throughout the paper, we assume the compactness of each consumer’s consumption
set, which guarantees that every consumer’s preference has at least one satiation point.
If there exists a consumer whose consumption set is unbounded and whose preference
is never satiated, then Condition 1, as well as the condition proposed by Polemarchakis
and Siconolfi (1993), cannot be applied because we cannot define the set Qi(·) for such a
consumer. To handle this case, we need to extend the condition further.

Moreover, our analysis is limited to the pure exchange economy. Whether our results
can be extended to production economies is another question.
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Appendix

In the proof of Proposition 1, we use the following theorem by Debreu (1955).

Theorem 2. Let C be a closed, convex cone with vertex 0 in Rℓ, which is not a linear
manifold; let C0 be its polar. If the correspondence ζ from C ∩ S(0, 1)7 to Rℓ is upper
semicontinuous and bounded, and if for every p ∈ C ∩ S(0, 1), the set ζ(p) is nonempty,
convex, and satisfies p · ζ(p) ≤ 0, then there is a p in C ∩S(0, 1) such that ζ(p)∩C0 ̸= ∅.

Proof of Proposition 1. Let s ∈ S be the element satisfying Condition 1. If
∑

i∈I si =∑
i∈I ωi, then (s, 0) ∈ X×Rℓ is a competitive equilibrium. Thus, we may assume

∑
i∈I si ̸=∑

i∈I ωi. This implies that si ̸= ωi for some i ∈ I, and thus, Q(s) ̸= Rℓ. In addition, Q(s)
is not a linear manifold of Rℓ by Condition 1 (a).

Let βi : S(0, 1) → Xi be a correspondence defined by

βi(p) = {xi ∈ Xi : p · xi = p · ωi}, p ∈ S(0, 1).

For each i ∈ I, let φi : S(0, 1) → Xi be a correspondence defined by

φi(p) = {xi ∈ Xi : xi ∈ βi(p) and xi %i yi for all yi ∈ βi(p)}, p ∈ S(0, 1).

Under Assumptions 1 and 2, for each i ∈ I, the correspondence φi is upper semicontinuous
and nonempty compact convex valued (see Montesano 2001, Propositions 1 and 2).

We now define the correspondence ζ : Q(s) ∩ S(0, 1) → Rℓ by

ζ(p) =
∑
i∈I

φi(p) −
∑
i∈I

ωi, p ∈ Q(s) ∩ S(0, 1).

By this definition, it is clear that ζ is upper semicontinuous, nonempty compact convex
valued on Q(s) ∩ S(0, 1) and that p · ζ(p) = 0 for all p ∈ Q(s) ∩ S(0, 1).

Applying Theorem 2 as C = Q(s), we obtain an element p ∈ Q(s)∩ S(0, 1) such that
ζ(p) ∩ Q0(s) ̸= ∅.

Let z ∈ ζ(p) ∩ Q0(s). We prove that z ∈ Z(p). From the definition of ζ, there exists
x ∈ X such that

xi ∈ φi(p) for all i ∈ I and z =
∑
i∈I

xi −
∑
i∈I

ωi.

For each i ∈ I, from the definition of φi, we have p · xi = p · ωi, and p · xi ̸= p · ωi for all
xi ≻i xi. Moreover, since p ∈ Q(s), we have p · si ≥ p · ωi. Together with Assumptions 2
(a) and 2 (c), this implies that either xi ∈ Si or p · xi > p · ωi for all xi ≻i xi. Thus, we
obtain xi ∈ Di(p) for all i ∈ I, which implies that z =

∑
i∈I xi −

∑
i∈I ωi ∈ Z(p).

We now prove that p ∈ Q(s) is an equilibrium price.
Since z ∈ Z(p) ∩ Q0(s) and p · z = 0, if p ∈ bd Q(s), we have 0 ∈ Z(p) by Condition

1 (b).
Suppose that p ∈ int Q(s). If z ̸= 0, there exists a ℓ-dimensional vector q ∈ Rℓ such

that q · z > 0 and q ∈ Q(s). Indeed, let q(t) = tz + (1 − t)p for t ∈ (0, 1). Since p · z=0,
we have q(t) · z > 0 for all t ∈ (0, 1). We also have q(t) ∈ Q(s) for t sufficiently close to 0
since p ∈ int Q(s). Thus, for t sufficiently close to 0, we have q(t) · z > 0 and q(t) ∈ Q(s).
However, this contradicts the fact that z ∈ Q0(s). Thus, z = 0 ∈ Z(p).

7The symbol S(0, 1) denotes the (ℓ−1) dimensional unit sphere, that is, S(0, 1) = {q ∈ Rℓ : ∥q∥ = 1}.
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Proof of Proposition 2. Let s ∈ S and v ∈ Rℓ with ∥v∥ = 1 be the elements satisfying
Condition 2. We prove that s satisfies Conditions 1 (a) and 1 (b).

If s = ω, since Q(ω) = Rℓ and bd Q(ω) = ∅, Conditions 1 (a) and 1 (b) trivially hold.
In the following, we suppose that s ̸= ω. Note that this implies that αi = ∥si−ωi∥ > 0

for at least one i ∈ I.
From the definitions of s and v, it is clear that

Q(s) = {p ∈ Rℓ : p · v ≥ 0}.

Therefore, int Q(s) ̸= ∅. Note that from Florenzano and Le Van (2001) [Corollary 2.3.1,
p.31], we obtain

Q0(s) = {βv ∈ Rℓ : β ≤ 0}. (2)

Suppose now that for some p ∈ bd Q(s) \ {0}, there exists z ∈ Z(p) ∩ Q0(s) with
p · z = 0 and z ̸= 0. We prove that 0 ∈ Z(p).

From (2), there exists a negative real number β < 0 such that z = βv. Since p · z = 0,
we have p · v = 0, which implies

p · (si − ωi) = 0 for all i ∈ I.

Thus, si ∈ Di(p) for all i ∈ I and
∑

i∈I si −
∑

i∈I ωi ∈ Z(p).
Let z′ =

∑
i∈I si −

∑
i∈I ωi =

∑
i∈I(si − ωi). Then, z′ = γv, where γ =

∑
i∈I αi > 0.

Let
λ =

γ

|β| + γ
.

Then, λ ∈ (0, 1), and

λz + (1 − λ)z′ = λ(βv) + (1 − λ)(γv) = 0.

Moreover, since Z(p) is convex under Assumptions 1 (a) and 2 (c),

λz + (1 − λ)z′ ∈ Z(p).

Thus, 0 ∈ Z(p).

Proof of Proposition 3. By Assumptions 1 (b), 2 (a) and 2 (b), S ̸= ∅. If there exists
s ∈ S with

∑
i∈I si =

∑
i∈I ωi, then, (s, 0) ∈ X × Rℓ is a competitive equilibrium. Thus,

we may suppose without loss of generality that any s ∈ S is not feasible.
For each i ∈ I, take an arbitrary si ∈ Si and let s = (si)i∈I ∈ S. In the following, we

prove that Conditions 1 (a) and 1 (b) hold for this s.
Let

ti = si − ωi.

By Assumption 1 (c) and Condition 3, we have ti ̸= 0 for all i ∈ I. Note also that

Q(s) = {p ∈ Rℓ : p · ti ≥ 0 for all i ∈ I}.

Step 1: We first prove that s satisfies Condition 1 (a). For this, it suffices to show that

0 /∈ co{t1, · · · , tn}.

Indeed, if the convex hull of {t1, · · · , tn} does not contain the origin, then, from the strict
separation theorem, there exists a ℓ-dimensional vector p ∈ Rℓ \ {0} such that

p · z > 0 for all z ∈ co{t1, · · · , tn}.
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Especially,
p · ti > 0 for all i ∈ I,

and thus, p ∈ int Q(s).
Suppose now that 0 ∈ co{t1, · · · , tn}. Then, there exist n real numbers λ1, · · · , λn

such that ∑
i∈I

λi = 1, λi ∈ [0, 1] for all i ∈ I

and ∑
i∈I

λiti = 0. (3)

Without loss of generality, we may assume

λ1 > 0 and λ1 ≥ λi for all i ̸= 1.

Then, from equation (3),

t1+
n∑

i=2

λi

λ1

ti = 0

⇔ (s1 − ω1) +
n∑

i=2

λi

λ1

(si − ωi) = 0

⇔ s1 +
n∑

i=2

 λi

λ1

si +

(
1 − λi

λ1

)
ωi

 =
∑
i∈I

ωi. (4)

Since Xi is convex for all i ∈ I (by Assumption 1 (a)) and

λi

λ1

∈ [0, 1] for all i ̸= 1,

we have
λi

λ1

si +

(
1 − λi

λ1

)
ωi ∈ Xi for all i ̸= 1.

If λi = λ1 for all i ∈ I, equation (4) implies that s ∈ S is feasible, which contradicts
our supposition that any element of S is not feasible. Therefore, λi < λ1 for some i ̸= 1.
However, by Assumptions 1 (a) and 1 (c), for this i,

λi

λ1

si +

(
1 − λi

λ1

)
ωi ∈ int Xi.

Then, equation (4) implies
s1 ∈ intX1 X̂1,

which contradicts Condition 3.
Thus, we conclude that 0 /∈ co{t1, · · · , tn}.

Step 2: We next prove that s satisfies Condition 1 (b). More precisely, we prove that
for all p ∈ bd Q(s) \ {0}, if z ∈ Z(p) ∩ Q0(s) and p · z = 0, then, z = 0.

Suppose that for some p ∈ bd Q(s) \ {0}, there exists z ∈ Z(p) ∩Q(s)0 with p · z = 0
and z ̸= 0. In the following, we prove that for some i ∈ I, there exists a consumption
bundle xi ∈ Xi such that xi ∈ Si ∩ intXi

X̂i, which contradicts Condition 3.
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First, since z ∈ Q0(s), from Florenzano and Le Van (2001) [Corollary 2.3.1, p.31],
there exist n non-positive real numbers µ1, · · · , µn such that

z =
∑
i∈I

µiti. (5)

Since p · z = 0 and p · ti ≥ 0 for all i ∈ I, if µi < 0, then p · ti = 0.
Since z ̸= 0, there exists at least one j ∈ I such that

µj < 0 and |µj| ≥ |µi| for all i ̸= j.

Without loss of generality, we may assume that j = 1.
Since z ∈ Z(p), there exists x = (xi)i∈I ∈ X such that

xi ∈ Di(p) for all i ∈ I

and
z =

∑
i∈I

xi −
∑
i∈I

ωi =
∑
i∈I

(xi − ωi). (6)

Then, from (5) and (6), ∑
i∈I

(xi − ωi) +
∑
i∈I

|µi|(si − ωi) = 0. (7)

For each i ∈ I, let xi be the ℓ-dimensional vector defined by

xi =
1

1 + |µ1|
xi +

|µi|
1 + |µ1|

si +
|µ1| − |µi|
1 + |µ1|

ωi. (8)

Note that for all i ∈ I,

1

1 + |µ1|
∈ (0, 1),

|µi|
1 + |µ1|

∈ [0, 1],

|µ1| − |µi|
1 + |µ1|

∈ [0, 1],

1

1 + |µ1|
+

|µi|
1 + |µ1|

+
|µ1| − |µi|
1 + |µ1|

= 1.

Hence, from the convexity of Xi,

xi ∈ Xi for all i ∈ I.

Moreover, x = (xi)i∈I ∈ X is feasible. Indeed, from (8),

(1 + |µ1|)(xi − ωi) = (xi − ωi) + |µi|(si − ωi) for all i ∈ I. (9)

Summing up the equations in (9) over i and using (7), we have

(1 + |µ1|)
∑
i∈I

(xi − ωi) =
∑
i∈I

(xi − ωi) +
∑
i∈I

|µi|(si − ωi) = 0.
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Therefore, ∑
i∈I

(xi − ωi) = 0. (10)

We claim that for all i ∈ I with |µi| = |µ1|, we have xi ∈ Si (especially, x1 ∈ S1). Let
i ∈ I be the consumer with |µi| = |µ1|. Since |µi| = |µ1| > 0, we have p · ti = 0, which
implies si ∈ Di(p). Then, from Assumption 2 (c), xi ∈ Si. Using Assumption 2 (c) again,

xi =
1

1 + |µ1|
xi +

|µ1|
1 + |µ1|

si ∈ Si.

We next claim that from the feasibility of x ∈ X, we have |µi| < |µ1| for some i ̸= 1.
Indeed, if |µi| = |µ1| for all i ∈ I, the previous claim implies that x ∈ S, which contradicts
the supposition that any element of S is not feasible.

Then, for i ̸= 1 with |µi| < |µ1|, from (8) and Assumptions 1 (a) and 1 (c), we have
xi ∈ int Xi. In view of the feasibility of x ∈ X, this implies

x1 ∈ intX1 X̂1.

Since x1 ∈ S1, we obtain the desired contradiction.
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