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Abstract
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1. Introduction

Taking log-deviations around the steady state is a solution to the problem of reducing
the computational complexity of highly nonlinear systems of numerically specified, time
dependent equations. Such conversion is a rather common practice in macroeconomics for the
solution of dynamic stochastic general equilibrium (DSGE) models. The advantages of the
log-deviation conversion go beyond simplifying the calculations. For small deviations from
the steady state, the log-deviation form also allows for a convenient economic interpretation:
the variables are percentage deviations from the steady state and their associated coefficients
are elasticities.
This note is motivated by the fact that conversion to log-deviations, although in its core

a simple application of first-order Taylor series expansions, is often confusing to beginning
students of macroeconomics. Although the material is discussed in some textbooks and
papers on macroeconomics (e.g., Romer 2006, Heijdra and van der Ploeg 2002, Uhlig 1999),
the presentation often relies on short-cuts that only work in some special cases and little is
typically said about the basic logic or advantage of the particular computational strategy
that is used. The intent of this paper is to bring together all relevant computational aspects
of converting equations to log-deviations form, show their logic, and provide some pertinent
examples.1

The note is organized as follows. The following section presents the two most commonly
used short-cuts of converting an equation to log-deviations form. Next, a less commonly
applied conversion strategy is illustrated, which reverses the typical sequence of first trans-
forming an equation and then applying a Taylor series approximation. This latter approach
has the advantage of being far easier to automate by computer than the usual conversion
strategies.

2. Definition and two common short-cuts

This section defines taking log-deviations around the steady state and introduces two
common computational strategies.

2.1 Definition and conversion based on the definition

Converting to log-deviations around the steady state is interpreted here to mean replacing
an expression by the difference between its log value and the log value of its steady state.
Assume x denotes the steady state value of variable xt. Then the log-deviation of variable
xt from its steady state x is defined as

ext ≡ lnxt − lnx. (1)

To the extent that xt is a place holder for any time subscripted expression, equation (1) is
a general recipe for converting an expression into log-deviation form: simply take the log of

1For anyone interested in reviewing how log-linearization fits into the solution of DSGE models, that is,
what steps precede and what steps follow log-linearization, the reader is referred to Uhlig (1999).
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the expression and subtract the log of its steady state. In fact, taking the log-deviation of
an expression in this manner can be thought of as employing a specialized log operator on
the expression.
To fix the idea, consider how to convert a more general algebraic expression, such as βxαt ,

to log-deviation form. Following the definition of equation (1) and employing the rules of
logarithm, we can write

g(βxαt ) = lnβxαt − lnβxα = lnβ + α lnxt − lnβ − α lnx = α(lnxt − lnx).

Using again the definition of equation (1), this simplifies to

g(βxαt ) = αext. (2)

The term ext can be interpreted as the percentage difference between xt and its steady
state value x. To verify this point, approximate the right-hand side of equation (1) by a
first-order Taylor series polynomial at xt = x,

ext = lnxt − lnx ' 1

x
(xt − x) =

xt − x
x

. (3)

The interpretation of ext as a percentage deviation of xt from its steady state value is valid
only for small percentage deviations from the steady state because it relies on the rules of
calculus. This highlights that log-linearization is a local approximation method.

2.2 Conversion by substitution

The method of obtaining the log-deviations of an expression per its definition (equation
(1)) can complicate the conversion process if equations involve mainly addition or subtrac-
tion, such as in the case of a national income accounting identity,

yt = ct + it.

Using the log-deviations operator in this case complicates matters because it generates a
term

³ gct + it´ on the right side of the equation that itself needs to be converted to obtain
expressions in ect and eit.
An often used short-cut relies on a substitution process in lieu of the log-deviation op-

erator. As part of the substitution process, every occurrence of a time subscripted variable,
such as xt, is replaced by an expression in ext and the corresponding steady state value x.
The expression that replaces xt is derived from equation (1) by first isolating lnxt on the
left

lnxt = lnx+ ext
and then taking the exponent on both sides,

xt = e
lnx+ext = elnxeext = xeext. (4)
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Up to this point no approximation is involved. By simply replacing all occurrences of xt
in a model with the expression xeext, and likewise for all other variables, the model would
become more rather than less difficult to solve. Hence, a simple substitution of terms along
the lines of equation (4) can not be the end of the conversion process, only the beginning.
It is followed by a first-order Taylor series approximation of the expression eext at the pointext = 0, which yields

eext ' 1 + e0(ext − 0) = 1 + ext. (5)

Applying this approximation to (4) gives rise to a key equation of the substitution method,

xt ' x (1 + ext) . (6)

Equation (6) highlights that the substitution method is about replacing xt by another level
term that contains the percentage deviation from the steady state (ext) and the corresponding
steady state value (x). Equation (6) can be applied to all time subscripted variables with
exponent equal to unity. For variables with exponents other than unity a more general
substitution equation is required.
To generalize the conversion principle of the substitution method as expressed in equation

(6), consider how to convert the algebraic term βxαt to log-deviation form. Start again from
equation (4), that is, from the equality of xt and xeext and replace xt,

β (xt)
α = β

¡
xeext¢α .

Simplify the right-hand side using the laws of exponents,

β
¡
xeext¢α = βxαeαext,

and apply the Taylor series approximation along the lines of equation (5) to the exponential
term eαext to get

βxαt = βxαeαext ' βxα (1 + αext) . (7)

Equation (7) is the fundamental equation of the substitution method. Some confusion can
arise if the right-hand side of equation (7) is compared to the right-hand side of equation
(2). The two methods of converting βxαt to log-deviations form generate seemingly different
results. The confusion is easily removed if one considers that the right-hand side of equation
(7) is an approximate replacement of the level term βxαt and, therefore, itself a level term. By
contrast, the right-hand side of equation (2) is the percentage deviation of βxαt rather than
a level term. To make the right-hand side of equation (7) comparable to that of equation
(2), subtract the steady state value βxα and divide the result by βxα,

βxα (1 + αext)− βxα

βxα
= αext.
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2.3 Some simple applications

Purely linear equations, such as national income accounting identities, are easily handled
by both substitution (section 2.2) or the short-cut suggested in section 2.1. The more
commonly used substitution method works as follows.

Example 1 Simple substitution for each of the three terms of the national accounting iden-
tity

yt = ct + it

yields by application of equation (6).

y (1 + eyt) = c (1 + ect) + i³1 +eit´ .
To simplify, make use of the steady state relationship

y = c+ i.

In particular, subtract y on the left and (c+ i) on the right to obtain

yeyt = cect + ieit.
Finally, divide both sides of the equation by y,

eyt = c

y
ect + i

y
eit.

Example 2 To convert the national income account identity of Example 1 into log-deviations
by the short-cut of section 2.1, take the log of the identity and subtract the log of the steady
state

ln yt − ln y = ln(ct + it)− ln(c+ i).

This can be written as

eyt = g(ct + it).
Note that interest centers on the log-deviations of each individual variable rather than on the
log-deviations of the sum of ct and it. Equation (3) suggests the following conversion

g(ct + it) ≈ (ct + it)− (c+ i)
(c+ i)

=
ct − c+ it − i

c+ i

=
c

c+ i

µ
ct − c
c

¶
+

i

c+ i

µ
it − i
i

¶
,

which yields the same result as in the previous example.
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Linear equations that contain nonlinear terms as elements take more effort to convert.
A typical example is the state equation of the capital stock often found in DSGE models.2

Example 3 Consider the equation

kt+1 = sk
α
t − ct + (1− δ)kt,

where k stands for capital and c for consumption, and where s identifies the savings rate, α
the production elasticity of capital, and δ the depreciation rate. To convert by the substitution
method (section 2.2), the first step employs equations (6) and (7),

k
³
1 + ekt+1´ = skα ³1 + αekt´− c (1 + ect) + (1− δ)k

³
1 + ekt´ .

Multiplying out yields

k + kekt+1 = skα + αskαekt − c− cect + (1− δ)k + (1− δ)kekt.
Divide through by k to obtain

1 + ekt+1 = skα−1 + αskα−1ekt − c
k
− c
k
ect + (1− δ) + (1− δ)ekt.

Now simplify by making creative use of the steady state equation or its transformation

k = skα − c+ (1− δ)k,

1 = skα−1 − c
k
+ (1− δ)

to get

ekt+1 = £αskα−1 + (1− δ)
¤ ekt − c

k
ect.

The final equation is linear in ekt+1, ekt, and ect and depends only on the parameters α, s, and
δ and the steady state values of k and c implied by those parameters.

3. Conversion via initial Taylor series approximation

Instead of using algebraic substitutions and a Taylor series approximation on the resulting
exponential expressions, the conversion process can be reversed: first employ a Taylor series
approximation and only then apply the definition of log-deviations from the steady state.
To see the general applicability of this method, which appears to be less used in the

literature, consider an implicit three-variable equation like

g(xt, yt, zt) = 0.

2Further applications can be viewed online (Appendix A.1).
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The key initial step consists of linearly approximating this function at the steady state values
of all variables (x, y, z) by a multivariate Taylor series expansion,

g(x, y, z) + g0x(x, y, z)(xt − x) + g0y(x, y, z)(yt − y) + g0z(x, y, z)(zt − z) = 0. (8)

Because the equality

g(x, y, z) = 0

holds in steady state, equation (8) simplifies to

g0x(x, y, z)(xt − x) + g0y(x, y, z)(yt − y) + g0z(x, y, z)(zt − z) = 0.

The second step consists of changing the equation to incorporate percentage deviations from
the steady state. For that purpose, multiply and divide each term by its associated steady
state value to obtain

g0x(x, y, z)x
(xt − x)
x

+ g0y(x, y, z)y
(yt − y)
y

+ g0z(x, y, z)z
(zt − z)
z

= 0.

By the definitional equation (3), the last equation can be written as

g0x(x, y, z)xext + g0y(x, y, z)yeyt + g0z(x, y, z)zezt = 0. (9)

Equation (9) follows an easy-to-remember pattern, which extends to any number of vari-
ables. It is straightforward to implement on most equations, not only by hand, but also by
computer.3 Note that all terms other than those that represent percentage deviations from
the steady state are functions only of steady state values. This has an important practical
implication: as long as the problem is numerically specified, which is typically the case, the
above equation converts directly to the simple linear form

λ1ext + λ2eyt + λ3ezt = 0,
where the λi, i = 1, 2, 3, are numbers that depend on the assumed parameters and implied
steady state values.

Example 4 Consider the conversion of the national income accounting identity,

yt = ct + it + gt,

into log-deviations form by equation (9). First, write the equation into equal-to-zero format,

yt − ct − it − gt = 0.

Second, apply equation (9) to get

yeyt − cect − ieit − gegt = 0.
If so desired, divide by y to obtain,

eyt − c
y
ect − i

y
eit − g

y
egt = 0.

3To help make the conversion process less burdensome than it is often perceived (e.g., Gong and Semmler
2006, p. 20 and p. 45), a simple Maple program along with some examples is availabl online (Appendix A.2)
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It is apparent that the log-deviation form of a linear equation is very easy to obtain with
the help of equation (9) because all derivatives are either plus or minus unity. The derivation
is somewhat more complicated when the equation consists of a sum of non-linear terms, as
in the next example.

Example 5 To convert the state equation for the capital stock

kt+1 = sztk
α
t n

1−α
t + (1− δ)kt

transform to implicit form,

kt+1 − sztkαt n1−αt − (1− δ)kt = 0.

The equation contains four variables in t if one treats kt+1 and kt as separate variables.
Employing equation (9) generates

kekt+1 − £αszkα−1n1−α + (1− δ)
¤
kekt − ¡skαn1−α¢ zezt − (1− α)szkαn−αnent = 0. (10)

Dividing by k and rearranging the last two terms simplifies (10) toekt+1 − £αszkα−1n1−α + (1− δ)
¤ ekt − ¡szkα−1n1−α¢ ezt − (1− α)szkα−1n1−αent = 0.

If so desired, this equation can be further simplified with the help of the steady state relation-
ship

k = szkαn1−α + (1− δ)k

and its transformations. These simplifications eventually yieldekt+1 − [1− δ(1− α)]ekt − δezt − δ(1− α)ent = 0.
4. Conclusion

In discussing the practical issues of converting equations into log-deviations from the
steady state form, this note brings together in one place a number of related computational
approaches, illustrates their relationship, and their relative advantages. Presenting the vari-
ous approaches in one consistent notation and illustrating their use on a small set of examples
helps to remove the confusion that surrounds the various computational short-cuts.
The reader needs to be cautioned that the conversion to log-deviation form, although a

convenient tool, is not an economically sensible simplification for all models. For example,
if the variability of a random variable is important, such as in the modeling of risk, log-
deviations may not be appropriate because only the mean of a random variable is considered
by equations converted to log-deviations not its variance. Other methods of making equations
computationally tractable need to be employed in such cases. It may also become apparent
that the conversion to log-deviations is difficult to fully automate. If one wants to avoid
all manual intervention, some other approximation method has to be chosen. Perturbation
methods and other techniques that make use of higher order terms have gained popularity
also for this reason (Judd 1998, Miranda and Fackler 2002).
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Appendix (available online)

A.1 Applications of the two short-cut methods

This section of the appendix provides several examples of the conversion methodology
discussed in sections 2.1 and 2.2. The chosen examples are typical of those encountered
in DSGE models. The examples are organized to highlight key mathematical properties of
the equations that help with the selection of the most appropriate method of converting to
log-deviations.

Linear or semi-linear equations These types of equations are fully discussed in section
2.3.

Multiplicative equations Consider the investment equation

it = sztk
α
t , (11)

where i is investment and z a technology variable. Purely multiplicative equations of this
type are best handled with the methodology of section 2.1. This methodology includes the
following sequence of steps,

ln it − ln i = ln sztk
α
t − ln szkαeit = ln s+ ln zt + α ln kt − ln s− ln z − α ln keit = ezt + αekt.

Alternatively, the investment equation can be converted into log-deviations form along
the lines of section 2.2. To do that, apply the approximations given by equations (6) and
(7),

i
³
1 +eit´ = sz (1 + ezt) kα(1 + αekt). (12)

Next, utilize the steady state,

i = szkα,

to simplify equation (12). Dividing the left-hand side of equation (12) by i and the right-hand
side by szkα yields ³

1 +eit´ = (1 + ezt) (1 + αekt),
which can be solved for eit, eit = 1 + ezt + αekt + αeztekt − 1.
As both ezt and ekt are by assumption close to zero, the product of the two terms will be
negligibly different from zero. Setting the product zero and simplifying yields the resulteit = ezt + αekt. (13)
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Example 6 To convert the Cobb-Douglas production function

yt = Atk
α
t n

β
t

to log-deviations by the methodology of section 2.1, take the log on both sides of the equation
and then subtract the log of the steady state value on both sides,

ln yt − ln y = lnAtkαt nβt − lnAkαnβ.

Employing the rules of logarithm, the above equation can be rewritten as

eyt = lnAt + α ln kt + β lnnt − lnA− α ln k − β lnn

= eAt + αekt + βent.
The conversion method of section 2.1 works very efficiently whenever taking the log

greatly simplifies algebraic expressions. Here is another example.

Example 7 To convert the first-order profit maximizing condition of a competitive firm with
production function as in Example 6,

wt
pt
=

∂yt
∂nt

= βAtk
α
t n

β−1
t ,

take the log on both sides of the equation and subtract the log of the steady state to get

lnwt − ln pt − (lnw − ln p) = lnβ + lnAt + α ln kt + (β − 1) lnnt
− [lnβ + lnA+ α ln k + (β − 1) lnn] .

Rearranging terms and employing the definition of log-deviations the above equation simplifies
to

ewt − ept = eAt + αekt + (β − 1)ent.
Although the procedure of section 2.2 also works on ratios of variables, the short-cut of

section 2.1 is significantly faster.

Example 8 To convert the labor productivity term yt/nt into log-deviations form by the
substitution method (section 2.2), first convert the ratio to a product,

yt
nt
= ytn

−1.

Next, apply the approximations of equations (6) and (7) to obtain

ytn
−1 ' y (1 + eyt)n−1 (1− ent) .

Multiplying out yields

y

n
(1 + eyt − ent − eytent) ,
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which condenses to
y

n
(1 + eyt − ent)

because the term eytent is the product of two small numbers and, hence, negligible. The result
is an approximate replacement for the level term yt/nt and, therefore, itself a level term. To
express it in percentage terms, subtract and then divide by the steady state expression y/n.
This yields

eyt − ent.
The same result can be obtained significantly faster by the method of section 2.1,gµ yt

nt

¶
= ln yt − ln y − (lnnt − lnn) = eyt − ent.

Equations in logs DSGEmodels often contain log equations for exogenous variables, such
as stochastic technology shocks,

ln zt = z0 + ρ ln zt−1 + ²t,

where ²t is a disturbance term with mean zero and constant variance. It is apparent that
the above equation can be rewritten in multiplicative form as

zt = e
z0zρt−1e

²t.

As suggested above, multiplicative equations are best converted into log-deviations form by
the short-cut of section 2.1, that is, by taking the log and then subtracting the log of the
steady state. As the equation to be converted is already given in log form, one only needs
to subtract the log of the steady state from the given equation to obtain the log-deviation
form,

ln zt − ln z = z0 − z0 + ρ ln zt−1 − ρ ln z + ²tezt = ρezt−1 + ²t.
Conversion to log-deviations with the substitution methodology (section 2.2) takes one

additional step. First, replace the time subscripted variables per equation (4) and apply the
logarithm,

ln zeezt = z0 + ρ ln zeezt−1 + ²t
ln z + ezt = z0 + ρ (ln z + ezt−1) + ²t.

Use the steady state equation

ln z = z0 + ρ ln z

to subtract ln z on the left and (z0 + ρ ln z) on the right to simplify the log equation to

ezt = ρezt−1 + ²t.
11



Equations with expectations terms Consider the Euler equation that connects present
and future consumption for an intertemporal utility maximization problem,

1

ct
= βEt

µ
1 + rt+1
ct+1

¶
, (14)

where Et denotes an expectations operator and β a discount factor.
The conversion short-cut of section 2.1 is inappropriate if expectation terms are present

because taking the expectation of a log term is not the same as taking the log of an ex-
pectation term.4 The conversion should employ equations (6) and (7) of the substitution
method.
To convert the Euler equation rewrite all ratios in product form,

1 = βEt
£
ct (1 + rt+1) (ct+1)

−1¤ .
Application of equations (6) and (7) to the time-subscripted variables yields

1 = βEt
©
c (1 + ect) [1 + r (1 + ert+1)] c−1 (1− ect+1)ª .

Eliminate c, multiply out, and drop all products of log-deviation terms,

1 = βEt {1 + ect − ect+1 + r + rect − rect+1 + rert+1} .
Factor (1 + r) to obtain

1 = βEt {(1 + r) (ect − ect+1) + (1 + r) + rert+1} .
Finally, consider that the Euler equation implies the steady state

β =
1

1 + r
.

Using this steady state relationship the log-deviation form of the Euler equation simplifies
to

0 = Et

∙
(ect − ect+1) +µ r

1 + r

¶ert+1¸ . (15)

A.2 Automating the conversion process

Converting equations into log-deviations form is often considered burdensome because,
in contrast to alternatives such as simple first-order Taylor approximations, it is difficult to
fully automate by computer.
The purpose of this section of the appendix is to demonstrate that conversion to log-

deviations form can be reasonably well automated if one makes use of the conversion method
discussed in section 3. A simpleMaple routine is provided that can be adapted to convert any

4This results from Jensen’s inequality, which implies ln(Ex) > E lnx for the log function. Only for a
linear function f(x) is f(Ex) = Ef(x).
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equation to log-deviations form. This works very efficiently if model parameters and steady
state values are numerically specified before the conversion process starts. If that is not the
case, the program will provide a final equation that requires some algebraic simplifications
by hand involving the equation’s steady state equivalent.
The Maple program code below presents the conversion for Example 5 if variable nt is

set equal to unity for all t.

restart:
#>>>>>> change the four input lines below <<<<<<<<
eq:=kt1-s*zt*kt^alpha-(1-delta)*kt; #define equation
L1:=[kt1,kt,zt]: #define names of variables
L2:=[kd1,kd,zd]: #define names of log-deviations
L3:=[k,k,z]: #define names of steady state values
#>>>>> no changes needed below this line <<<<<<<
n:= nops(L2):
# the line below generates the steady state equation
eq0:=unapply(eq,L1): sstate:=eq0(seq(L3[i],i=1..n))=0;
# the line below is a simple transformation of sstate
collect(sstate, L3[1]);
# equation (9) is implemented and simplified
eqt1:=[seq(L3[i]*L2[i]*diff(eq,L1[i]),i=1..n)]:
eqt2:=sum(eqt1[i],i=1..n);
eqt3:=subs(seq(L1[i]=L3[i],i=1..n),eqt2)=0;
simplify(%,power,symbolic): collect(%,L2);

The Maple program code provides the final results line

k ∗ kd1 + k ∗ kd ∗ (−s ∗ z ∗ k(−1+α) ∗ α− 1 + δ)− z ∗ zd ∗ skα = 0.

Converted back into the format used elsewhere in this paper, this result can be written as

kekt+1 − kekt £αszkα−1 + (1− δ)
¤
− szkαezt = 0, (16)

which is equal to equation (10) if variable nt is set equal to unity for all t.
Simplifications from here on need to be done by hand. In this case, they would be

similar to those of Example 5. They rely on the use of the steady state relationship. To
provide some help with the derivations, the Maple program prints out the steady state
relationship along with a simple transformation of it. These intermediate results typically
help in simplifying the final equation of interest. In the case above, the Maple program
reports as an intermediate result the following simplification of the steady state,

δk − szkα = 0.

This helps to simplify the coefficients of both ekt and ezt in equation (16),
kekt+1 − kekt [αδ + (1− δ)]− δkezt = 0.
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Division by k generates the final equationekt+1 − ekt [1− δ + αδ]− δezt = 0.
To provide some more hints on the use of the Maple program, consider how to change

the four input lines for a couple of the other examples that are worked out in detail in the
previous sections. Take, for example, the log-linear equation

ln zt = z0 + ρ ln zt−1 + ²t.

The four input lines for this case can be specified as

eq:=ln(zt)-z0-rho*ln(ztl); #define equation
L1:=[zt,ztl]: #define names of variables
L2:=[zd,ztd]: #define names of log-deviations
L3:=[z,z]: #define names of steady state values

Note that the error term ²t is not included in the Maple program. It needs to be added
to the results equation that is output by the program. Also note that a steady state name
needs to be provided for each variable name and that this name has to be the same for
variables that only differ by their time subscript, such as zt and zt−1 in the above case.
The input lines for the Euler equation,

1

ct
= βEt

∙
(1 + rt+1)

ct+1

¸
,

can be written as

eq:=1/ct-beta*((1+rt1)/ct1); #define equation
L1:=[rt1,ct1,ct]: #define names of variables
L2:=[rtd,ctd,cd]: #define names of log-deviations
L3:=[r,c,c]: #define names of steady state values

The expectations operator is left out. It needs to be added back into the results equation
of the program. The Maple output for this case is given by

−βr

c
rtd+

β(1 + r)

c
ctd− 1

c
cd = 0.

In the notation of this paper the equation can be written as

−βr

c
ert+1 + β(1 + r)

c
ect+1 − 1

c
ect = 0.

Adding the expectations operator to all (t+1) terms and multiplying through by the constant
term c yields

−βrEtert+1 + β(1 + r)Etect+1 − ect = 0.
Replacing β by 1/(1 + r) will make the equation equivalent to (15).

14


