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Abstract

The paper undertakes a detailed characterization of the local dynamic properties of three
simple deterministic models involving expectations. The expectations are formed under an
adaptive learning process. Allowing for different degrees of learning quality, the analysis
reveals the existence of a large variety of possible long term outcomes: in some scenarios,
stability and instability are independent of the learning quality; in other circumstances, some
minimal requirement on learning efficiency is necessary to attain stability; in some settings, it
is even possible that high quality learning may prevent attaining the stable outcome that
otherwise is accomplished.
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1 Introduction

If one wants to reasonably address the way private economic agents form expectations about
future events, some kind of learning mechanism needs to be introduced. Agents do not possess,
from the beginning, all the required information to decide optimally; likewise, typically they
lack the capacity to process this information in a completely e¢ cient manner. This simple
observation has led economists to resort to more or less sophisticated schemes in which �rms
and households gather information and process it in order to improve the outcome of their
forecasts as time goes by. This literature was pioneered by Marcet and Sargent (1989), in
the context of expectations concerning macroeconomic variables, and since then it has been
extended in multiple directions.
A strand of this literature highlights the possibility and the desirability of convergence to

an asymptotic perfect foresight outcome.1 Acting as econometricians (i.e., resorting to a least
squares algorithm), agents will systematically add new observations to the already collected
information, making the impact or gain of new observations to become progressively smaller
and eventually converge to zero; in other words, the learning process is fully e¢ cient, meaning
that in the long run no more learning will be required, i.e., the perfect foresight equilibrium
will be accomplished asymptotically.
An alternative view is the one that suggests that such impact or gain may not fall to zero,

meaning that learning persists over time. Resorting to a two-period overlapping generations
model, Bullard (1994), Schonhofer (1999) and Tuinstra and Wagener (2007) show that long
term outcomes may signi�cantly diverge from a �xed point result. These authors refer to the
existence of endogenous �uctuations and chaotic learning equilibria. The rationale under the
failure to attain the perfect foresight equilibrium is that a learning mechanism may enclose
also a process of memory loss: if agents forget quickly, as they learn, the rational expectations
steady state may not be learned.
In synthesis, convergence to the perfect foresight equilibrium under learning o¤ers a logical

argument to support the hypothesis of rational expectations in a long run perspective; absence
of convergence indicates a form of bounded rationality in which learning and forgetting compete
to obtain a less than optimal long term outcome.
By assuming that agents are boundedly rational, thus not being able to learn with full

e¢ ciency, some contributions have highlighted the new possibilities that arise in terms of the
explanation of macroeconomic phenomena. We make a brief reference to two of these contri-
butions. First, Cellarier (2006) introduces constant gain learning into a framework of optimal
growth with in�nitely lived agents; this author is able to replicate the existence of business
cycles (with properties similar to the ones evidenced by US macroeconomic time series) that
under perfect foresight are simply absent. Second, Koulovatianos, Mirman and Santugini (2008)
study the e¤ects of introducing learning into the well known Brock-Mirman stochastic growth
model; they observe that the new assumption regarding expectations is likely to disturb the
optimal consumption and investment paths.
In the sections that follow, we consider three simple generic models involving expectations.

Allowing expectations to be formed under the adaptive learning scheme usually found in the
literature and taking into consideration the possibility of di¤erent long term learning e¢ ciency

1This includes, for instance, a signi�cant part of the extensive discussion on monetary policy and learning,
surveyed in Evans and Honkapohja (2008).
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degrees, we study the local stability properties of each one of the models. In some cases, conver-
gence to the perfect foresight steady state is attained even for relatively low learning e¢ ciency,
while in other cases such convergence is ruled out independently of the learning capacity of some
representative agent. One observes that slight changes in the model�s speci�cation introduce
relevant di¤erences in the obtained stability results.

2 The Adaptive Learning Rule

Concerning the formation of expectations, we consider a standard adaptive learning scheme.
This is the most widely used learning speci�cation in the economic literature.2 The framework
to present is essentially based on the learning mechanisms proposed by Bullard (1994), Tuinstra
and Wagener (2007) and Adam, Marcet and Nicolini (2008).
In an adaptive learning setting, a representative agent resorts to past information in order

to form expectations about the future. Assuming that, under perfect foresight, some variable
xt 2 R grows at a constant rate, the perceived law of motion for the evolution of xt in time will
be Etxt+1 = btxt, with bt�1 the growth rate of xt (if variable xt is constant in the steady state,
then the asymptotic value of bt will be 1). Because agents have no apriori knowledge about the
true value of bt, this value has to be estimated. A least squares regression is typically used to
undertake such estimation.
According to the cited references, the estimation leads to the following dynamic rule char-

acterizing the motion of bt,

bt = bt�1 + �t

�
xt�1
xt�2

� bt�1
�
; b0 given (1)

Equation (1) reveals that the value of the estimator in t will be equal to its value in the
preceding time period plus a term where the estimator is weighted against the last observable
change in the value of the endogenous variable (this term measures forecasting errors). Par-
ticularly important in this expression is variable �t, commonly known as the gain sequence.
The gain sequence dictates how past predictions are incorporated into beliefs. Two possibilities
are worth noticing: a decreasing gain sequence is such that �t ! 0 as t ! +1; alternatively,
an asymptotic constant gain sequence corresponds to a scenario in which �t ! � 2 (0; 1) as
t! +1.
The notion of decreasing gain sequence is commonly associated to the idea of a perfect

learning process, i.e., to a process that guarantees convergence to the rational expectations
equilibrium (to a long run setting in which agents� forecasts are optimal in the limit). The
rationale is that agents are able to add new information to the process in each time moment
in order to improve the formation of expectations, and therefore, in the steady state all the
necessary information acquisition and processing is ful�lled; thus, no more learning is required
to form optimal or perfect foresight expectations. A decreasing gain rule would correspond to
a di¤erence equation as the following: �t = �t�1=(1 + �t�1); �0 2 [0; 1) given. This equation
has a unique �xed point, � = 0, which is stable.
If �t does not converge to zero, this might be interpreted as a failure in the learning process.

Learning continues to be necessary in the long run, and therefore the representative agent failed

2For a comprehensive presentation of the implications of learning in macroeconomic models, we refer the
reader to Evans and Honkapohja (2001).

2



in achieving an optimal forecasting capacity. The more the steady state gain sequence departs
from zero, the lower will be the quality of learning, i.e., the lower is the degree of success of
the learning process. In Adam, Marcet and Nicolini (2008), it is explicitly stated that as long
as the model converges to the rational expectations equilibrium (i.e., as long as �t converges
to zero), agents�forecasts are, in the limit, optimal. Such an assertion allows to infer that the
more the model�s outcome diverges from the perfect foresight equilibrium, the more apart the
result will be from an e¢ cient or optimal outcome. Constant gain could be given by a rule
�t = �t�1=(1 � � + �t�1); �0 2 [0; 1) given. This equation has two steady state points; � = 0
continues to be a steady state, but now it is an unstable �xed point; the other steady state is
stable and equal to � 2 (0; 1). There is constant gain with a gain sequence � representing a
given level of learning quality.
The analysis that follows concentrates in the study of local stability conditions and, there-

fore, we avoid addressing explicitly the dynamics of the gain sequence; we consider a constant
� that translates the e¢ ciency of the learning process that culminates in some positive and
lower than 1 value for �.

3 Three Models Involving Expectations

Three di¤erent hypotheses concerning the true evolution of variable xt are considered. A
common feature to the three models is that they are deterministic setups all possessing a
unique �xed point steady state x; this steady state is accomplished both when expectations are
formed under perfect foresight and under adaptive learning, as long as the underlying system
evidences stability. The assumed settings are the following,
I) Variable xt is a linear function of an array of exogenous variables and of the expected

value of the variable in the next period:

xt = f(Yt) + �Etxt+1; � 2 R= f1g ; f : Rn ! R (2)

with Yt a vector of exogenous variables of dimension n.
II) Variable xt is a linear function of an array of exogenous variables, of the expected value

of the endogenous variable and of the value of xt in the preceding time period:

xt = f(Yt) + �Etxt+1 + �xt�1; � 2 R= f1g ; � 2 R; �+ � 6= 1; f : Rn ! R (3)

III) Variable xt is a linear function of an array of exogenous variables and of the previous
period expectations about the contemporaneous value of the endogenous variable:

xt = f(Yt) + �Et�1xt; � 2 R= f1g ; f : Rn ! R (4)

The steady state of each one of the equations is straightforward to obtain. In the �rst model,
x := xt = Etxt+1, and thus x = f(Y)=(1 � �); in the second model, x := xt = Etxt+1 = xt�1,
implying x = f(Y)=(1� � � �); �nally, the third model�s steady state is de�ned as x := xt =
Et�1xt and therefore x = f(Y)=(1 � �). In every case, Y corresponds to a vector of steady
state values of the exogenous variables.
The analysis to undertake corresponds to an inquire about the stability properties of each

one of the models in the vicinity of the steady state point. In each case, bifurcation points will
separate regions of stability and absence of stability.
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3.1 Model I

Rewrite equation (2) in order to the expectations term: Etxt+1 = xt=� � f(Yt)=�. If ex-
pectations are formed under the speci�ed adaptive learning rule, then bt = Etxt+1=xt =
1=��f(Yt)=(�xt). Replacing the estimator in the corresponding dynamic equation, one obtains
the system,

xt =
f(Yt)

(1� �)f(Yt)=xt�1 � �(�xt�1=zt�1 � 1)
; zt = xt�1 (5)

We recall that, in system (5), � is the steady state value of the gain sequence, some value
between zero and one, that indicates the degree of learning quality. The main result in terms
of local stability is the following:

Proposition 1 In the model where the contemporaneous value of xt depends on the expected
value of the variable for the next period, x corresponds to a stable �xed point under conditions:
1) � < 2(1� �)=(1� 3�), as long as � 2 (�1;�1) [ (1;+1);
2) � < (1� �)=�, as long as � 2 (1=2; 1);
3) 8� 2 (0; 1), as long as � 2 (�1; 1=2).

Proof. See appendix
A straightforward corollary is derived from the proposition,

Corollary 2 In model I, where the current value of the variable is established as depending on
the expectations about its next period value, for every � =2 (�1; 1=2) a minimum requirement on
learning is needed in order to attain stability, i.e., an upper bound on the gain sequence exists.

Note the relevance of achieving the steady state under constant gain. It means that although
expectations are not formed with full e¢ ciency, the same result (i.e. convergence to x) is
obtained as if asymptotic perfect foresight existed. For some values of parameter �, the quality
of learning is irrelevant (x is stable independently of the value of �), while for others a boundary
is imposed on the value of �; the corollary states that in the model in appreciation this is
a minimal requirement on the quality of learning that if not attained will imply divergence
relatively to the (perfect foresight) steady state.
The bifurcations separating regions of stability and lack of stability are, under condition

� = 2(1��)=(1�3�), a �ip bifurcation and, under condition � = (1��)=�, a Neimark-Sacker
bifurcation. Thus, if the second stability condition in the proof of proposition 1 is not satis�ed
then saddle-path stability will hold (only one of the eigenvalues of the Jacobian matrix will
locate inside the unit circle); if it is the third stability condition in the proof of proposition 1
that is violated, then instability sets in (the eigenvalues of J will be a pair two complex values
with real parts larger than 1 in modulus). Proposition 1 also tells us that for some value of
� at most one bifurcation can occur, i.e., �ip and Neimark-Sacker bifurcations cannot occur
simultaneously in a setting in which we vary the value of �, maintaining the value of �.
Consider a small example. Assume � as a discount factor (the contemporaneous value of xt

will be given, besides the in�uence of exogenous variables, by the discounted expected value of
the variable in the next period). If, for instance, the discount rate is 5%, then � = 0:952. For
this value of �, a Neimark-Sacker bifurcation occurs at point � = 0:0504, i.e., stability is found
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only for considerably high levels of learning e¢ ciency, i.e., for values of the gain sequence close
to the perfect foresight equilibrium (� < 0:0504).
The local dynamics of the model under appreciation is graphically addressed in �gure 1.3

This presents a trace-determinant diagram displaying line segments that refer to di¤erent dy-
namic possibilities for di¤erent values of parameter �. Note that for � = 0, the system locates
over the bifurcation line 1�Tr(J)+Det(J) = 0, at the speci�c point (Tr(J); Det(J)) = (1; 0);
the other relevant extreme, � = 1, is such that Tr(J) = Det(J) = �=(1 � �). A pattern
arises: starting at the particular point (1,0), the line re�ecting the dynamics is extended to a
given point over the main diagonal Tr(J) = Det(J). For some values of �, the stability area
(the inverted triangle formed by the bifurcation lines) is not abandoned; in other cases, the
�ip bifurcation line (negatively sloped bifurcation line) or the Neimark-Sacker bifurcation line
(horizontal bifurcation line for Det(J) = 1) are crossed and stability is lost. In the �gure, �ve
di¤erent possibilities of dynamic behavior are drawn, for di¤erent values of �. A similar seg-
ment of line could be drawn for any other value of the parameter. Such representation con�rms
the results set forth in proposition 1.

3.2 Model II

The second model involves an additional parameter, �, and it contains the �rst speci�cation as a
particular case (� = 0). The procedure to analyze local dynamics is similar to the one used in the
previous model. Rearranging equation (3), Etxt+1 = xt=� � (�=�)xt�1 � f(Yt)=�. Recovering
the assumed perceived law of motion, bt = Etxt+1=xt = 1=� � (�=�)(xt�1=xt) � f(Yt)=(�xt).
This estimator is then replaced in (1) to obtain a two-dimensional system,

xt =
f(Yt) + �xt�1

(1� �)(f(Yt)=xt�1 + �zt�1=xt�1)� �(�xt�1=zt�1 � 1)
; zt = xt�1 (6)

The local dynamic properties of system (6) are as follows,

Proposition 3 In the model where the current value of xt depends on the expected value of the
variable for the next period and on the value of the variable in the previous period, the stability
of x will be characterized by the following conditions,
1) If �=(1� �) � 1, then stability is absent 8� 2 (0; 1);
2) If �1 < �=(1 � �) < 1, then stability can only be lost through the violation of an upper

bound on the gain sequence value. A �ip bifurcation occurs as long as 2(1��+�)
1�3�+� < 1 and a

Neimark-Sacker bifurcation will be evidenced under � > 1=2. The simultaneous veri�cation of
conditions 2(1��+�)

1�3�+� > 1 and � < 1=2 implies stability 8� 2 (0; 1);
3) If �=(1 � �) < �1, then instability will prevail under 2(1��+�)

1�3�+� < 0 and � < 1=2. When
2(1��+�)
1�3�+� > 0 holds, a �ip bifurcation occurs and stability will emerge for relatively high values
of �. If, furthermore, � > 1=2, an upper bound on the value of � will also emerge through the
occurrence of a Neimark-Sacker bifurcation and above this instability will again prevail.

Proof. See appendix
The main di¤erence between models I and II, is that now we allow for new meaningful

stability results,

3All �gures are presented consecutivelly in the end of the paper.
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Corollary 4 The dependence of xt on its previous period value as well as on the expectations
concerning the following period introduces a degree of freedom in the model, allowing to extend
the possibilities in terms of local dynamic outcomes. The third situation in proposition 3 indi-
cates that a high quality of learning can be harmful in terms of attaining the stability goal. For
values of the gain sequence near the perfect foresight equilibrium, stability is absent, although it
can emerge, under certain combinations of parameters and through a �ip bifurcation, for lower
learning quality standards.

The results in proposition 3 can be illustrated graphically. In �gure 2, three panels are
presented, each one corresponding to a di¤erent situation in the proposition. Consider, alter-
natively, �=(1� �) = 2, �=(1� �) = 1=2 and �=(1� �) = �2.
In the �rst panel, the imposed constraint on parameters implies that (Tr(J); Det(J)) =

(3; 2) for � = 0; for � = 1, depending on the speci�c value of �, the system will rest in some
point over the line Det(J) = Tr(J) � 2. In the graphic, some segments of line respecting to
possible locations of the dynamics of the system are drawn. One observes that stability is not
a feasible result given that the stability inverted triangle is never crossed. In the second panel,
condition �=(1��) = 1=2 will mean that for � = 0 the system locates in point (Tr(J); Det(J)) =
(3=2; 1=2), and for � = 1 points over line Det(J) = Tr(J) � 1=2 are relevant. In this case,
it is observable that stability holds for relatively high learning e¢ ciency; however, stability
may be lost, for di¤erent values of �, through a �ip bifurcation or through a Neimark-Sacker
bifurcation. Finally, the third panel, drawn for �=(1��) = �2, presents line segments starting
at (Tr(J); Det(J)) = (�1;�2) and ending in points over the lineDet(J) = Tr(J)+2. Although
for � close to zero stability is ruled out, it can arise as the result of a �ip bifurcation; there
is also the possibility (for values of � higher than 1/2 and lower than 1) of a Neimark-Sacker
bifurcation implying the loss of stability, in this case for low standards of learning quality. As
noted in the proposition, only this last scenario allows to identify an excessive learning quality,
that is, high quality learning leading to no convergence towards the perfect foresight steady
state.
Consider as an example, that � = 2=3. With this value one can quantify the level of the

gain sequence needed to attain stability in each of the three scenarios in �gure 2. In the �rst
graphic, as mentioned, stability is absent independently of the value of �; in the second panel,
stability is guaranteed under an upper limit on �; in the speci�c case, � < 2=3; �nally, the third
scenario is such that stability occurs for a value of the gain sequence bounded in the following
interval: � 2 (2=5; 1=2).

3.3 Model III

We consider, in this third case, that the value of the endogenous variable is formed by weighting
last period�s expectations about the current value of the variable. This lag in expectations will
imply that instead of a two-dimensional system, the system to analyze will have dimension 3
and that the possibilities regarding dynamic results are considerably enlarged relatively to the
�rst model. Rearranging equation (4), Et�1xt = xt=�� f(Yt)=�. We apply the same perceived
law of motion and the same recursive rule for the estimator, in order to obtain the following
system of equations,

xt+1 = (1� �)
�
x2t
zt
� f(Yt)

xt
zt

�
+ ��

xtzt
vt

+ f(Yt); zt+1 = xt; vt+1 = zt (7)
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Main stability results are synthesized in proposition 5.

Proposition 5 In the model where the current value of xt is determined having in consideration
last period�s expectations concerning the current value of the variable, the stability of x will be
characterized by the following conditions:
1) If � � 1, then there is instability 8� 2 (0; 1);
2) If � 2 [�0:618; 1), then there is stability 8� 2 (0; 1);
3) If � 2 [�1;�0:618), then there is stability as long as � <

p
1=[2(1� �)]2 � 1=��1=[2(1�

�)];
4) If � < �1, then there is stability as long as 2(�+1)

1+3�
< � <

p
1=[2(1� �)]2 � 1=�� 1=[2(1�

�)].

Proof. See appendix
Let us compare the possible outcomes in this case with the ones of model I:

Corollary 6 Just by changing the relevant expectations for the formation of the value of the
endogenous variable, we have added new possibilities: instability may exist independently of
learning ine¢ ciency; instability may also hold for low and high values of the gain sequence,
with a region of stability for intermediate values of the gain variable.

As in previous models, the graphical illustration of the dynamics using a trace-determinant
diagram helps in clarifying the described outcomes. Figure 3 presents three panels. The �rst
one is drawn for � = 2; the other two take, respectively, � = 1=2 and � = �2. One con�rms the
statements in proposition 5: for � = 2, instability prevails independently of the value of �; for
� = 1=2, the line segment characterizing the dynamics of the system falls, in all its extension,
inside the unit circle; �nally, in the case � = �2, one observes stability for an intermediate level
of the gain sequence. More speci�cally, stability holds under � 2 (0:4; 0:5598). Note that in this
case, it is not only the location of the line segment respecting to the dynamics of the system
that changes place with variations on the value of the parameter; the stability area also su¤ers
a modi�cation every time � is changed, since we are drawing the trace-determinant relation,
but the stability conditions are also dependent on a third entity that is the sum of the principle
minors.

4 Conclusion

Three simple deterministic models involving the determination of the current value of a given
variable, when this depends on expectations relating future or present values of the variable,
were addressed. Each one of these models possesses a unique steady state point; in the vicinity
of such point, a detailed characterization of local stability conditions was undertaken. Local
dynamics were studied after replacing the conventional perfect foresight assumption by a mech-
anism of adaptive learning. Under perfect foresight, the models under consideration are just
simple linear di¤erence equations involving trivial dynamics; once one allows for di¤erent pos-
sibilities regarding the quality or e¢ ciency of the learning process, a large set of possible local
dynamic outcomes arises, with local stability depending decisively on the long run value of the
gain sequence, which translates the degree of the quality of the learning process. The analysis
intends to be a guide for the study of economic models (e.g., relating in�ation dynamics) in-
volving expectations formed under adaptive learning and it stresses that slight changes in the
model�s structure may provoke dramatic changes concerning stability outcomes.
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Appendix

Proof of proposition 1. Linearizing (5) in the vicinity of the steady state, one computes
the following matricial system,�

xt � x
zt � x

�
=

�
1� � + ��=(1� �) ���=(1� �)

1 0

�
�
�
xt�1 � x
zt�1 � x

�
The matricial system evidences that the vector of exogenous variables Yt is irrelevant for

the study of stability and that this will relate to the elasticity value � and to the gain value �.
Trace and determinant of the Jacobian matrix are Tr(J) = 1��+��=(1��) and Det(J) =

��=(1� �). The corresponding stability conditions are straightforward to obtain:
1� Tr(J) +Det(J) > 0) � > 0;
1 + Tr(J) +Det(J) > 0) � < 2(1� �)=(1� 3�);
1�Det(J) > 0) � < (1� �)=�.
The �rst stability condition is satis�ed for any possible constant gain value � 2 (0; 1). The

other two conditions will apply for values of � within a certain range. The constraint on the gain
sequence implies that the second condition is relevant only for 0 < 2(1� �)=(1� 3�) < 1, and
this is equivalent to � =2 (�1; 1) as stated in the proposition; the third condition is meaningful
as long as 0 < (1��)=� < 1, i.e., if � 2 (1=2; 1); for any other value of �, i.e., for � 2 (�1; 1=2),
all the three conditions are satis�ed independently of the level of learning e¢ ciency

Proof of proposition 3. In the vicinity of the steady state, system (6) is approximated by,�
xt � x
zt � x

�
=

�
1� � + (�� + �)=(1� �) �(�� + �(1� �))=(1� �)

1 0

�
�
�
xt�1 � x
zt�1 � x

�
Trace and determinant of the Jacobian matrix are Tr(J) = 1 � � + (�� + �)=(1 � �) and

Det(J) = (�� + �(1� �))=(1� �). Stability conditions are straightforward to obtain,
1� Tr(J) +Det(J) > 0) 1����

1�� � > 0;

1 + Tr(J) +Det(J) > 0) � < 2(1��+�)
1�3�+� ;

1�Det(J) > 1) � < 1����
��� .

To address the stability conditions, let us look at the extreme values of the gain sequence.
For � = 0, Tr(J) = 1 + �=(1 � �) and Det(J) = �=(1 � �). Di¤erently from model I, this is
not a speci�c point that is independent of the values of parameters, but it is a collection of
points over the bifurcation line 1 � Tr(J) + Det(J) = 0. The �rst stability condition is not
satis�ed if �=(1� �) is a non negative quantity, and therefore we can exclude stability for any
combination of parameters such that �=(1 � �) � 1. Thus, our concern will be only with the
values of parameters implying a segment of line translating stability that is placed to the left
of Det(J) = Tr(J)� 1, and this happens for �=(1� �) < 1.
For � = 1, one has Tr(J) = (� + �)=(1 � �) and Det(J) = �=(1 � �), i.e., Det(J) =

Tr(J) � �=(1 � �). This is a parallel line to Det(J) = Tr(J) � 1, and having restricted the
analysis to �=(1��) < 1, it locates to the left of the bifurcation line. Thus, it is easy to identify
two cases with di¤erent stability implications. First, if �1 < �=(1 � �) < 1 then the initial
point of the line segment giving the local dynamic properties is located inside the unit circle.
This line segment crosses the bifurcation lines in the following circumstances: if 2(1��+�)

1�3�+� < 1, a
�ip bifurcation exists (according to the second stability condition). This condition is equivalent
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to � 2 (��� 1; 3�� 1) for a positive � and � 2 (3�� 1;��� 1) for a negative �. If 1����
��� < 1

(third stability condition), then it is guaranteed that a Neimark-Sacker bifurcation occurs; this
last condition simpli�es to � > 1=2.
A second case is the one for which �=(1� �) < �1; in this scenario, the trace-determinant

point for � = 0 is outside the unit circle, given that the stability condition 1+Tr(J)+Det(J) > 0
is violated. A �ip bifurcation will exist if 2(1��+�)

1�3�+� > 0, i.e., if � 2 (�1; �� 1) [ (3�� 1;1)
for a positive � or � 2 (�� 1;1) [ (�1; 3�� 1) for a negative value of �. A Neimark-Sacker
bifurcation will occur once again under 1����

��� < 1, that is, if � > 1=2

Proof of proposition 5. The procedure to arrive to stability conditions is similar to the
one used in the previous models. First, we linearize system (7) in the steady state vicinity to
obtain it under the matricial form,24 xt � xzt � x

vt � x

35 =
24 1 + � � � �(2� � 1) ���

1 0 0
0 1 0

35 �
24 xt�1 � xzt�1 � x
vt�1 � x

35
For the Jacobian matrix of the problem, we compute trace, Tr(J) = 1+���, determinant,

Det(J) = ��� and, in this case, also the sum of the principle minors, �M(J) = �(1� 2�).
Stability conditions for 3 dimensional discrete time systems are [see Brooks (2004)],

1�Det(J) > 0
1� �M(J) + Tr(J)Det(J)� (Det(J))2 > 0

1� Tr(J) + �M(J)�Det(J) > 0
1 + Tr(J) + �M(J) +Det(J) > 0

Noticing that �M(J) = �+2Det(J), the stability conditions may be presented in simpli�ed
form taking in consideration just the trace and the determinant,

Det(J) < 1

Det(J) 2
 
Tr(J)�2

2
�
r�

Tr(J)�2
2

�2
+ 1� �; Tr(J)�2

2
+

r�
Tr(J)�2

2

�2
+ 1� �

!
Det(J) > Tr(J)� (1 + �)
Det(J) > �1

3
[Tr(J) + 1 + �]

We are interested in evaluating the above stability conditions for the relation between the
gain sequence and the model�s parameter �. One �rst straightforward result is given by the
third condition, which is equivalent to � < 1, independently of the value of �. Thus, if � � 1,
stability (i.e., the three eigenvalues of the Jacobian matrix inside the unit circle) will not hold.
For the remaining values of �, the evaluation of the other stability conditions is such that:
1) The stability condition Det(J) < 1 is satis�ed for any feasible value of � if � 2 [�1; 1),

while if � < �1 then condition � < �1=� must hold;
2) The second stability condition corresponds to a set in which the determinant of the

Jacobian matrix must locate. The lower bound on this set is satis�ed 8�; the same is true for
the upper bound as long as � 2 [�0:618; 1). For � < �0:618, the following relation must hold in
order for the stability condition to be a true condition: � <

p
1=[2(1� �)]2 � 1=��1=[2(1��)];

3) Finally, the last stability condition holds 8� for � 2 [�1; 1), while if � < �1 then
� > 2(�+1)

1+3�
guarantees that the stability inequality is veri�ed.

Combining the various relations derived above, one reaches the conditions in the proposition
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Figures
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Figure 1: Trace-determinant diagram in model I.
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Figure 2a: Trace-determinant diagram in model II (�=(1� �) = 2).
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Figure 2b: Trace-determinant diagram in model II (�=(1� �) = 1=2).
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Figure 2c: Trace-determinant diagram in model II (�=(1� �) = �2).

12



s=1

s=0

S

Det(J)

Tr(J)

Figure 3a: Trace-determinant diagram in model III (� = 2).
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Figure 3b: Trace-determinant diagram in model III (� = 1=2).
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Figure 3c: Trace-determinant diagram in model III (� = �2).
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