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Abstract

In this note we provide conditions which ensure the existence of Nash networks in One-way
flow models with cost heterogeneity.

We thank J. Derks and M.Tennekes for their comments. We thank Richard Baron for his helpful comments about the algorithm.
Citation: Billand, Pascal, Christophe Bravard, and Sudipta Sarangi, (2008) "A Note on Existence of Nash Networks in
One-way Flow." Economics Bulletin, Vol. 3, No. 79 pp. 1-4
Submitted: December 11, 2008.  Accepted: December 29, 2008.
URL: http://economicsbulletin.vanderbilt.edu/2008/volume3/EB-08C70064A.pdf

http://economicsbulletin.vanderbilt.edu/2008/volume3/EB-08C70064A.pdf


1 Introduction

The importance of networks is pervasive and now well documented. Among the growing litterature
on the formation of networks, a few papers have explored the impact of heterogeneity, although
this is a distinctive feature. Galeotti (2006, [3]) is one exception. The author introduces agents
heterogeneity in one way flow models of network formation and characterize the architectures of
Nash networks. However Nash networks do not alway exist. Heterogeneity in cost of forming links
play a major role in this non existence.

In recent paper Billand, Bravard and Sarangi (BBS, 2008, [1]) show that Nash networks do not
always exist under heterogeneity of costs by pairs. Then in Proposition 3 (pg. 505), they provide a
sufficient condition for the existence of Nash networks. Subsequently, by means of a counterexample
Derks and Tennekes (2008, [2]) showed that the condition given in Proposition 3 is not sufficient for
the existence of Nash networks. In this comment we provide an additional condition which ensures
the existence of Nash networks. We also show that although this is a fairly strong condition, it still
allows us to have models with non-trivial cost heterogeneity.

2 Model Setup

Let N = {1, . . . , n} be the set of players. The network relations among these players are formally
represented by directed graphs whose nodes are the players. A network g = (N, E) is a pair of sets:
the set N of players and the edges set E(g) ⊂ N × N of directed links. A link initiated by player
i to player j is denoted by i j. Each player i chooses a strategy gi = (gi1, . . . , gii−1, gii+1, . . . , gin),
gij ∈ {0, 1} for all j ∈ N \ {i}, which describes the decision of establishing links. More precisely,
gij = 1 if and only if i j ∈ E(g). The interpretation of gij = 1 is that player i forms a link with
player j 6= i, and the interpretation of gij = 0 is that i does not form a link with player j. We
assume in the following that every player is always trivially connected to herself, so gii = 1 for
all i ∈ N and do not include it in gi. We only use pure strategies. Note that gij = 1 does not
necessarily imply that gji = 1. Indeed it is possible i is linked to j, but j is not linked to i. Let G
= ×n

i=1Gi be the set of all possible networks where Gi is the set of all possible strategies of player
i ∈ N .

We now provide some important graph theoretic definitions. For a directed graph, g ∈ G, a path
P (g) of length m in g from player j to i, i 6= j, is a finite sequence i0, i1, . . . , im of distinct players
such that i0 = i, im = j and gikik+1

= 1 for k = 0, . . . , m − 1. If i0 = im, then the path is a cycle.
We denote the set of cycles in the network g by C(g). Let C(g) be a typical member of C(g). We
assume that if ℓ ∈ NC(g), the set of players who belong to the cycle C(g), then ℓ + 1 ∈ NC(g) and
gℓ+1,ℓ = 1. In the empty network, g

0, there are no links between any agents.
To sum up, a link from a player j to a player i (gij = 1) allows player i to get resources from player

j but since we are in a one-way flow model, this link does not allow player j to obtain resources from
i. Moreover, a player i may receive information from other players through a sequence of indirect
links. To be precise, information flows from player j to player i, if i and j are linked by a path in
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g from j to i. Let

Ni(g) = {j ∈ N | there exists a path in g from j to i},

be the set of players that player i can access in the network g. By definition, we assume that
i ∈ Ni(g) for all i ∈ N and for all g ∈ G. Information received from player j is worth Vij to player
i. Moreover, i incurs a cost cij when she initiates a direct link with j, i.e. when gij = 1. We can
now define the payoff function of player i ∈ N :

πi(g) =
∑

j∈Ni(g)\{i}

Vi −
∑

j∈N\{i}

gijcij . (1)

We assume that cij > 0 and Vi > 0 for all i ∈ N . Let c̄ = max(i,j)∈N×N\{i}{ci,j} and c =
min(i,j)∈N×N\{i} {ci,j}. We now provide some useful definitions for studying the existence of Nash
networks. Given a network g ∈ G, let g−i denote the network obtained when all of player i’s links
are removed. The network g can be written as g = g−i ⊕ gi, where the operator ⊕ indicates that
g is formed by the union of links in gi and g−i. The strategy gi is said to be a best response of
player i to g−i if:

πi(gi ⊕ g−i) ≥ πi(g
′
i ⊕ g−i), for all g

′
i ∈ Gi.

The set of player i’s best responses to g−i is denoted by BRi(g−i). Furthermore, a network g =
(g1, . . . , gi, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each i ∈ N .

3 Results

Proposition Let the payoff function be given by (1) for all i ∈ N . There always exists a Nash
network if

• (P1) for all i, j, j′ ∈ N , we have | ci,j − ci,j′ |≤ Vi,

• (P2) for all i ∈ N , j ∈ N , | Vj − Vi |≤
2c−c̄

n−1
.

Proof of Proposition. We state two lemmas that provide insights about the algorithmic
process. The first explains an important property of payoff functions that satisfy (P1) and (P2),
while the second explains a crucial feature of the process. The process we use is as follows.

Step 1. g = ∅;
Step 2. While g is not Nash do
Step 3. Find i ∈ N such that gi 6∈ BRi(g−i)
Step 4. g := g−i ⊕ g

′
i, with g

′
i ∈ BRi(g−i);

Step 5. If
∑

j∈N\{i} g′
i,j > 1, then compute a wheel and Stop

Else go to Step 6.
Step 6. Compute

N1(g) = {(ℓ, ℓ′) ∈ (N \ NC(g)) × NC(g) | gℓ,ℓ′ = 1}
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Step 7. While N1(g) 6= ∅ do
Choose (ℓ, ℓ′) ∈ N1(g)
g := g ⊕ ℓ′ + 1 ℓ ⊖ ℓ′ + 1 ℓ′

Compute N1(g)
end

end

Lemma 1 Suppose the payoff function satisfies equation (1), (P1) and (P2). If there exists a
network g and a player j ∈ N such that gj ∈ BR(g−j) and

∑
i∈N gj,i ≥ 2, then wheels are Nash

networks.

Proof Note that in a wheel each player i obtains net benefits which are at least (n − 1)Vi − c̄.
Let player j be such that there is a network g with g

′
j ∈ BRj(g−j) and

∑
i∈N g

′
j,i ≥ 2. Then

player j incurs a cost in g
′ = g−j ⊕ g

′
j greater or equal to 2c, and obtains at most (n− 1)Vj values.

Since j plays a best response, we have: (n − 1)Vj − 2c ≥ 0. First, consider players j′ such that
Vj′ ≥ Vj. We have Vj′ − Vj ≥ 0 ≥ c̄ − 2c, since 2c − c̄ ≥| Vj − Vi |≥ 0. Therefore Vj′ − c̄ > Vj − 2c
and (n − 1)Vj′ − c̄ > (n − 1)Vj − 2c. It follows that player j′ has an incentive to be in a wheel
instead being isolated. Moreover, by (P1), in a wheel player j′ has no incentive to replace her
link. Second, consider players j′ such that Vj′ < Vj. We have (n − 1)(Vj − Vj′) < 2c − c̄, that is
0 ≤ (n− 1)Vj − 2c < (n− 1)Vj′ − c̄. By using the same argument as above, it follows that player j′

plays a best response in a wheel. �

Lemma 2 Let g
0, g

1, ..., g
t−1, g

t, ... be the sequence of networks obtained in the process. Then
Ni(g

t−1) ⊆ Ni(g
t) for all i ∈ N .

Proof 1. By (P1) there is no network g in the process which contains a player i who does not
belong to a cycle such that gℓ,i = gℓ′,i = 1, ℓ 6= ℓ′.

2. By definition Ni(g
0) ⊆ Ni(g

1), for all i ∈ N . We now show that Ni(g
t−1) ⊆ Ni(g

t) for
all i and t. To introduce a contradiction, let g

t be the first network, in the process where there is
at least a player j such that Nj(g

t) + Nj(g
t−1). Then by construction of the process, the player

who plays a best response between g
t−1 and g

t, say player i, must be such that Ni(g
t) + Ni(g

t−1).
Let g

t′ be the first network where player i has formed a link with player i′ ∈ Ni(g
t−1) \ Ni(g

t). By
definition, all players j ∈ N \ {i} are such that Nj(g

t′′−1) ⊆ Nj(g
t′′), with t′′ ≤ t− 1. We show that

player i does not play a best response in g
t if Ni(g

t) + Ni(g
t−1).

Suppose player i belongs to a component which is not a cycle in g
t. Then Ni(g

t) ⊇ Ni(g
t−1). Indeed,

since player i has formed a link with i′ in g
t′ ∈ {g0, . . . , gt−1}, we have πi(g

t′)− πi(g
t′ ⊖ i i′) ≥ 0.

Moreover, since Ni′(g
t′) ⊆ Ni′(g

t−1), by construction of the process we have πi(g
t⊕ i i′)−πi(g

t) ≥
πi(g

t′) − πi(g
t′ ⊖ i i′) ≥ 0. Therefore player i has no incentive to delete her link with i′. Finally,

there is no player who has formed a link with player k ∈ Ni′(g
t) between g

t′ and g
t by point 1. It

follows that player i has no opportunity to replace her link to obtain a subset of Ni′(g
t).

Suppose player i belongs to a cycle in g
t. If player i belongs to a cycle in g

t−1, then she has no
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incentive to remove her link (otherwise she has not played a best response during the process) and
by (P1) she has no incentive to replace her link by a link with a player k who belongs to the same
cycle. It follows that Ni(g

t−1) ⊆ Ni(g
t).

If player i does not belong to a cycle in g
t−1, then there are two cases. Either player i forms a cycle

by using her best response in Step 4, or she forms a link with a cycle. In both cases, either player
i does not form her first link and in that case a wheel is formed and the lemma is true, or player i
forms her first link and we have {i} = Ni(g

t−1) ⊂ Ni(g
t) since she cannot replace one of her links

by point 1 and the construction of the process. �

If player i plays a best response in the process, then she must obtain strictly more payoffs and
by Lemma 2 Ni(g

t−1) ⊆ Ni(g
t). It follows that η(gt) =

∑
i∈N |Ni(g

t)| is stricly increasing in t.
Since η(gt) is finite this concludes our proof.

�

In the following example, we show that condition (P2) which is quite strong is difficult to
improve upon. Indeed, even if all players obtain the same value V from others, the condition on
costs heterogeneity remains strong.

Example 1. We show that even with homogeneous values, if a slightly weaker condition than
(P2) is not satisfied, then Nash networks do not always exist. Indeed, if we have | V − V |=
0 > (3c − c̄)/(n − 1), then there exist parameters such that a Nash network does not exist. Let
N = {1, . . . , 4}, Vi = V for all i ∈ N , c̄ = 3V + ε with ε > 0. We assume that c1,2 = V − ε,
c2,3 = c3,1 = 2V − ε, c2,4 = 2(V − ε), c4,1 = 3V − ε, and all other links have a cost of c̄. Under these
parameters, a Nash network does not exist for all ε > 0.

In the following example we show that our conditions allow for some parameter heterogeneity.
Example 2. Let N = {1, 2, 3}, c1,2 = 10, c1,3 = 11 c2,1 = 12 c2,3 = 13 c3,1 = 14 c3,2 = 15 and

V1 = 11, V2 = 12, V3 = 13. It is easy to check that (P1) and (P2) are satisfied and therefore a Nash
network will exist.
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