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SUNSPOTS DO MATTER: A SIMPLE DISPROOF OF MAS-COLELL

MARCO D. HUESCH

1 Introduction

In an economy with multiple spot market equilibria, it is well-known that perfectly fore-
sighted rational agents may be able to use an exogenous random event (a sunspot) to corre-
late their expectations and achieve a unique equilibrium.

Now suppose the opposite. There is a deterministic economy admitting a unique spot
market equilibrium, and there are sunspots with nothing to do with the fundamentals. There
are sunspot-contingent assets with known payoffs.

Might there now be a different spot market equilibrium in each of the sunspot states?
Would each agent’s utilities be different in each of those states? A positive answer to both
questions implies the existence of sunspot equilibria [SSE] that ‘matter’.

Cass & Shell (1983, p 193) first asked the question, “Do Sunspots Matter?” Mas-Colell
conjectured that there could be no SSE that matter if the underlying deterministic economy
had a unique equilibrium (1992, cited in Barnett &Fisher, 2002 [hereafter BF], p1). Hens
(2000) provided a 2 asset counter-example which BF showed was flawed.

Hens & Pilgrim (2004) provided a correct counter-example to Mas-Colell’s conjecture in
the ≥ 3 asset case (see Appendix 4). They also proved an un-intuitive general equivalence
between SSE existence and the existence of the Leontief trade ‘transfer paradox’.

In this note, I provide identical results using a simple linear algebraic method. I param-
eterize all economies with a certain number of assets and a unique underlying deterministic
equilibrium and partition the resulting parameter space. I form a linear non-homogeneous
system in the sunspot state probabilities. For SSE to matter, it suffices that the solutions to
this system - the state probabilities - are all strictly bounded away from zero. In this system
the matrix summarizes the agents’ asset demand first-order conditions and the adding-up
constraint of the state probabilities. The requirements that this matrix must be invertible,
and that the solutions must be strictly positive, implies a certain set of inequalities must
hold in every partition. I use these inequalities as ‘test expressions’.

In the case of n = 2 asset economies, I proceed by reductio ad absurdum and find that in
no partition of the parameter space is it possible to escape a contradiction if the assumptions
of invertibility of this matrix and strictly positive state probabilities are maintained. This
result hinges on my finding that the orderings of indirect utilities by state must be inverse
across the two agents.

In the more general case of n ≥ 3 asset economies, I assume invertibility of this matrix,
by appealing to the density of invertible matrices and my freedom to arbitrarily perturb the
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asset structure and agent risk aversion degree. I subsequently show that it is not possible
to create a contradiction of the assumption of invertibility of this matrix. This result hinges
on my finding that it is no longer possible, given orderings of indirect state utilities implied
by the particular partition parameters of even n − 1 agents, to determine the ordering of
indirect state utilities of the final agent.

I conclude that as n increases beyond 3, any randomly chosen economy becomes arbitrarily
close to some SSE that matters, implying that such economies essentially generically exhibit
SSE that matter. My approach makes it clear that Mas-Colell’s original conjecture was
wrong: if the state space is large, then SSE that matter are in the appropriate sense very
likely.

Section 2 lays out the model, in which, purely to ensure comparability of model and results,
I follow the notation of Hens (2000) and BF almost exactly. I collect most of the tedious
algebra in the appendices.

2 Model

Let there be a two-period economy without production. There are two real goods, 2 sunspot-
contingent assets and 3 sunspot states. Storage is assumed to be feasible and costless.
Consumption is restricted to the second period. The only uncertainty lies in this second
period in which any one of three sunspot-dependent states of nature, s = 1, 2, 3 may occur.
Let it be known by both of the two agents, labeled i = 1, 2 , that the probability of each
sunspot-state occurring is π(s) > 0 .

Spot markets for the two commodities, labeled x = 1, 2 , exist only in period 2. I set
good 2 as the numeraire of the economy. In period one only, there are spot markets for
two sunspot contingent labeled j = 1, 2 . Holdings by agent i of asset j are denoted yi

j

where both assets are in zero net supply. The two sunspot-contingent assets have different
pay-offs denominated in units of the real numeraire across the three states as follows, with
rows denoting states, and columns, assets:

V =

 0 1
b 0
c 0


By my definition of markets, prices for the two assets exist in period 1, denoted by (q, 1) ,
while prices for the two goods exist in period 2 in each of the three states, denoted by
p(s) = (p1(s), 1) , where I normalize prices relative to the numeraire good.

Each agent has endowments ωi , where ω1 = (1, 0)′ and ω2 = (0, 1)′ . Each agent has

Cobb-Douglas preferences ui(xi) = (xi
1)αi

(xi
2)1−αi

over the two goods, where α1 differs from
α2 . His risk aversion is characterized by a strictly concave and strictly monotonic increasing
transformation hi composed with his preferences. As a von Neumann-Morgenstern expected
utility maximizer, each agent thus attempts to maximize

U i(xi) =
3∑

s=1

π(s)hi ◦ ui(xi(s))

Supposing there were no sunspots, and given these assumptions on endowments and the
nature of the objective function, it is clear that the underlying deterministic economy has
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a unique equilibrium. With sunspots however, each agent must evaluate risky consumption
plans x ∈ R2×3

+ , and the agents’ decision problems are now to

max
xi, yi

(U i(xi)) subject to

the self-financing portfolio budget restriction

qyi
1
+ 1yi

2
≤ 0

and, where V (s) is row s of V , the goods budget restriction

p1(s)x
i
1
(s) + 1xi

2
(s) ≤ p1(s)ω

i
1
(s) + 1ωi

2
(s) + V (s)yi

At equilibrium the self-financing portfolio restriction will hold with equality, since the second
asset has a non-negative payoff vector and thus qyi

1
+1yi

2
= 0, while the asset market clearing

condition implies that for asset one, y1
1 = −y2

1 and identically for asset two.
Feasible aggregate consumption plans will require that in each state, consumptions of

both goods are less than or equal to the respective initial aggregate endowments (storage
is assumed to be feasible and costless). Clearly this will hold with equality at equilibrium
given preferences and goods.

An equilibrium in this sunspot economy is then, for each agent, a consumption plan across
the two goods and three states in period 2, as well as a first period asset demand across the
two assets. Equilibrium prices are an optimal asset price for the non-numeraire asset 1, as
well as correctly foreseen spot prices for the non-numeraire good 2 in each of the three states’
spot markets in period 2.

In the analysis that follows I find it more convenient to consider indirect utility in any state
as follows, although clearly the agents are maximizing expected utility in their stochastic
programs. Each agent’s indirect utility vi at prices p(s) and given income wi is denoted by
the function vi(p(s), wi(s)) . Each agent’s ex-post income is given by wi(s) = p(s)·ωi+V (s)yi

where yi is the vector consisting of each agents equilibrium asset holdings. I follow BF in
noting that each ex-post spot market has a unique equilibrium given the assumed preferences,
and simply index the functions h , g (and, below, their derivatives h′ and g′ by s ): h(s) ≡
h1 ◦v1(p(s), w1(s)) and g(s) ≡ h2 ◦v2(p(s), w2(s)) . It is understood that these functions are
evaluated at the appropriate arguments, not the state index s . I also write α1 as α and α2

as β .
I will need to identify certain equilibrium relationships between the various parameters,

so taking first-order conditions of the objective function yields the following equalities for
each of the two agents

π(1)qh′(1)/p1(1)α − π(2)bh′(2)/p1(2)α − π(3)ch′(3)/p1(3)α = 0

π(1)qg′(1)/p1(1)β − π(2)bg′(2)/p1(2)β − π(3)cg′(3)/p1(3)β = 0

while the necessity for the three state probabilities to add up to 1 yields

π(1) + π(2) + π(3) = 1

Combining these, BF obtain the following system of non-homogeneous linear equations
generated by the two asset demand equations and the vector of state probabilities summing
to one in the form A · π = (0 0 1)′ : qh′(1)/p1(1)α −bh′(2)/p1(2)α −ch′(3)/p1(3)α

qg′(1)/p1(1)β −bg′(2)/p1(2)β −cg′(3)/p1(3)β

1 1 1

  π(1)
π(2)
π(3)

 =

 0
0
1
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Simplifying this matrix, impose that the a11 and a21 elements of the A matrix are 1, in
view of the equivalence of expected utility up to an affine transformation yields 1 −bh′(2)/p1(2)α −ch′(3)/p1(3)α

1 −bg′(2)/p1(2)β −cg′(3)/p1(3)β

1 1 1

  π(1)
π(2)
π(3)

 =

 0
0
1


BF recognized that the existence of SSE that matter was equivalent to π >> 0 which

could only happen if all the 3 elements in the last column of A−1 were of the same sign.1 BF
were able to show that Hens’ (2000) particular numerical example was flawed by showing
that it could not produce this required equality in sign. However they explicitly left open
the possibility that some other constructive example could be evinced.

3 Mas-Colell is affirmed for 2 Asset Economies

I adapt and extend the linear algebraic technique used by BF, and apply a similar proof
methodology over the universe of two-asset economies parameterized such that there is a
unique fundamental equilibrium. I obtain six tests, derived from the non-singularity of A
and the requirement that π >> 0 , with three for positive determinant:

(1a) bc[(h′(2)/g′(2))(g′(3)/h′(3))] > bc[(p(3)/p(2))β−α]

(1b) c[(h′(3)/g′(3))(g′(1)/h′(1))] < c[(p(3)/p(1))α−β]

(1c) b[(h′(2)/g′(2))(g′(1)/h′(1))] > b[(p(2)/p(1))α−β]

with the inequalities in the other direction for the case of negative determinant. If an
economy fails at least one test in both groups, it cannot admit SSE.

I partition the universe of economies in the two-asset context into sixteen generic cases. In
the first eight cases, both sunspot-contingent payoffs b and c are positive, and I distinguish
only between whether α is less than or greater than β , whether for the sunspot-contingent
payoffs of the first asset b is less than or greater than c and whether y1 is positive or
negative.2 It cannot of course be zero, since no trade would imply the unique deterministic
equilibrium.

In the remaining eight cases, I have assumed without loss of generality that b is negative
and c is positive (since the state numbering is arbitrary, and since they cannot both be
negative or no rational agent would purchase that asset), and I distinguish again between
whether α is less than or greater than β , but now whether b+ q is less than or greater than
0 and again whether y1 is positive or negative.

1I am grateful to Professor Zame for pointing out that in this simple two agent case, it is clear that A must
be invertible. To see the economic reasons for this, assume there is collinearity in rows and/or columns.
Assume firstly collinearity in the columns, implying equality between them, and thus equal marginal utilities
for income by agent across states. But then SSE don’t ‘matter ’ and we’re done. On the other hand,
assume collinearity in rows, implying equality between them, and thus equal marginal rates of substitution
for income across agents. But then trade won’t occur, and neither will SSE, since differing consumptions by
state require asset trade.
2I follow both papers by expressing all equilibrium holdings of assets in terms of the single scalar y1 ≡ y1

1 ,
that is the amount of asset 1 demanded by agent 1. I can do this because the budget identity qyi

1 + yi
2 = 0

holds ∀i , and for the vectors of asset demands, yi , the clearing identity y1 = −y2 holds by assumption.
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I shall compute a series of relationships, which hold generically for any parameter values in
a particular partition of the parameter space, between ratios of the derivatives of the h and
g functions. I perform this in a series of steps, shown here for Case 2 of 16 in which α < β ,
b > c , and y1 < 0 . Appendix 2 contains detailed calculations for this and the other fifteen
cases.

I firstly derive the following orderings between good 1 state spot market prices p1(1) ≤
p1(3) ≤ p1(2) and the indirect utility to agent 1 in each of those states v1(2) ≤ v1(3) ≤ v1(1) .

Unfortunately, algebraic manipulation of the particular parameters in this partition will
not produce an unequivocal ordering of indirect utility to agent 2. I overcome this by observ-
ing that under SSE we have a multiplicity of competitive spot market equilibria, in which
Pareto-efficiency implies Lemma 1. The proof is relegated to Appendix 1.

Lemma 1. In the two agent, two good, three state economy, the orderings of indirect utilities
by state must be inverse across the two agents.

Thus the indirect utility to agent 2 are ordered v2(2) ≥ v2(3) ≥ v2(1) across the states.
Recall that the functions h and g are strictly increasing concave risk aversion transforma-
tions of the underlying utility functions, so the relationships between indirect utilities can
be ‘inverted’ to arrive at an ordering of first derivatives of h by state: h′(2) ≥ h′(3) ≥ h′(1)
and for g similarly g′(1) ≥ g′(3) ≥ g′(2) .

Now I test the orderings computed for Case 2 with the inequalities in one of the tests, e.g.
Test 1b: c[(h′(3)/g′(3))(g′(1)/h′(1))] < c[(p(3)/p(1))α−β] . I have (h′(3)/g′(3))(g′(1)/h′(1)) =
(h′(3)/h′(1))(g′(1)/g′(3)) ≥ 1 , but since the relevant price ratio is greater than one,

(p1(3)/p1(1))α−β ≤ 1 . The contradiction is clear, and it turns out in Case 2 we can exclude
SSE that matter. Similar results can be shown for the other fifteen cases (see Appendix 2
for the simple but tedious algebra).

In the two-asset case I’ve started with the assumption that SSE that matter do exist, and
then used economic reasoning to justify the non-singularity of the A matrix characterizing
the first-order conditions of the agents’ asset demands. The implications of non-singularity
were then shown to lead to a series of contradictions, establishing the following:

Proposition 1. Given a 2 asset economy with a unique deterministic economy, no partition
of the parameter space contains SSE that matter.

In the next section I show that this proof will not go through in the case of n ≥ 3 assets:
the critical point is that Lemma 1 fails to hold.

4 Mas-Colell is rejected for ≥ 3 Asset Economies

Hens, Mayer & Pilgrim (2004, p27-29) were the first to provide a simple constructive (com-
puter generated) example of a fully specified 3 asset economy, with a unique deterministic
equilibrium, nonetheless exhibiting sunspot equilibria that matter. This definitively falsified
Mas-Colell’s conjecture and is included in Appendix 4 for information.
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My contribution is instead to demonstrate that sunspot equilibria that matter will generically
exist in the ≥ 3 asset economy with a unique deterministic equilibrium. To prove that SSE
that matter do exist in the ≥ 3 asset case, I use a different but related device.

Firstly, I appeal to the continuity of the function mapping the A matrix entries to the
determinant, i.e. I appeal to the density of invertible matrices in the space of all matrices
of the appropriate size. Since I am allowed to choose the asset structure and the degree of
risk aversion of the agents, I can always arbitrarily perturb any given economy to reach a
close neighboring one which does exhibit an invertible A . Thus the following proof applies
to almost all economies parameterized in a particular partition of the parameter space.

In what follows I sketch a proof of the generic existence of such SSE for the case n = 3.
Proceeding exactly as before, I will create a non-homogeneous system of linear equations
where the first three represent solutions to the first-order conditions of optimal asset demand,
and the fourth one is an adding up constraint on the strictly positive state probabilities to
1. I will obtain a total of four inequalities in the case where the determinant is positive, and
another four inequalities running in the opposite direction, in the case where the determi-
nant is negative. Analogously to the n = 2 case, simple algebra produces a series of test
expressions to be validated in the appropriate parameter-space partition.

I now consider an arbitrary parameter-space partition and an arbitrary test expression as
an example, where f ′(2)/f ′(1) > 1 and g′(1)/g′(2) > 1 by virtue of the particular parameter
space partition, and the product (f ′(2)/f ′(1))(g′(1)/g′(2))(h′(2)/h′(1)) ought to be greater
than 1.

Then, for a particular economy in which the final ratio h′(2)/h′(1) is greater than 1, no
contradiction has been found to the requirements for strictly positive state probabilities.
However if this ratio is less than 1, than such a contradiction has been found, and in this
particular parameter space partition an SSE that matters exists.

Given the risk aversion transformation’s strict concavity and monotonicity, this is equiv-
alent to showing that v3(1)/v3(2) is indeterminate when compared to 1. That is, the third
agent’s ordering of indirect utilities by state is not uniquely determined. I claim that this
is indeed so: the only ordering that is explicitly ruled out by Pareto-efficiency in the state
spot market is an ordering identical to that of the first two agents. Contrary to the two
agent economy, in the three agent economy, knowledge of the orderings of indirect utility for
two of the three agents is insufficient to infer the ordering for the third economy as per the
following Lemma 2. While intuitive, I prove this lemma by constructive counter-example in
Appendix 3.

Lemma 2. In the three agent, three asset, three good, four state economy, the orderings of
indirect utilities by state for two of the agents do not necessarily imply a particular ordering
for the final agent.

By Lemma 2, it follows immediately that the ratio v3(1)/v3(2) could be greater or less
than 1. Thus the arbitrary test expression considered in the example above is not able to be
contradicted in that arbitrary parameter-space partition.

Recall that these test expressions are the only opportunities for an economy to fail to
exhibit SSE, since the other requirements for goods price positivity, asset price positivity,
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and ex-post income non-negativity (and thus ex-post consumption non-negativity) are able
to be satisfied for a continuum of economies in a given partition of the parameter space.3

Accordingly, an SSE that matters can be found in that particular arbitrary partition of the
parameter space. Generalizing this example to any partition of the parameter space of a 3
asset economy, and then generalizing the result to n -assets leads to the following proposition:

Proposition 2. Given a n ≥ 3 asset economy with a unique deterministic equilibrium, an
SSE that matters can be found in every partition of the parameter space.

Hence as n becomes larger than 3, any randomly chosen economy becomes arbitrarily
close to some SSE that matters, implying that such economies essentially generically exhibit
SSE that matter. These conclusions stands in contrast to Mas-Colell’s original intuition.
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Appendix 1: Proof of Lemma 1

Let the following ordering of state utility be given for agent 1, without loss of generality,
v1(1) > v1(2) for two arbitrary states, s = 1 2. By the assumed monotonicity of the utility
functions, it must be that for at least one of the goods, call it good 1 without loss of generality,
that the equilibrium allocation of that good 1 to agent 1 obeys the inequality x1

1(1) ≥ x1
1(2) .

Consumption existing only in this second period and the fixed total endowment implies that
for agent 2, x2

1(1) ≤ x2
1(2) must hold.

Two cases now pertain: either this inequality is in the same direction as the ranking of
indirect utilities for agent 2 namely v2(1) < v2(2) and I’m done, or in fact v2(1) > v2(2) .

Suppose, to obtain a contradiction, that v2(1) > v2(2) were true. This implies x2
2(1) >

x2
2(2) . In turn this implies x1

2(1) < x1
2(2) .

I now appeal to the equalization of marginal rates of substitution [MRS] within each spot
market by state. Let the marginal utilities for good 1 be in the numerator. Let the MRS for
agent 1 be equated to that of agent 2, without loss of generality, in state 1.

I claim that the computed state-by-state allocations would now prevent the MRS being
equalized in state 2. Note that in state 2 the allocation of good 1 to agent 1 fell compared to
state 1. This increases the numerator of his MRS. Similarly the denominator must decrease,
since the allocation of good 2 to agent 1 increased. Thus the MRS increases. However it
is easy to verify that the opposite effects occur for agent 2, thus decreasing his MRS. This
contradiction establishes the claim and the lemma.
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Appendix 2: Derivation of (Two-Asset Economy) Utility Orderings

Setting y1 = y1
1 [≡ θ in Hens (2000)] as the unique portfolio scalar corresponding to

Agent 1s holding of Asset 1 the following prices obtain (Hens 2000): p1(1) = [ (β−α)q1y1 +
β]/(1 − α) , p1(2) = [ (α − β)by1 + β]/(1 − α) , and p1(3) = [(α − β)cy1 + β]/(1 − α) .
Clearly p1(2) > p1(3) when p1(2) − p1(3) > 0 or when (b − c)(α − β)y1 > 0 . Similarly
p1(2) > p1(1) when p1(2)− p1(1) > 0 or when (b + q)(α− β)y1 > 0 . Finally p1(3) > p1(1)
when p1(3) − p1(1) > 0 or when (c + q)(α − β)y1 > 0 . The left hand side [LHS] of all of
these inequalities is positive if and only if an odd number of the LHS terms are positive.

Table A1: Price Inequalities by Parameter Region

Case p1(2) > p1(3) p1(2) > p1(1) p1(3) > p1(1)
#1 no no no
#2 yes yes yes
#3 yes no no
#4 no yes yes
#5 no yes yes
#6 no no no
#7 no yes yes
#8 yes no no
#9 yes no no
#10 no yes yes
#11 yes yes no
#12 no no yes
#13 no yes yes
#14 yes no no
#15 no no yes
#16 yes yes no

Combining these results yields the final table of price relationships across cases:

Table A2: Summary Table of Prices Relationships By Case

Case p1(3) ∼ p1(1) ∼ p1(2)
#1 p1(1) > p1(3) > p1(2)
#2 p1(2) > p1(3) > p1(1)
#3 p1(1) > p1(2) > p1(3)
#4 p1(3) > p1(2) > p1(1)
#5 p1(2) > p1(3) > p1(1)
#6 p1(1) > p1(3) > p1(2)
#7 p1(3) > p1(2) > p1(1)
#8 p1(1) > p1(2) > p1(3)
#9 p1(1) > p1(2) > p1(3)
#10 p1(3) > p1(2) > p1(1)
#11 p1(2) > p1(1) > p1(3)
#12 p1(3) > p1(1) > p1(2)
#13 p1(3) > p1(2) > p1(1)
#14 p1(1) > p1(2) > p1(3)
#15 p1(3) > p1(1) > p1(2)
#16 p1(2) > p1(1) > p1(3)
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I will now derive the orderings of ex-post income in Table A3. Recall that the ex-post
income to agent i in state s was wi(s) = p(s) · ωi + V (s) · yi , where p(s) = [p1(s), ], 1] ∀s .
Recall that yi = [yi

1, yi
2] can be re-written for Agent 1 as y1 = [y1

1, y1
2] = [y1

1, −qy1
1] , since

the budget identity qyi
1 + yi

2 = 0 holds ∀i , and as y2 = [y2
1, y2

2] = [−y1
1, qy1

1] since the
additional budget identity y1 = −y2 holds as well. I write y1 for y1

1 .

Table A3: Ex-Post Incomes by Agent and by State

p(s) ωi V (s) yi Income

w1(1) [p1(1), 1] [1, 0]T [0, 1] [y1, −qy1]T p1(1)− qy1

w1(2) [p1(2), 1] [1, 0]T [b, 0] [y1, −qy1]T p1(2) + by1

w1(3) [p1(3), 1] [1, 0]T [c, 0] [[y1, −qy1]T p1(3) + cy1

w2(1) [p1(1), 1] [0, 1]T [0, 1] [−y1, qy1]T 1 + qy1

w2(2) [p1(2), 1] [0, 1]T [b, 0] [−y1, qy1]T 1− by1

w2(3) [p1(3), 1] [0, 1]T [c, 0] [−y1, qy1]T 1− cy1

Turning to the derivation of indirect utility ratio relationships, I follow BF, who write the
indirect utilities vi(p(s), wi(s)) are v1(p(s), w1(s)) = αα(1− α)1−αw1(s)/p1(s)

α and a sim-
ilar expression for v2(p(s), w2(s)) = ββ(1− β)1−βw2(s)/p1(s)

β . For my purposes, purely the
ratios of state-dependent indirect utilities for the same Agent are of concern, so I will dispense
with calculating the Cobb Douglas parameter expressions αα(1 − α)1−α and ββ(1 − β)1−β

since they clearly cancel through.

Table A4: Ratio of State-Dependent Indirect Utilities

Computed Expression
v1(1)/v1(3) = (p1(1)− qy1)/(p1(3) + cy1)(p1(3)/p1(1))α

v1(1)/v1(2) = (p1(1)− qy1)/(p1(2) + by1)(p1(2)/p1(1))α

v1(2)/v1(3) = (p1(2) + by1)/(p1(3) + cy1)(p1(3)/p1(2))α

v2(1)/v2(3) = (1 + qy1)/(1− cy1)(p1(3)/p1(1))β

v2(1)/v2(2) = (1 + qy1)/(1− by1)(p1(2)/p1(1))β

v2(2)/v2(3) = (1− by1)/(1− cy1)(p1(3)/p1(2))β

My ultimate aim, in whichever case this is feasible, is to arrive at an expression such as:
v1(1)/v1(2) = (p1(1)− qy1)/(p1(3) + cy1)(p1(3)/p1(1))α < (p1(1)− qy1)/(p1(3) + cy1) < 1 , in
other words, an unequivocal bound with respect to the scalar 1.

I work on this in three steps, firstly looking at the final prices ratio terms, then looking
to see whether terms of the type (p1(1) − qy1)/(p1(3) + cy1) are bigger or less than 1, and
then in the third step seeing if there are unequivocal chains of inequalities. I summarize the
three relevant ratios p1(3)/p1(1), p1(2)/p1(1) and p1(3)/p1(2) in Table A5.
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Table A5: Good 1 State Price Ratios

Case p1(3)/p1(1) p1(2)/p1(1) p1(3)/p1(2)
#1 < 1 < 1 > 1
#2 > 1 > 1 < 1
#3 < 1 < 1 < 1
#4 > 1 > 1 > 1
#5 > 1 > 1 < 1
#6 < 1 < 1 > 1
#7 > 1 > 1 > 1
#8 < 1 < 1 < 1
#9 < 1 < 1 < 1
#10 > 1 > 1 > 1
#11 < 1 > 1 < 1
#12 > 1 < 1 > 1
#13 > 1 > 1 > 1
#14 < 1 < 1 < 1
#15 > 1 < 1 > 1
#16 < 1 > 1 < 1

With these relationships in hand I can state, for example, that in Case #1: v1(1)/v1(3) =
(p1(1)−qy1)/(p1(3)+cy1)(p1(3)/p1(1))

α < (p1(1)−qy1)/(p1(3)+cy1) , since (p1(3)/p1(1))α <
1 .

Continuing with this method, I fill in the case-by-case cells in Table A6, writing an in-
equality sign to indicate that the indirect utility ratio on the LHS is less than or greater the
term on the RHS of the expression in Table A4.

Table A6: Indirect Utilities Ratios Inequalities

Case v1(1)
v1(3)

∼ p1(1)−qy1

p1(3)+cy1

v1(1)
v1(2)

∼ p1(1)−qy1

p1(2)+by1

v1(2)
v1(3)

∼ p1(2)+by1

p1(3)+cy1

v2(1)
v2(3)

∼ 1+qy1

1−cy1

v2(1)
v2(2)

∼ 1+qy1

1−by1

v2(2)
v2(3)

∼ 1−by1

1−cy1

#1 < < > < < >
#2 > > < > > <
#3 < < < < < <
#4 > > > > > >
#5 > > < > > <
#6 < < > < < >
#7 > > > > > >
#8 < < < < < <
#9 < < < < < <
#10 > > > > > >
#11 < > < < > <
#12 > < > > < >
#13 > > > > > >
#14 < < < < < <
#15 > < > > < >
#16 < > < < > <
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My next step in Table A7 is to investigate for which of the sixteen generic cases the RHS
of the expressions in Table A6 are bigger or smaller than 1.

Table A7: Inequalities in Table A6: RHS Relative Magnitude

• v1(1)/v1(3) . The ratio (p1(1)− qy1)/(p1(3) + cy1) > 1 whenever (p1(1)− qy1)− (p1(3) +
cy1) > 0 . This holds whenever (β − α− 1)(q + c)y1 > 0. In #1 through #8, the first term
is negative, the second positive, so we need y1 < 0 which holds only in cases #2, 4, 6 and
8. In #9 through #16 the first is negative, the second positive, and y1 < 0 holds in #10,
12, 14 and 16.

• v1(1)/v1(2) . The ratio (p1(1)− qy1)/(p1(2) + by1) > 1 whenever (p1(1)− qy1)− (p1(2) +
by1) > 0 . This holds whenever (β −α− 1)(q + b)y1 > 0 . In #1 through #8, the first term
is negative, the second positive, so we need y1 < 0 which holds only in #1, 3, 5 and 7. In
#9 through #16 on the other hand, we need (b + q) and y1 to be opposite in sign. This
holds in #10, 11, 14 and 15.

• v1(2)/v1(3) . The ratio (p1(2) + by1)/(p1(3) + cy1) > 1 whenever (p1(2) + by1)− (p1(3) +
cy1) > 0 . This holds whenever (1−β)(b−c)y1 > 0 . In #1 through #8, this holds whenever
b− c and y1 are of the same sign, which holds in #1, 4, 5 and 8. In #9 through #16 we
need y1 to be negative since b− c is negative. This holds in #10, 12, 14 and 16.

• v2(1)/v2(3) . The ratio (1 + qy1]/[1− cy1) > 1 whenever (1 + qy1)− (1− cy1) > 0 . This
holds whenever (q + c)y1 > 0 . In #1 through #8, the first term is positive, so y1 > 0
suffices and this holds in cases #1, 3, 5 and 7. In #9 through #16 we need y1 > 0 , which
holds in #9, 11, 13 and 15.

• v2(1)/v2(2) . The ratio (1 + qy1]/[1 − by1) > 1 whenever (1 + qy1) − (1 − by1) > 0 . This
holds whenever (q + b)y1 > 0 . In #1 through #8, the first term is positive, so it suffices
for y1 > 0 as in #1, 3, 5 and 7. In #9 through #16 we require both to have the same sign,
which holds in #9, 12, 13 and 16.

• v2(2)/v2(3) . The ratio (1 − by1]/[1 − cy1) > 1 whenever (1 − by1) − (1 − cy1) > 0 . This
holds whenever (c−b)y1 > 0 . In #1 through #8, this holds whenever (b−c) and y1 are of
opposite sign which holds in #2, 3, 6 and 7. In #9 through #16 the first term is positive,
so we require y1 > 0 , which holds in #9, 11, 13 and 15.
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My final step is to see when the ratios of state-dependent indirect utilities are unequivo-
cally > or < 1 . In the Table A8 below, ‘na’ means not available, and represents instances
where, for example in Case #1, fourth column, v2(1)/v2(3) < [1 + qy1]/[1− cy1] > 1 , which
is of little use in bounding v2(1)/v2(3) in any direction away from 1.

Table A8: Cases for which Unequivocal Chains of Inequalities Involving Utilities Exist

Case v1(1)
v1(3)

v1(1)
v1(2)

v1(2)
v1(3)

v2(1)
v2(3)

v2(1)
v2(2)

v2(2)
v2(3)

#1 < 1 < 1 > 1 na na na
#2 > 1 > 1 < 1 na na na
#3 < 1 > 1 < 1 na na na
#4 > 1 > 1 > 1 na na na
#5 na na na > 1 > 1 < 1
#6 na na na < 1 < 1 > 1
#7 na na na > 1 > 1 > 1
#8 na na na < 1 < 1 < 1
#9 < 1 < 1 < 1 na na na
#10 > 1 > 1 > 1 na na na
#11 < 1 > 1 < 1 na na na
#12 > 1 < 1 > 1 na na na
#13 na na na > 1 > 1 > 1
#14 na na na < 1 < 1 < 1
#15 na na na > 1 < 1 > 1
#16 na na na < 1 > 1 < 1

Combining these chains of inequalities naturally leads to the Table A9 below.

Table A9: Computed Goods Price and Indirect Utility Relationships by Case, Agent

Cases Price of Good 1 Agent 1′s Indirect Utility Agent 2′s Indirect Utility
#1 p1(1) > p1(3) > p1(2) v1(2) > v1(3) > v1(1) na
#2 p1(2) > p1(3) > p1(1) v1(1) > v1(3) > v1(2) na
#3 p1(1) > p1(2) > p1(3) v1(3) > v1(2) > v1(1) na
#4 p1(3) > p1(2) > p1(1) v1(1) > v1(2) > v1(3) na
#5 p1(2) > p1(3) > p1(1) na v2(1) > v2(3) > v2(2)
#6 p1(1) > p1(3) > p1(2) na v2(2) > v2(3) > v2(1)
#7 p1(3) > p1(2) > p1(1) na v2(1) > v2(2) > v2(3)
#8 p1(1) > p1(2) > p1(3) na v2(3) > v2(2) > v2(1)
#9 p1(1) > p1(2) > p1(3) v1(3) > v1(2) > v1(1) na
#10 p1(3) > p1(2) > p1(1) v1(1) > v1(2) > v1(3) na
#11 p1(2) > p1(1) > p1(3) v1(3) > v1(1) > v1(2) na
#12 p1(3) > p1(1) > p1(2) v1(2) > v1(1) > v1(3) na
#13 p1(3) > p1(2) > p1(1) na v2(1) > v2(2) > v2(3)
#14 p1(1) > p1(2) > p1(3) na v2(3) > v2(2) > v2(1)
#15 p1(3) > p1(1) > p1(2) na v2(2) > v2(1) > v2(3)
#16 p1(2) > p1(1) > p1(3) na v2(3) > v2(1) > v2(2)



14 MARCO D. HUESCH

Given the result of Lemma 1, I am justified in replacing the orderings in those cells in
which no conclusive chain of inequalities was found by the inverse of the other agent’s or-
dering. This leads to Table A10.

Table A10: Implied Indirect Utility Relationships by Case, Agent

Cases Agent 1′s Indirect Utility Agent 2′s Indirect Utility
#1 v1(2) > v1(3) > v1(1) v2(1) > v2(3) > v2(2)
#2 v1(1) > v1(3) > v1(2) v2(2) > v2(3) > v2(1)
#3 v1(3) > v1(2) > v1(1) v2(1) > v2(2) > v2(3)
#4 v1(1) > v1(2) > v1(3) v2(3) > v2(2) > v2(1)
#5 v1(2) > v1(3) > v1(1) v2(1) > v2(3) > v2(2)
#6 v1(1) > v1(3) > v1(2) v2(2) > v2(3) > v2(1)
#7 v1(3) > v1(2) > v1(1) v2(1) > v2(2) > v2(3)
#8 v1(1) > v1(2) > v1(3) v2(3) > v2(2) > v2(1)
#9 v1(3) > v1(2) > v1(1) v1(1) > v1(2) > v1(3)
#10 v1(1) > v1(2) > v1(3) v1(3) > v1(2) > v1(1)
#11 v1(3) > v1(1) > v1(2) v1(2) > v1(1) > v1(3)
#12 v1(2) > v1(1) > v1(3) v1(3) > v1(2) > v1(1)
#13 v1(3) > v1(2) > v1(1) v2(1) > v2(2) > v2(3)
#14 v1(1) > v1(2) > v1(3) v2(3) > v2(2) > v2(1)
#15 v1(3) > v1(1) > v1(2) v2(2) > v2(1) > v2(3)
#16 v1(2) > v1(1) > v1(3) v2(3) > v2(1) > v2(2)

Finally, given that the risk aversion transformation is strictly concave, the orderings of the
first derivatives is in the opposite direction to those of the indirect utilities, as shown in
Table A11.

Table A11: Risk Aversion Transformation Gradients Relationships by Case, Agent

Cases Agent 1′s Risk Aversion Gradients Agent 2′s Risk Aversion Gradients
#1 h′(1) ≥ h′(3) ≥ h′(2) g′(2) ≥ g′(3) ≥ g′(1)
#2 h′(2) ≥ h′(3) ≥ h′(1) g′(1) ≥ g′(3) ≥ g′(2)
#3 h′(1) ≥ h′(2) ≥ h′(3) g′(3) ≥ g′(2) ≥ g′(1)
#4 h′(3) ≥ h′(2) ≥ h′(1) g′(1) ≥ g′(2) ≥ g′(3)
#5 h′(1) ≥ h′(3) ≥ h′(2) g′(2) ≥ g′(3) ≥ g′(1)
#6 h′(2) ≥ h′(3) ≥ h′(1) g′(1) ≥ g′(3) ≥ g′(2)
#7 h′(1) ≥ h′(2) ≥ h′(3) g′(3) ≥ g′(2) ≥ g′(1)
#8 h′(3) ≥ h′(2) ≥ h′(1) g′(1) ≥ g′(2) ≥ g′(3)
#9 h′(1) ≥ h′(2) ≥ h′(3) g′(3) ≥ g′(2) ≥ g′(1)
#10 h′(3) ≥ h′(2) ≥ h′(1) g′(1) ≥ g′(2) ≥ g′(3)
#11 h′(2) ≥ h′(1) ≥ h′(3) g′(3) ≥ g′(1) ≥ g′(2)
#12 h′(3) ≥ h′(1) ≥ h′(2) g′(2) ≥ g′(1) ≥ g′(3)
#13 h′(1) ≥ h′(2) ≥ h′(3) g′(3) ≥ g′(2) ≥ g′(1)
#14 h′(3) ≥ h′(2) ≥ h′(1) g′(1) ≥ g′(2) ≥ g′(3)
#15 h′(2) ≥ h′(1) ≥ h′(3) g′(3) ≥ g′(1) ≥ g′(2)
#16 h′(3) ≥ h′(1) ≥ h′(2) g′(2) ≥ g′(1) ≥ g′(3)
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Finally, in Table A12, it is clearly seen that in every one of the eight cases, there is a
contradiction found whether the determinant is positive or negative. The highlighted results
identify the contradictions in each case.

Table A12: Contradictions Generated by Tests of the Eight Generic Cases in the Two-
Asset Economy

Case (12a) (12b) (12c) (13a) (13b) (13c)
1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 × × ×
6 × × ×
7 × × ×
8 × × ×
9 × × ×
10 × × ×
11 × × ×
12 × × ×
13 × × ×
14 × × ×
15 × × ×
16 × × ×

For example, let us consider the Test (9a) with Case #2 in the second row of Table 5.
Test (9a) requires bc[(h′(2)/h′(3))(g′(3)/g′(2))] > bc[((p1(3)/p1(2))β-α] , where bc > 0 . The
orderings computed earlier imply that ((p1(3)/p1(2))β-α ≤ 1β-α ≤ 1 since α < β within the
Case 2 partition. But (h′(2)/g′(2))(g′(3)/h′(3)) = (h′(2)/h′(3))(g′(3)/g′(2)) ≥ 1 given the
derivative orderings computed earlier. Clearly this is consistent with the particular test, and
we are not able to elicit a contradiction with this test (9a).

However with test (9b) we require c[(h′(3)/g′(3)) (g′(1)/h′(1))] < c[(p(3)/p(1))α−β] the
situation is different. Now (h′(3)/g′(3))(g′(1)/h′(1)) = (h′(3)/h′(1))(g′(1)/g′(3)) ≥ 1 , yet

(p1(3)/p1(1))α−β = (p1(3)/p1(1))−(β−α) ≤ 1 since the price ratio is greater than one. The
contradiction is clear.

Similar results can be computed for the other fifteen cases and in Table A12, it is clearly
seen that in every one of the sixteen cases, there is at least one contradiction found whether
the determinant is positive or negative.

The proposition is thus proved. Note well that I did not use the failure of Leontief’s
transfer paradox to exist, in this simple demonstration of the impossibility of the existence
of SSE in the two-asset context. The only tests I have used are ones which guarantee state
probability positivity given the parameters chosen for the case. This is clearly a more prim-
itive and certainly different condition than the existence of the transfer paradox.
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Appendix 3: Proof of Lemma 2

The proof of Lemma 1 relied on the unique determination of residual allocations to the re-
maining second agent, once the first agent’s allocations were determined. Intuitively this link
between indirect utilities and allocations is lost when more than two agents are considered.

To see that the equilibrium orderings of indirect utility across the sunspot states for two
agents do not uniquely determine the ordering of state utility for the third agent, it suffices
to consider the following counterexample. In this example, three agents, three goods each
in total supply of 1, and four equi-probable states exist. For convenience I focus on just the
first three states.

I show that knowledge of the orderings of indirect state utilities for two of the agents does
not conclusively determine the orderings of the third agent.

Let the agents’ have Cobb Douglas utility (and the identity risk aversion transforma-
tion) given by the following matrix, where rows correspond to agents and columns to the
parameters {α, β, γ} :

 0.34 0.31 0.35
0.31 0.35 0.34
0.35 0.34 0.31


The following state utilities represent equilibrium values, where rows correspond to agents

and columns to states 1 and 2:  0.217 0.524 0.212
0.289 0.285 0.488
0.495 0.192 0.301


Here I note that v1(2) > v1(1) > v1(3) , v2(3) > v2(1) > v2(2) , and v3(1) > v3(3) > v3(2) .

These utilities are supported by the following allocations, where rows correspond to agents
and columns to goods in state 1, 2, and 3 below: 0.220 0.200 0.231

0.265 0.300 0.300
0.515 0.500 0.469


 0.530 0.500 0.540

0.270 0.300 0.285
0.200 0.200 0.175


 0.210 0.200 0.225

0.465 0.500 0.497
0.325 0.300 0.278


To complete this counterexample, I need to show a different set of allocations which lead

to the same ordering of state utilities for agents 1 and 2, but a different ordering for agent 3.
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Indeed, I obtain the following state utilities

 0.318 0.537 0.110
0.389 0.280 0.402
0.295 0.184 0.489


where v1(2) > v1(1) > v1(3) , v2(3) > v2(1) > v2(2) , but v3(3) > v3(1) > v3(2) . These
utilities are supported by the following new allocations, where rows correspond to agents
and columns to goods in state 1, 2, and 3 below:

 0.320 0.300 0.331
0.365 0.400 0.400
0.315 0.300 0.269


 0.550 0.510 0.550

0.260 0.300 0.280
0.190 0.190 0.170


 0.114 0.100 0.117

0.378 0.410 0.417
0.508 0.490 0.467


This constructive counterexample4 establishes the lemma in the case of n = 3 agents and

goods. This clearly generalizes to all cases in which n ≥ 3 .

4I have omitted the results showing that in both examples, all respective marginal rates of substitution are
constructed to be equalized at the value of 1 across agents within in each state.
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Appendix 4: Constructive 3 Asset Counterexample

I provide a simple constructive (computer generated) example below of a fully specified
economy, due to Hens, Mayer & Pilgrim (2004, p27-29), with a unique deterministic equi-
librium, nonetheless exhibiting sunspot equilibria that matter.

Let there be three agents with Cobb Douglas utility functions

ui(xi) = exp
3∑

l=1

αi
l ln(xi

l)

with the following parameters: α1 = (0.4072, 0.5112, 0.0816) , α2 = (0.0269, 0.9301, 0.0430) ,
and α3 = (0.0088, 0.0019, 0.9892) . Following the same model structure as in the body of
my paper, let strictly concave transformations h apply to the underlying Cobb Douglas
utility functions. Below the degree of risk aversion at the equilibrium allocations is cal-
culated. Also suppose endowments initially are as follows: ω1 = (0.1093, 0.9045, 0.1008) ,
ω2 = (0.0715, 0.0672, 0.3781) , and ω3 = (0.8192, 0.0283, 0.5211) .

Let there be four sunspot states s = 1, 2, 3, 4 , and let the third good be the numeraire.
Let the following matrix represent the three assets payoffs in each of the four states:


410.0959 726.8543 384.2747
−19.8893 −35.3459 −18.6341
−386.5250 −685.5971 −362.1722

0.1150 0.8172 0.0893


In Hens et al’s computer generated example, the following equilibrium asset prices obtain,

q = (1.0108, 1.7917, 0.9472) , and Hens et al obtain the following matrix of agent asset
holdings at equilibrium, in which the ijth entry represents the ith asset and jth agent:

 0.9911 −0.1125 −0.8787
−0.0544 0.0777 −0.0233
−0.9549 −0.0269 0.9818


In each of the induced spot market equilibria (one for each state), there is a vector of

prices. In the following matrix, each row corresponds to one such vector, and the final entry
is 1, corresponding to the numeraire good:


0.4358 0.9623 1.0000
0.4324 0.9518 1.0000
0.4141 0.8954 1.0000
0.4638 1.0489 1.0000
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At each of these equilibria, there is an equilibrium allocation of the three goods across the
three agents. In the following matrices, corresponding to x1, x2, x3 respectively, the ijth

entry represents the ith state and jth good:
0.9525 0.5415 0.0832
0.9525 0.5432 0.0825
0.9527 0.5531 0.0791
0.9522 0.5285 0.0885




0.0291 0.4567 0.0204
0.0289 0.4550 0.0200
0.0278 0.4449 0.0184
0.0307 0.4698 0.0228




0.0184 0.0018 0.8965
0.0185 0.0018 0.8974
0.0194 0.0020 0.9025
0.0171 0.0017 0.8887


The penultimate description of the equilibria is the first derivative of the risk aversion

transformation h′ evaluated at the equilibrium allocation of goods, for each state. The
following matrix lists the value of h′ by agent and by state, where again the ijth entry
represents the ith state and jth agent:

0.6414 0.6519 0.9985
0.9980 0.6583 0.9985
0.6513 0.6930 0.9983
0.6282 0.5979 0.9986


Finally, the following matrix summarizes the total indirect utility by agent and by state,

where again the ijth entry represents the ith state and jth agent:
0.7176 0.4248 0.8651
0.7183 0.4229 0.8661
0.7225 0.4122 0.8714
0.7123 0.4388 0.8570


This constructive example thus demonstrates the non utility-equivalence of sunspot equi-

libria in the case in which the underlying economic fundamentals admit a unique equilibrium,
thus falsifying Mas-Colell’s conjecture.


