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Abstract

Financial economists usually assess market efficiency in absolute terms. This is a
shortcoming. One way of dealing with the relative efficiency of markets is to resort to the
efficiency interpretation provided by algorithmic complexity theory. This paper employs
such an approach in order to rank 36 stock exchanges and 37 individual company stocks in
terms of their relative efficiency.
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1. Introduction 
 
If price changes fully incorporate the expectations and information of all market 
participants such changes are unpredictable, and the market is said to be informationally 
efficient.  Stockmarkets are complex systems in that they convey information about a 
given stock in its price time series.  In an efficient market populated by rational agents if 
the price is properly anticipated then it must fluctuate randomly.  The stochastic process 
in question is a martingale that is, roughly, a probabilistic model of a fair game, one in 
which gains and losses cancel each other.  This is conventional wisdom in financial 
economics. 

After presenting an overview of market efficiency in their classic financial 
econometrics textbook, Campbell et al. (1997) observed that (p. 24) the notion of 
relative efficiency, i.e. the efficiency of one market measured against another may be a 
more useful concept than the all-or-nothing (absolute) view taken by much of the 
traditional market efficiency literature.  They made an analogy with physical systems 
that are usually given an efficiency rating based on the relative proportion of energy 
converted to work.  Rating a piston engine 60% efficient means that on average 60% of 
the energy contained in the engine’s fuel is used to turn the crankshaft, with the 
remaining 40% lost to other forms of work such as heat, light, or noise.  It makes no 
sense to test statistically whether the engine is perfectly efficient.  Similarly, market 
efficiency is an idealization that is unattainable, but that serves as a useful benchmark 
for measuring relative efficiency. 
 Indeed, one must regard the market efficient hypothesis as a limiting case.  In 
practice, prices reflect only the information for which the acquisition costs cannot 
outweigh the benefits.  There are also transaction costs.  And information may not be 
widespread, i.e. there can be inside traders.  Following the arrival of new information, 
market participants may diverge from each other in how they think it will impact prices; 
in other words, expectations are heterogeneous.  Residual inefficiencies are always 
present in actual markets.  These inefficiencies can introduce artificial patterns and thus 
redundant information in real-world financial price series.  Thus it is inappropriate to 
assess whether a given actual market is efficient or not.  This is not a yes-no question; 
rather, efficiency should measure to what extent one market departs from the idealized 
efficient market.  Relative efficiency is what really matters. 
 Algorithmic complexity theory makes a connection between the efficient market 
hypothesis and the unpredictable character of stock returns because a time series that 
has a dense amount of nonredundant information (such as that of the idealized efficient 
market) exhibits statistical features that are almost indistinguishable from those 
observed in a time series that is random (Mantegna and Stanley 2000).  As a result, 
measurements of the deviation from randomness provide a tool to assess the degree of 
efficiency of a given market.  Because algorithmic complexity theory cannot 
discriminate between trading on noise and trading on information, it detects no 
difference between a time series conveying a large amount of nonredundant information 
and a pure random process. 

This paper adopts such an approach.  Doing so, we will be able to rank both 
stock exchanges and individual company stocks in terms of their relative efficiency.  
We will find, for instance, that the S&P 500 is 99.1% efficient whereas the Colombo 
Stock Exchange of Sri Lanka is only 10.5% efficient.  This means that prices in the 
American stockmarket incorporate much more nonredundant information than its Sri 
Lankan counterpart does. 



The absolute efficiency of stockmarkets has been investigated in a huge number 
of papers (for a survey see Beechey et al. 2000), but we could track only two previous 
attempts similar to ours to deal with their relative efficiency.  Shmilovici et al. (2003) 
provide a test for the efficient market hypothesis (and not exactly for the relative 
efficiency of stockmarkets) that is based on the insight that compression of the time 
series of an efficient market is not possible since there are no patterns.  In that case, 
“stochastic complexity” is highest.  The stochastic complexity of a time series is a 
measure of the number of binary digits needed to represent and reproduce the 
information in the time series.  The authors use the Rissanen context tree algorithm to 
track patterns and then compress the series of both 13 stock exchange indices and the 
stock prices of the companies listed on the Tel-Aviv 25.  (Shmilovici et al. claim that 
the approach in Chen and Tan (1999) is one particular case of theirs.)  Section 2 will 
show our distinct perspective applied to a larger database as well as a simpler 
methodology that is based straightforwardly on the Lempel-Ziv (“deterministic”) 
complexity index. 
 The rest of this paper is organized as follows.  Section 2 discusses algorithmic 
complexity theory in more detail.  Section 3 presents data and performs analysis.  And 
Section 4 concludes. 
 

2. Lempel-Ziv algorithmic complexity 
 
Shannon entropy of information theory implies that a genuinely random series is the 
polar case where its expected information content is maximized, in which case there is 
maximum uncertainty and no redundancy in the series.  The algorithmic (Kolmogorov) 
complexity of a string is given by the length of the shortest computer program that can 
produce the string.  The shortest algorithm cannot be computable, however.  Yet there 
are several ways to circumvent this problem.  Lempel and Ziv (1976) suggest a useful 
measure that does not rely on the shortest algorithm.  (Rissanen context tree algorithm 
of stochastic complexity is another alternative.)  Kaspar and Schuster (1987) provide an 
easily calculable measure of the Lempel-Ziv index which runs as follows. 
 A program either inserts a new digit into the binary string 1, , nS s s= …  or copies 
the new digit to S .  The program then reconstructs the entire string up to the digit 

r ns s<  that has been newly inserted.  Digit rs  does not come from the substring 

1 1, , rs s −… ; otherwise, rs  could simply be copied from 1 1, , rs s −… .  To learn whether the 
rest of S  can be reconstructed by either simply copying or inserting new digits we take 

1rs + , and then check whether this digit belongs to one of the substrings of S , in which 
case it can be obtained by simply copying it from S .  If 1rs +  can indeed be copied the 
routine goes on until a new digit (which once again needs to be inserted) appears.  The 
number of newly inserted digits plus one (if the last copy step is not followed by 
inserting a digit) gives the complexity measure c  of the string S . 
 As an illustration, consider the following three strings of 10 binary digits each. 

A 0000000000 
B 0101010101 
C 0110001001 

At first sight one might correctly guess that A is less random so that A is less complex 
than B, which in turn is less complex than C.  The complexity index c  agrees with such 
an intuition.  For the string A one has only to insert the first zero and then rebuild the 
entire string by copying this digit; thus 2c = , where c  is the number of steps necessary 
to create a string.  For the string B one has to additionally insert digit 1 and then copy 



the substring 01 to reconstruct the entire string; thus 3c = .  For the string C one has to 
further insert 10 and 001, and then copy 001; thus 5c = . 

The complexity of a string grows with its length.  The genuinely random string 
asymptotically approaches its maximum complexity r  as its length n  grows following 
the rule 

2loglim n
nn

c r
→∞

= =  (Kaspar and Schuster 1987).  One may thus compute a positive 

finite normalized complexity index c
rLZ =  to get the complexity of a string relative to 

that of a genuinely random one.  As the string approaches infinite 1LZ → ; however, 
very complex series in practical finite experiments usually have an LZ a little bit above 
one.  The index also makes it possible to compare strings of distinct lengths as long as 
their lengths ≥  1,000.  Figure 1 shows a computer-generated pseudo-random string 
reaching the bulk of its convergence as it nears 1,000; from this threshold on there is 
slow asymptotical convergence toward an LZ index of one. 
 Here we consider sliding time windows, calculate the index for every window, 
and then get the average.  For instance, for a time series of 2,000 datapoints and a 
chosen time window of 1,000 observations we first compute the LZ index of the 
window from 1 to 1,000, then the index of the window from 2 to 1,001, and so on, up to 
the index of the window from 1,001 to 2000.  Then we take the average of the indices. 

As an illustration, Figure 2 shows three time series of 15,000 observations each, 
and the computed LZ indices of 14,000 sliding time windows of length 1,000.  Figure 2a 
displays the index evolution of the series of computer-generated pseudo-random 
numbers (average LZ index = 1.062622).  Figure 2b shows the index evolution of the 
series of the distances (“returns”) between the first 15,001 adjacent prime numbers 
(average LZ index = 1.014342).  And Figure 2c shows the index evolution of the series 
of natural logs of the distances between the first 15,001 adjacent primes (average LZ 
index = 1.025574).  The distances between adjacent primes are believed to be genuinely 
random, and this agrees with our computed indices in Figure 2.  Figure 3 shows the 
evolution of the LZ index for different parameter values of the logistic equation (1,000 
iterations with the starting value set at 0.25).  The solution to this equation is a series 
that depends on the value of its growth parameter.  The series gets stable for low values 
of the parameter, which means low complexity.  As the parameter grows the series 
behaves periodically, and then goes chaotic as the parameter approaches 4.  This 
increased complexity agrees with the LZ index evolution in Figure 3. 
 

3. Data and analysis 
 
We collected seven years of daily data from July 2000 to July 2007 (2,000 observations) 
from 36 stock exchange indices (Table 1) as well as 37 stock prices of companies listed 
on the NYSE, Nasdaq, and Bovespa (Table 2).  The source was Yahoo Finance and 
EconStats. 

Analysis was performed with simple returns of the raw series.  The return series 
were coded as ternary strings as follows (Shmilovici et al. 2003).  Assuming a stability 
basin b  for a return observation tρ , a datapoint td  of the ternary string was coded as 

0 if t td bρ= ≤ − , 1 if t td bρ= ≥ + , and 2 if t td b bρ= − < < + .  The series would have 
become binary if we had shrunk the stability basin to the attractor zero, i.e. 0b = ; yet 
we assumed 0.0025b =  following Shmilovici et al..  (We checked for the effects of 
changing b  only to realize that the rankings did not alter too much; yet future research 
may wish to consider a more sophisticated analysis in the choice of b .)  As an 
illustration, we compare five daily percentage returns of the S&P 500 with 0.25%.  



From 18 to 22 June 2007 the returns were, respectively, 0.652%, –0.1226%, 0.1737%, –
1.381%, and 0.6407%.  Thus the trading week was coded as 12201. 

Figure 3 shows the evolution of the index using 1,000 sliding windows for (a) 
the computer-generated pseudo-random series (average LZ = 1.0180), (b) returns of the 
Dow Jones (average LZ = 1.0201), (c) returns of the Shanghai Composite (average LZ 
index = 1.0032), and (d) returns of the Karachi 100 (average LZ index = 0.9918).  Table 
1 shows the average LZ index for the other stock exchanges.  As can be seen, all the 
series seem to be very complex.  They look more like the genuinely random series than 
the totally redundant, perfectly predictable series.  (Check Figure 3 again to see that a 
periodic series has an LZ well below one.)  Inspired by the experiment in Figure 1 we 
decided to consider 1LZ =  as a threshold in order to compare the relative efficiency of 
the series.  We counted the number of occurrences where the LZ index was caught 
above one, and then considered that as a measure of relative efficiency.  For the pseudo-
random series the 1LZ =  threshold was surpassed 98.8% of the times; thus we say that 
it is 98.8% efficient. 

The Dow Jones, Shanghai Composite, and Karachi 100 were found to be, 
respectively, 95.4%, 49.5%, and 23.7% efficient.  Note that the Dow Jones series nears 
the pseudo-random series.  Table 1 shows the measures for the other stock exchanges.  
As can be seen, the S&P 500 even beat the pseudo-random series.  Thus it is safe to 
conclude that this American stockmarket is almost efficient.  By contrast, the Colombo 
Stock Exchange was found to be only 10.5% efficient, which means that stock prices in 
that market convey some redundant information. 

The procedure above was repeated for selected company stock prices (Table 2).  
Figure 4 shows the evolution of the LZ index using 1,000 sliding windows for (a) Coca-
Cola (100% efficient), (b) Yahoo (99.65% efficient), (c) Vale (92.75% efficient), and 
(d) Aracruz (66.67% efficient). 
 

4. Conclusion 
 
By considering data from 36 stockmarket indices and 37 individual company stock 
prices, this paper puts forward one way to assess the relative efficiency of stockmarkets.  
This is made possible thanks to the efficiency interpretation provided by algorithmic 
complexity theory.  The latter makes a connection between the efficient market 
hypothesis and the unpredictable character of stock returns.  The idealized efficient 
market generates a time series that has a dense amount of nonredundant information, 
and thus presents statistical features similar to a genuinely random time series. 

Physical systems are usually given an efficiency rating based on the relative 
proportion of energy converted to work.  We suggest a similar efficiency rating based 
on the relative amount of nonredundant information conveyed by financial prices.  The 
price of the idealized efficient market conveys information that is fully nonredundant; 
this market is then said to be 100% efficient. 

Yet prices in real-world markets reflect only the information for which the 
acquisition costs cannot outweigh the benefits.  Also, there are transaction costs, inside 
trading, and heterogeneous expectations.  Since such residual inefficiencies are always 
present in actual markets one should not expect them to be efficient in absolute terms.  
Yet considering the random efficient market as a benchmark one can, for instance, say 
that the S&P 500 is 99.1% efficient whereas the Colombo Stock Exchange is only 
10.5% efficient.  This means that prices in the American stockmarket incorporate much 
more nonredundant information than its Sri Lankan counterpart does. 



 

Figure 1.  As its length increases, a typical, computer-generated pseudo-random string seems to 
asymptotically converge to an LZ index of one. 



Figure 2.  LZ index evolution of (a) a series of computer-generated pseudo-random numbers (average LZ 
index = 1.062622), (b) a series of the distances between the first 15,001 adjacent prime numbers (average 
LZ index = 1.014342), and (c) a series of natural logs of the distances between the first 15,001 adjacent 

primes (average LZ index = 1.025574). 



 
Figure 3.  LZ index for increased values of the logistic growth parameter (1,000 iterations with the 

starting value set at 0.25).  The series gets stable and then periodic for low values of the parameter (LZ 
complexity index well below one), and then goes chaotic as the parameter approaches 4.   



Figure 4.  LZ index evolution over 1,000 sliding windows for (a) a computer-generated pseudo-random 
series (average LZ = 1.0180), (b) returns of the Dow Jones (average LZ = 1.0201), (c) returns of the 

Shanghai Composite (average LZ index = 1.0032), and (d) returns of the Karachi 100 (average LZ index = 
0.9918). 



Figure 5.  Evolution of the LZ index using 1,000 sliding windows for (a) Coca-Cola (100% efficient), (b) 
Yahoo (99.65% efficient), (c) Vale (92.75% efficient), and (d) Aracruz (66.67% efficient). 



Table 1.  The relative efficiency of selected stockmarket indices 
 

Stock Exchange Country Average LZ Index Degree of Efficiency*, % 
S&P 500 USA 1.0232 99.1 
DAX 30 GER 1.0257 98.4 
Nikkei 225 JPN 1.0432 98.2 
All Ordinaries AUS 1.0246 97.8 
ATX AUT 1.0173 97.4 
Dow Jones USA 1.0201 95.4 
Korea Composite KOR 1.0163 94.9 
Tel-Aviv 100 ISR 1.0187 92.9 
Hang Seng HKG 1.0151 91.5 
Straits Times SIN 1.0153 90.3 
CAC 40 FRA 1.0138 88.4 
Helsinki General FIN 1.0149 88.4 
Kuala Lumpur SE MAS 1.0158 88 
FTSE 100 UK 1.0106 86.6 
Prague X CZE 1.0139 81 
Bel 20 BEL 1.0118 80.4 
IBC VEN 1.0110 79.9 
Madrid General ESP 1.0201 79.3 
Swiss Market SUI 1.0101 78.4 
Nasdaq Composite USA 1.0080 75.4 
Amsterdam EX NED 1.0100 74.4 
Bovespa BRA 1.0127 67.8 
IPC MEX 1.0060 64 
Merval ARG 1.0050 62.9 
Jakarta Composite IDN 1.0054 62.1 
Istanbul 100 TUR 1.0085 61.3 
Moscow Times RUS 1.0050 59.2 
Copenhagen DEN 1.0025 58.7 
Athex Composite GRE 1.0048 56.9 
Bombay SE IND 1.0010 53.3 
Taiwan Weighted TPE 1.0006 50.3 
Shanghai Composite CHN 1.0032 49.5 
Philippines PHI 0.9987 43.1 
Lima General PER 0.9903 37.9 
Karachi 100 PAK 0.9918 23.7 
Colombo SE SRI 0.9795 10.5 

                   * Hits above the threshold 1LZ =  



Table 2.  The relative efficiency of selected company stocks 
 

Company Stock Exchange Average LZ Index Degree of Efficiency*, % 
Amazon NYSE 1.0416 100 
Coca-Cola NYSE 1.0324 100 
P&G NYSE 1.0264 99.97 
Intel Nasdaq Composite 1.0292 99.92 
eBay Nasdaq Composite 1.0377 99.8 
General Electric NYSE 1.0274 99.66 
Yahoo Nasdaq Composite 1.0310 99.65 
Texaco NYSE 1.0264 99.46 
Cisco Nasdaq Composite 1.0357 99.44 
Petrobras Bovespa 1.0284 99.43 
Pfizer NYSE 1.0327 99.39 
HP NYSE 1.0298 99.38 
Microsoft Nasdaq Composite 1.0286 99.25 
Goldman Sachs NYSE 1.0311 98.78 
J&J NYSE 1.0275 98.73 
Unilever NYSE 1.0297 98.44 
Nissan Nasdaq Composite 1.0178 97.58 
Merrill Lynch NYSE 1.0279 97.33 
JP Morgan NYSE 1.0281 96.7 
Oracle Nasdaq Composite 1.0206 94.93 
Citigroup NYSE 1.0314 94.59 
Vale Bovespa 1.0193 92.75 
Embraer Bovespa 1.0258 91.59 
Itau Bovespa 1.0183 86.74 
FedEx NYSE 1.0186 86.6 
Bradesco Bovespa 1.0172 85.88 
Exxon NYSE 1.0161 85.56 
Ford NYSE 1.0152 84.26 
Marcopolo Bovespa 1.0072 77.36 
Americanas Bovespa 1.0136 76.68 
Ipiranga Bovespa 1.0111 76.55 
Toyota NYSE 1.0100 76.32 
Wal-Mart NYSE 1.0074 71.42 
Ambev Bovespa 1.0108 70.27 
Aracruz Bovespa 1.0048 66.67 
Duratex Bovespa 1.0048 65.17 
Celesc Bovespa 1.0005 50.03 

                * Hits above the threshold 1LZ =  
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