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Abstract 

 

Based on the framework of dynamic global game with positive network effects and 
one type of signal on the optimal timing of irreversible investment, this paper extends 
the analysis further to cover the case of dynamic global game with multiple signals. 
The new results from this paper indicate that when economic agents are facing with 
multiple types of irreversible investment alternatives and multiple independent signals, 
dynamic increasing differences are more likely to be violated than the case of single 
signal. The absence of dynamic increasing differences in this case will be more likely 
to induce economic agents to invest in the same time others do than in the case of 
single signal. Therefore, the new results reinforce the tendency towards multiple 
equilibria. The policy implication found by this paper suggests that the more imprecise 
about multiple independent public signals on past investment activities, the more 
likely investors from different sectors will tend to invest at the same time others do 
and/or to choose the same type of investment project others do due to the effects of 
self-fulfilling beliefs.  
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Abstract 

 
 Based on the framework of dynamic global game with positive network effects and one type of 
signal on the optimal timing of irreversible investment, this paper extends the analysis further to cover the 
case of dynamic global game with multiple signals.  
 The new results from this paper indicate that when economic agents are facing with multiple 
types of irreversible investment alternatives and multiple independent signals, dynamic increasing 
differences are more likely to be violated than the case of single signal. The absence of dynamic 
increasing differences in this case will be more likely to induce economic agents to invest in the same time 
others do than in the case of single signal. Therefore, the new results reinforce the tendency towards 
multiple equilibria.    
 The policy implication found by this paper suggests that the more imprecise about multiple 
independent public signals on past investment activities, the more likely investors from different sectors 
will tend to invest at the same time others do and/or to choose the same type of investment project others 
do due to the effects of self-fulfilling beliefs.      
  
1. Introduction 
 
 Multiple equilibria prevail whenever economic agents’ actions are complementary or capable of 
creating sufficient positive network effect. Policy makers then have to resolve an equilibrium selection 
problem first before any relevant public policies can be addressed.  Carlsson and van Damme (1993) 
developed an equilibrium selection theory for the case of two-player static coordination games of which 
being referred to as a global game. The framework was later extended to the case of dynamic global game 
with only one type of signal by Heidhues and Melissas (2006). The main contribution of dynamic global 
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game is to identify the market outcome out of multiple equilibria by iteratively eliminating all the other 
dominated strategies.  
 This paper extends the one-type signal dynamic global game model into a dynamic global game 
with two types of independent signals2. This is to complicate the matter further since players must not only 
choose their optimal investment period but also the type of investment project. One of the examples is the 
investment problem of choosing an appropriate housing type to be constructed on a piece of vacant land.  
The remainder of this paper is organized as follows. The model is introduced in the section 2. In section 3, 
conditions that dynamic increasing differences will be satisfied or violated are identified for the case of 
multiple independent signals. Conclusion is given in section 4. Proof is provided in the Appendix.   
 
2. The model 
 
 There are many risk neutral players who are denoted by i, where  0,1i . Each player has the 
opportunity to choose among two risky irreversible investment projects denoted by A and B. A player can 
invest at time one, at time two, or not to invest at all. If she invests in project A (B), she has to pay for 
fixed cost equal to  0 0A BF F   and a per-period operating cost  0 0A Bc c  . If a player invests in 
project A in period one, she gets utility from the whole lifetime of project A (B) equal to      
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Where  A B   is per-period return from project A (B).  ,A B    is a two dimensional vector of state 
of the world. Each of its elements is independently and randomly drawn from a uniform distribution along 
the entire real line.  1 1A Bn n  and  2 2A Bn n  denotes the mass of players who invest in project A (B) at 
time one  and two respectively, where 1 1 2 20 1A B A Bn n n n     .  is an interest rate, where

 0,1  . is a discount factor,  where  1 1   . If a player invests in project A (B) in period two 
instead, she gets 
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If player i decides not to invest in both periods, she gets zero.  
 All players have two private and imperfect signals concerning the two-dimensional state of the 
world denoted by  ,A B   . Player i’s first-period signal is 1 2 1

i i i
j j j js      , where j = A or B, 

and her second-period signal is 2 2
i i

j j js    where j = A or B.  The error s  2 2
i i

A B  are uniformly 
distributed in the population over the interval    ,A B A B       . Half of the population receives an 
error    1 1

i i
A B A B    , and half of the population receives an error    1 1

i i
A B A B      . Errors 

 1 1
i i
A B   and  2 2

i i
A B   are independently distributed in the population. In addition, errors  1 2

i i
A A   

and  1 2
i i
B B   are independently distributed in the population. Hence, a quarter of the population receives 

an error 1
i
A A  and 1

i
B B  . A quarter of the population receives an error 1

i
A A  and 1

i
B B   . A 

quarter of the population receives an error 1
i
A A   and 1

i
B B  . Finally, the last quarter of the 

population receives an error 1
i
A A   and 1

i
B B   . 

 

 

 
  Figure 1. An example of uniform distributions of signal A and signal B in both periods   
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 The first-period signal  1 1
i i
A Bs s  is constructed by adding noise to  2 2

i i
A Bs s as proposed in 

Heidhues and Melissas (2006).  In addition, since signals i
tAs and i

tBs are also independently distributed for 
t = 1 and 2, this implies that  
(i)    2 2 1 1 2| , , , | , , , .,i i i i i

j j l j l j jE s s s s E s for j l A B j l    , 
(ii)  2 2 2 2 2 2| , , | , , , , .,i i i i i i

j j j j j j j j l js U s s and E s s s for j l A B j l          , 
(iii) The first-period signals are also uniformly distributed around , ,j for j A B  . 
 The timing of the game is as follows: 
At time t = 0, nature chooses A  and B . All players receive their first-period signals. 
At time t = 1, all players simultaneously decide whether to invest or to wait. 
At time t = 2, player i observes whether    1 1

i i
A B A B     or    1 1

i i
A B A B      . Player i neither 

observes 1An  nor  1Bn . If she did not invest at time one, she decides whether or not to invest at time two. 
At time t = 3, All players receive their payoffs. 
 Each player’s time-one action space is denoted by D1, where D1 = {invest in A, invest in B, not 
invest}. Player i’s time-two action space is denoted by D2. Player i’s time-two action space is D2 = {invest 
in A, invest in B, not invest} if her time-one action equals {not invest}. On the other hand, player i’s time-
two action space is D2 = {not invest} if her time-one action either equals {invest in A} or {invest in B}. 
Player i’s time-one observable history is  1 1 1 1 1, | ,i i i i i

A B A BH s s s s   . Her observable history at 
time two is 

         1
2 1 2 1 2 1 1 2 1 1 2 1 1, , , | , , , , ,i i i i i i i i i i i i i

A A B B A B A A A A A B B B B BH s s s s s s s s s s s s D            . 

Let’s also denote player i’s strategy by  1 1 2 2, , ,i i i i i
A B A B     and denote strategy profile by  .          

 Next, define the expected payoff of a player who invests in the second period after getting signals 

2 2,i i
A Bs s , given the strategy profile  , as 
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   (3) 

 The expected payoff of a player who invests in the first period after getting signals 1 1,i i
A Bs s , given 

the strategy profile , is defined as 
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 Player i’s gain of waiting, given her first signals 1 1,i i
A Bs s  and  , is defined as 

       
     

1 1 1 1 1 1

1 1 1 1

, , max 0, , , max 0, , ,
4 4

max 0, , , max 0, , , .
4 4

i i i i i i
A B A A B B A A B B

i i i i
A A B B A A B B

W s s h s s h s s

h s s h s s

       

      

     

     
(5) 

 Hence, the optimal condition to invest in the first period for player i with signals 1 1,i i
A Bs s is as 

follow 
       1 1 1 1 1 1, , , , , , 0.i i i i i i

A B A B A Bg s s h s s W s s        (6) 
 
3. Dynamic increasing differences and uniqueness 
 The concept of dynamic increasing differences introduced by Heidhues and Melissas (2006) is 
applied to the case of multiple signals in this section.  
 The following analysis illustrates that under a very special case that dynamic increasing 
differences are satisfied for the case of dynamic global games with multiple signals.  
 Denote the difference in ex-post payoffs between investing in A in the first period and not 
investing (or keeping the option to invest alive) is defined as   

    1 1 2

1
, ,

1
i

A A A A AV a n n c F 

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where
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Hence,    is the ex-post value of the option to wait. Suppose that   
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, where 0A B    .  

 Then, the difference in ex-post payoffs between investing in A in the first period and not 
investing can be written as 
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and denote the difference in ex-post payoffs between investing in type A in the second period and not 
investing by 
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 Under the situation that (a) 0A B    ,  and (b) 0 1  , then the ex-post payoff functions 
shown in equations (7) to (9) exhibit dynamic increasing differences if and only if: 
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(iv)    1 1
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, ,
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 Condition (i) states that as more players invest in A in the second period, investing in the second 
period is preferred to not investing. Condition (ii) states that if more people invest in period 2, it does not 
make any difference either invest early or invest late. Condition (iii) states that if more people move from 
investing late to investing early, it does not make any difference between invest late and not invest at all. 
Condition (iv) states that investing early becomes more profitable. 
 In this special case it turns out that all the conditions of dynamic increasing differences are 
satisfied. Proposition 1 indicates that in this case there exists an essentially unique rationalizable outcome. 
 
Proposition 1. Given that (a) 0A B    , (b) 0 1  , and  (c) the ex-post payoff function of 
investing in A satisfies dynamic increasing differences. 
 Then there exists a unique symmetric switching equilibrium and hence an essentially unique 
rational outcome. (See the proof in Appendix 1) 
 
 A strategy profile  * * *

1 2,A A Ak k k in which *
,t Ak    (for t = 1, 2) is an equilibrium (strategy 

profile) in symmetric switching strategies if and only if it satisfies the following necessary equations  
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where 
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(ii)      * * * * *
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(iii)    * * * *

1 1 1 1, ,i i
A A A B B BW s k k W s k k   .     (12) 

 
 Condition (i) states that in equilibrium, returns from investing early in A equals the option value 
of A. Condition (ii) states that the returns from investing early in B must be lower to or equal the option 
value of B. Condition (iii) states that the option value of A is larger than the option value of B. Under 
situation, player i’s optimal investment decision is to invest in A in period one.    
 However, in general investors who have many different risky investment alternatives may realize 
that there are many more promising projects which will be feasible in the future than those projects in 
which they are going to invest now. For example, it might be worthwhile for a firm to wait for a brand-
new production technology which will be fully commercialized next year than to commit itself to the 
existing old technology by investing now.  
 Under such a situation, it is equivalent to say that equation (12) is no longer true, hence one has   
      * * * *

1 1 1 1, ,i i
A A A B B BW s k k W s k k       (13) 

 Therefore, the results from Proposition 1 are not applied to this case. This is because the 
difference in ex-post payoffs between investing in A in the first period and not investing as shown in 
equation (8) is no longer true. The new equation for the difference in ex-post payoffs between investing in 
A in the first period and not investing must be such that 
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is the highest ex-post value of the option to wait.
 

 Consequently, this inevitably leads to the situation in which the previous condition (ii) of 
dynamic increasing differences is no longer applied. The new applicable condition must be   



 (ii)  1

2

,
0

1

i
B

B

V a

n


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   
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 .  

 It can be seen that this new condition (ii) states that if more people invest in period 2, it turns out 
to be not profitable to invest early. Hence, it clearly violates the dynamic increasing differences. 
 In sum, in this case the absence of dynamic increasing differences implies that investors have 
more incentives to coordinate in such a way that they attempt to invest at the same time others do and 
invest in the same type of project chosen by others. Therefore, this can lead to multiple equilibria.3 
 
4. Conclusion 
 This paper extends the existing dynamic global game with single signal introduced by Heidhues 
and Melissas (2006) into the case in which investors can receive multiple independent signals. This 
extension is justified on the ground that investors often encounter many different risky and irreversible 
investment options.  
 Because of multiple signals, dynamic increasing differences tend to be violated more easily than 
the case of single signal. This is because investors may realize that there are many more promising 
projects which will be feasible in the near future than those projects in which they are going to invest now.     
Therefore, dynamic increasing differences can be violated and can lead to multiple equilibria.  
 The policy implication found by this paper suggests that the more imprecise about multiple 
independent public signals on past investment activities, the more likely investors from different sectors 
will tend to invest at the same time others do and to choose the same type of investment project others do 
due to the effects of self-fulfilling beliefs.      
 Future research may shed some light on a more general problem in which all the signals are, to 
some degree, correlated.    
 
 
 
 
 
 

                                          
3
 The main idea of the proof should be directly followed from the proof, for the case of single signal, in Heidhues and 

Melissas (2006) 



Appendix 1 
The Proof of Proposition 1 

 
 First note that since signal A and signal B are independently distribute, then one can replace the 
optimal condition to invest, says  in A, listed in equation (6), 

      1 1 1 1 1 1, , , , , , 0i i i i i i
A B A B A Bg s s h s s W s s     , 

by the following conditions   
 (i)      1 1 1, , , 0i i i

A A A A A Ag s h s W s     , 
 (ii)      1 1 1, , , 0i i i

B B B B B Bg s h s W s     ,  
 (iii)    1 1, ,i i

A A B BW s W s  . 

where 
 

       1 1 1, max 0, , max 0, ,
2 2

i i i
A A A A A A A AW s h s h s

         , 

and        1 1 1, max 0, , max 0, ,
2 2

i i i
B B B B B B B BW s h s h s

         . 

 
 Next, the rest of the proof proceeds as follows. For 0 1  , the difference in ex-post payoffs 
(of investing in A) between investing in the first period and investing in the second period must be 
positive, 

     1 1 2 1 2

1
, 0

1 1
i

A A A A A A A A A A AV a n n c F n n c F
   

 
   

                   
. 

 Next, given also that the difference in ex post payoffs between investing in A and B in the first 
period is defined as,  

      1 1 1 2 1 2

1 1
, 0

1 1
i

A A A A A B B B B BV a b n n c F n n c F   
 

   
                  

. 

 And given that the difference in ex post payoffs between investing in A and B in the second 
period is such that 0A B    , or 

   1 2 1 2 0
1 1A B A A A A A B B B B Bn n c F n n c F
    
 

   
                   

. 

 Hence, under the assumption that no other player invests in either period, or
 1 2 1 2 0A A B Bn n n n    , player i who did not invest in the first period and has signal, in the second 
period, which satisfied      2 21 1i i

A A A B B Bs c F s c F         would want to invest (in A). 
 Suppose player i has signal       1 11 1i i

A A A A B B B Bs c F s c F             in 
period one. From the assumption of the distribution of signals used by this study, player i can foresee that 



she would also want to invest in time two. Then she should decide to invest immediately in the first period 
to save the waiting cost.  
 Therefore, under the assumption that no other player invests in either period, player i will invest 
immediately once her first period signal is higher than some constant thresholds 1

1As . 
 This means that, in time one, dynamic increasing differences ensure that all players who receive 
signals 11

i
AAs s  will prefer investing early to investing late.  

 One the other hand, under the assumption that no other player invests in the first period, dynamic 
increasing differences ensure that all players, in time two, who receive signal  2 1i

A A As c F   will 
prefer investing (in A) to not investing. So player i should invest once her second period signal, 2

i
As , is 

higher than some constant thresholds 1
2 As , where  1

2 1A A As c F   .  

 In sum, there must be a vector of threshold defined as  1 11
1 2,A AAs s s . 

 As the number of early investors (in A) increase, dynamic increasing differences imply that 

waiting becomes less desirable. Then we can compute new thresholds vector  2 2 2
1 2,A A As s s  such that if  

2
11

i
AAs s , player i is indifferent between investing (in A) and waiting.    

 Repeating this procedure, one can get a decreasing sequence of threshold vectors. This sequence 
must converge to a symmetric switching equilibrium. 
  For players with sufficiently low signals the dominant strategy is not to invest, even if many other 
players invest. So one can find an increasing sequence of threshold vectors below which every player 
would not want to invest. This sequence also converges to a symmetric switching equilibrium. 
 To complete the proof, suppose the iterative elimination from above and below converge to 
different symmetric switching equilibria. Then in a lower equilibrium, a player, who receives a signal 
equal to the first-period threshold level (i.e., 1Ak ), is more optimistic about the fundamental than a player 
in a higher equilibrium. So a player in the lower equilibrium must expect less investment activity in the 
higher equilibrium. In the higher equilibrium, a player with a signal equal to the second-period threshold 
level (i.e., 2 Ak ) expects less investment activity only if less players have already invest in the first-period 
which means that 1 2A Ak k . This requires that 1 2A Ak k must have a higher value in the higher 
equilibrium. However, a player with a signal equal to 1Ak   expects a lower level of investment activity 
only if 2 Ak  is relatively higher. This implies that 1 2A Ak k must have a lower value in the higher 
equilibrium, which results in contradiction. 
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