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Abstract
We provide a methodology to study the role of distortions and mar-

ket failures on endogenous fluctuations. We extend the well-known
Woodford (1986) model to account for market distortions, introduc-
ing general specifications for three crucial functions: real rental cost
of capital, real wage and workers offer curve. The elasticities of these
three functions have a key role on local dynamics and, using them,
we are able to identify the several parameters’ configurations under
which local indeterminacy and bifurcations occur. Most of the spe-
cific market imperfections considered in the related literature become
particular cases of our general framework, and by comparing them we
show that several types of market distortions are equivalent in terms of
the local dynamics, sharing therefore the same indeterminacy mech-
anisms. We further provide examples of distortions leading to new
configurations. We also found that indeterminacy is possible with
arbitrarily small levels of distortions in real wage and/or in workers
offer curve, but it requires extremely high values for the elasticityof
substitution between inputs and for the elasticity of the labor supply
curve.
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1 Introduction

Using dynamic general equilibrium models, several papers have stressed the
role of specific market distortions, like externalities, imperfectly competitive
markets or balanced-budget policy rules, on the occurrence of local indeter-
minacy, bifurcations and endogenous cycles driven by expectations.1 Indeed,
market distortions, changing the behavior of agents or introducing a gap be-
tween private and aggregate supplies/demands, can revert the typical result
of uniqueness and determinacy, and engender mechanisms through which
multiplicity and indeterminacy of equilibria arise.

In this paper, our purpose is to provide a general study of the role of
distortions and market failures on local endogenous business cycles, without
specifying a priori their source. To provide an answer to this program, we
cannot consider a particular model based on some specific micro-foundations,
but we rather have to consider a model as general as possible, suitable to
encompass most of the distortions. Introducing general specifications for
product, capital and labor market imperfections, we will be able to identify
the main channels through which indeterminacy occurs, and compare the
role of different market imperfections on the emergence of indeterminacy
and endogenous fluctuations.

Although our methodology can be applied to any dynamic general equi-
librium model, the framework used in this paper is based on the well-known
Woodford (1986) model, which was later on developed by Grandmont et al.
(1998) to take into account inputs’ substitution. These two models consid-
ered a perfectly competitive economy with heterogeneous agents, workers,
who face finance constraints, and capitalists. We develop this set up, intro-
ducing imperfections in the three markets (product, capital, labor), hence
departing from the perfectly competitive case in several directions. First,
we assume that the real prices of production factors (real wage, real interest
rate) may no longer equal the corresponding marginal productivities at the
firm level, being instead defined by more general expressions able to encom-
pass imperfect competition, taxation or productive externalities. Second,
the intertemporal choice of workers between future consumption and leisure
is defined in a more complex way: the usual offer curve is replaced by a
more general function, the generalized offer curve, and private consumption
by a more general concept, effective consumption. The specification we use
will admit as particular cases, among others, models with externalities in

1In section 5, we refer to several of these works. For an overview and better under-
standing of the relation between indeterminacy, bifurcations and (endogenous) fluctuations
driven by volatile self fulfilling expectations, see, for instance, the survey of Benhabib and
R. Farmer (1999) and Grandmont et al. (1998).
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preferences due to aggregate consumption, aggregate leisure or government
spending, and labor market imperfections due to the presence of unions or
efficiency wages.

In order to analyze the occurrence of indeterminacy and bifurcations we
study the local stability properties of the equilibrium dynamics. As it is
well known, what matters for those properties are the elasticities of the equi-
librium dynamic equations.2 Therefore, the methodology used in this work
basically proposes a general formulation for these elasticities, that allows us
to represent most of the distortions affecting product, capital and labor mar-
kets as well as the standard perfectly competitive case. More specifically, we
define general expressions for the elasticities of three crucial functions that
characterize our two dimensional equilibrium dynamic system: the real in-
terest rate, the real wage or equivalently effective consumption per unit of
labor, and the generalized offer curve. Hence, our model admits as particular
cases several forms of market distortions already addressed in the literature,
but also covers other configurations, leading to new results on indeterminacy.
Moreover, it allows us to identify which specific market imperfections share
the same indeterminacy mechanisms. Our general framework can also be
used to obtain an overview on the indeterminacy results in the more com-
plex cases of several simultaneous specific distortions.

We analyze the local dynamic properties of equilibrium in the presence
of market imperfections, focusing on not too weak values of the elasticity of
capital-labor substitution. Indeed, weak values of this elasticity are not em-
pirically relevant.3 Also, in such a case, indeterminacy and endogenous cycles
already occur in the perfectly competitive Woodford (1986)-Grandmont et al.
(1998) models, whereas this is not possible when the wage bill is increasing in
labor, which requires a not too low substitution between inputs. Moreover, in
contrast to several existing works, we do not restrict our analysis to the case
of an infinitely elastic individual labor supply. Indeed, as we shall see, even
if under some types of distortions indeterminacy prevails for arbitrarily high
values of the labor supply elasticity, it will become clear that, under other
types of distortions, this result no longer holds. Therefore, by imposing an
infinitely elastic labor supply, one may fail in accounting for some relevant
phenomena and obtain a wrong idea of the implications of certain types of
distortions on the occurrence of indeterminacy.

When capital and labor are not weak substitutes, we show that, in con-
trast to the perfectly competitive economy, indeterminacy and endogenous

2Indeed, papers where specific forms of market imperfections were considered, obtained
new results because those imperfections introduced a modification of these elasticities with
respect to the perfectly competitive case.

3See Hamermesh
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fluctuations can emerge when there are market imperfections. Indetermi-
nacy requires both, a sufficiently high elasticity of capital-labor substitution
in production and a sufficiently high elasticity of the individual labor supply.4

However, the lower bounds for these elasticities are not the same for all types
and degrees of distortions. We also show that, depending on the market dis-
tortions considered, and as suggested above, indeterminacy may be ruled out
if the elasticity of the individual labor supply becomes arbitrarily large.

Considering first distortions that do not affect the generalized offer curve,
we show that, when capital and labor are not weak substitutes, indeterminacy
requires a response of effective consumption to a variation of labor greater
than the response of capital income to a variation of capital. Moreover,
market failures modifying effective consumption seem to be more relevant for
indeterminacy than those affecting the real interest rate, in particular if the
distortions in effective consumption depend positively on capital and labor.
It is also worth noticing that endogenous fluctuations cannot occur, when
inputs are sufficiently substitutes, if distortions on the real interest rate and
on the effective consumption depend negatively on capital and labor, whereas
on the contrary, indeterminacy may emerge when these distortions depend
positively on both capital and labor.

Let us now discuss our results when market imperfections also affect the
generalized offer curve. We show that distortions modifying the generalized
offer curve play a crucial role on local indeterminacy, since other configura-
tions, in terms of the required bounds for the elasticity of the individual labor
supply and capital-labor substitution, can then become relevant. Consider-
ing, for simplicity, that imperfections do not affect the real interest rate, we
then have only two types of distortions (one on the effective consumption and
another one on the generalized offer curve), both modifying only the equi-
librium condition of workers’ intertemporal arbitrage. We prove that, when
inputs are not weak substitutes, indeterminacy requires that the global de-
gree of distortions modifying effective consumption has to be larger than the
one modifying the generalized offer curve. Hence, while distortions on real
interest rate do not seem to play a major role on the occurrence of indetermi-
nacy when inputs are sufficiently substitutes, distortions on the generalized
offer curve that negatively depend on capital and labor and distortions on
the effective consumption that depend positively on capital and labor seem
to help the fulfillment of requirements for the possible occurrence of indeter-
minacy.

4These results were already obtained in other works that considered some specific forms
of distortions (See the papers referred in examples of Section 5). Here we we generalize
them to any form of specific distortion that fitts in our general formulation.

4



In a second step, we apply all these results to several examples. We start
with examples where market distortions do not affect the generalized offer
curve, as imperfect competition on the product market (Dos Santos Fer-
reira and Lloyd-Braga (2005), Jacobsen (1998), Kuhry (2001), Seegmuller
(2007a,b), Weder (2000a)), externalities in production (Barinci and Chéron
(2001), Benhabib and Farmer (1994), Cazzavillan (2001), Cazzavillan et al.
(1998)) and consumption preferences (Alonso-Carrera et al. (2005), Gali
(1994), Ljungqvist and Uhlig (2000), Weder (2000b)), balanced-budget rules
and variable tax rates (Dromel and Pintus (2004), Giannitsarou (2005), Guo
and Lansing (1998), Gokan (2005), Lloyd-Braga et al. (2006), Pintus (2003),
Schmitt-Grohé and Uribe (1997)). We conclude that with negative produc-
tive externalities or capital taxation, the steady state is never indetermi-
nate. We also prove that, in terms of local dynamics, labor income and con-
sumption taxation are equivalent to consumption externalities. Moreover,
we show that many models with product market imperfections character-
ized by business formation, mark-up variability and taste for variety can be
seen as particular cases of the model with positive externalities in the pro-
duction. Hence, even if the economic interpretation of all these examples are
different, they share a common channel through which indeterminacy occurs.
Indeterminacy requires a same lower bound for the elasticity of capital-labor
substitution, and this lower bound is only below unity for relatively impor-
tant distortions, i.e. sufficiently high positive externalities in production and
in consumption preferences, rates of taxation large enough or sufficiently
decreasing with their tax base.

Once examples with distortions affecting the offer curve are considered,
more of our results may be illustrated. These examples cover labor market
imperfections, like unemployment benefits and efficiency wages (Coimbra
(1999), Nakajima (2006), Grandmont (2006)) or unions (Lloyd-Braga and
Modesto (2006), Dufourt et al. (2006)), and also externalities in preferences,
due to aggregate labor or public spending for instance (Benhabib and Farmer
(2000), Weder (2004)). The conditions for indeterminacy are not the same
in all these examples. However, although indeterminacy still requires a lower
bound for the elasticity of capital-labor substitution, it can emerge under
a Cobb-Douglas technology with plausible degrees of distortions in most of
the examples. Finally, comparing these different examples, we note that,
from a local dynamic point of view, the model with unemployment benefits
and efficiency wages can be seen as a particular case of the model where the
disutility of labor is negatively affected by labor externalities.

The rest of the paper is organized as follows. In the next section, we
present the model and we define the respective perfect foresight equilibria.
In Section 3, we begin the analysis of the local dynamic properties of the
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model, using the geometrical method developed by Grandmont et al. (1998).
Our main results on the emergence of indeterminacy and bifurcations are
presented and discussed in Section 4. In Section 5 we present examples with
specific market distortions that are particular cases of our general framework,
and analyze them using it. In Section 6 we provide concluding remarks. Many
proofs and technical details are given in the Appendix.

2 The Model

The model developed in this paper extends the Woodford (1986) framework
to take into account market imperfections. To underline the implications of
imperfections on the equilibrium, we begin by a brief exposition of the one-
sector Woodford model with perfect competition.5 We present our frame-
work, developed in order to deal with market imperfections in a second step.

According to the perfectly competitive economy studied by Woodford
(1986) and Grandmont et al. (1998), in each period t ∈ N∗, a final good is
produced under a constant returns to scale technology AF (Kt−1, Lt), where
A > 0 is a scale parameter, F is a strictly increasing function, concave and
homogeneous of degree one in capital, K > 0, and labor, L > 0. From
profit maximization, the real interest rate ρt and the real wage ωt are respec-
tively equal to the marginal productivities of capital and labor , i.e. ρt =
AFK(Kt−1, Lt) ≡ Aρ(Kt−1/Lt) and ωt = AFL(Kt−1, Lt) ≡ Aω(Kt−1/Lt).

There are two types of infinite-lived consumers, workers and capitalists.
Both consume the final good, and can save through two assets, money and
productive capital. However, only workers supply labor and they are more
impatient than capitalists. Moreover, workers face a finance constraint which
prevents them from borrowing against their wage earnings. Focusing on
equilibria where the finance constraint is binding and capital is the asset
with the greatest return, we obtain as a result that only workers hold money
(they save all wage income in money), and capitalists hold the entire stock
of capital. Therefore, the program that a representative worker solves each
period t, can be summarized as:

Max U
(
Cw
t+1/B

)
− V (Lt) (1)

s.t.Pt+1Ct+1 = wtLt (2)

where Pt is the price of the final good, w the nominal wage, V (L) the disu-
tility of labor in L ∈ [0, L∗], Cw

t+1 ≥ 0 the worker’s consumption of next

5For more details, one can refer to Grandmont, Pintus and de Vilder (1998) and Wood-
ford (1986).
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period, B > 0 a scaling parameter, and U(x) the utility of consumption,
with −xU ′′(x)/U ′(x) < 1, (implying that consumption and leisure are gross
substitutes), where x ≡ Cw

t+1/B.
6 From the first order condition, one obtains

the intertemporal arbitrage condition for workers:

u
(
Cw
t+1/B

)
= v(Lt), (3)

where Ct+1 is given by (2) and u(x) = xU ′(x) and v(L) = LV ′(L). Since
consumption and leisure are gross substitutes, from (3) we can obtain a
function γ ≡ u−1 ◦ v, the offer curve, such that Cw

t+1/B = γ(Lt).
The representative capitalist maximizes the log-linear lifetime utility func-

tion
∑

∞

t=1 β
t lnCc

t , where Cc
t represents his consumption at period t and

β ∈ (0, 1) his subjective discount factor. Since he does not save through
money balances, he faces the budget constraint Cc

t + Kt = RtKt−1, where
Rt ≡ 1− δ+ rt/Pt is the real interest factor, rt the nominal interest rate and
δ ∈ (0, 1) the depreciation rate of capital. Solving the capitalist’s problem
we obtain the capital accumulation equation Kt = βRtKt−1.

In each period, equilibrium on the labor market requires wt/Pt = ωt and
equilibrium in the capital market requires that rt/Pt = ρt. Let M > 0
be the constant money supply. Since workers save wage income in money,
equilibrium in the money market requires M = wtLt for all t, which using
(2) leads to Cw

t+1 = ωt+1Lt+1.
7 This, together with the worker’s offer curve

and the solution of capitalist’s problem, motivates the following definition:

Definition 1 A perfect foresight intertemporal equilibrium of the economy
with perfect competition is a sequence (Kt−1, Lt) ∈ R

2
++, t = 1, 2, ...,∞, that

satisfies
Kt = β [1− δ + ρt]Kt−1 (4)

(1/B)ωt+1Lt+1 = γ (Lt) (5)

where ρt = AFK(Kt−1, Lt) = Aρ(Kt−1/Lt) and ωt = AFL(Kt−1, Lt) =
Aω(Kt−1/Lt).

The two dimensional dynamic system (4)-(5) is composed by the equilib-
rium capital accumulation equation determined by savings of capitalists and

6It is assumed that U
(
Cwt+1/B

)
is a continuous function of Cwt+1 ≥ 0, and Cr, with

r high enough, U ′ > 0, U ′′ ≤ 0 for Cwt+1 > 0. Also, V (l) is a continuous function for
[0, L∗], and Cr, with r high enough, V ′ > 0, V ′′ ≥ 0 for (0, L∗). We also assume that
limL→L∗V

′(L) = +∞, with L∗ (the worker’s endowment) possibly infinite.
7The good market equilibrium is ensured by Walras law.
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the workers’ intertemporal arbitrage condition between future consumption
and leisure.8

We now present our general framework with market imperfections, under-
lying the main differences with respect to the perfectly competitive economy.
Later on, we present examples of specific distortions that are particular cases
of our general framework, and we will see that many models with market
imperfections will provide microeconomic foundations for our general formu-
lation.

We propose the following definition for the intertemporal equilibrium of
an economy with market imperfections:

Definition 2 A perfect foresight intertemporal equilibrium of the economy
with market imperfections is a sequence (Kt−1, Lt) ∈ R

2
++, t = 1, 2, ...,∞,

that satisfies
Kt = β [1− δ + ̺t]Kt−1 (6)

(1/B)Ωt+1Lt+1 = Γt (7)

where ̺t ≡ A̺(Kt−1, Lt), Ωt ≡ AΩ(Kt−1, Lt) and Γt ≡ Γ(Kt−1, Lt).

We further assume that ̺(K,L), Ω(K,L) and Γ(K,L) satisfy:

Assumption 1 The functions ̺(K,L), Ω(K,L) and Γ(K,L) are positively
valued and differentiable as many times as needed for (K,L) ∈ R2++.

As in the case of the perfectly competitive economy, the dynamics of
this economy are governed by a two dimensional system. Equation (6) de-
scribes capital accumulation and equation (7) the intertemporal choice of
workers, where ̺t is the real interest rate relevant to capitalists’ decisions,
Γt a generalized offer curve, and ΩtLt effective consumption. Note that we
recover the perfectly competitive case (Definition 1) for ̺(K,L) = FK(K,L),
Ω(K,L) = FL(K,L) and Γ(K,L) = γ (L). However, with market distortions
̺t may not coincide with the perfectly competitive marginal productivity of
capital, ΩtLt may not coincide with the perfectly competitive wage bill and
Γt may differ from the private offer curve γ (Lt) used in Definition 1. Indeed,
we assume that ̺t, Ωt and Γt are given by general functions of Kt−1 and
Lt, without choosing a particular specification for them, so that they encom-
pass a large class of market imperfections. In many models characterized by

8Note that capital is a predetermined variable, whose value is determined by past
savings of capitalists (see (4), obtained from the solution of capitalist’s problem), while
labor is a non predetermined variable whose value depends on expectations for future
consumption (see (5), obtained from the worker’s offer curve).

8



market imperfections, the real interest rate and/or the real wage relevant to
the consumers’ decisions are no longer equal to the marginal productivities
of capital and labor used at the firm level. This will happen for example
in the cases of productive externalities, imperfect competition in the prod-
uct market or with consumption, labor or capital taxation (see the examples
in Section 5.1), which introduces a difference in the functions ̺, and/or Ω,
with respect to the one obtained in the perfectly competitive economy. The
other differences introduced affect only the intertemporal choice of workers.
First, with some market imperfections, like in the case of consumption or
government spending externalities influencing utility from consumption, the
relevant intertemporal choice of workers becomes a choice between future ef-
fective consumption9 (affecting the function Ω, that no longer coincides with
the wage) and leisure. Second, in the presence of some labor market imper-
fections, such as efficiency wages or unions, or with leisure externalities, the
private offer curve derived for the perfectly competitive economy is no longer
valid at the social level, affecting the function Γ (see the examples provided
in Section 5.2).

Since we will focus on local dynamics, market imperfections will play
a role on indeterminacy and on the occurrence of endogenous cycles be-
cause they modify the elasticities of these three functions with respect to
the perfect competition case. Assuming that a normalized steady state
(K∗, L∗) = (1, 1) always exists, as it is established in the Appendix through
a scaling procedure, we denote by ε̺,K, ε̺,L, εΩ,K, εΩ,L, εΓ,K and εΓ,L the
elasticities of ̺(K,L), Ω(K,L) and Γ(K,L) with respect to K and L eval-
uated at this steady state. In the perfectly competitive economy, since
̺(K,L) = FK(K,L), Ω(K,L) = FL(K,L) and Γ(K,L) = γ (L), these elas-
ticities are given by:

ε̺,K = −
1− s

σ
, ε̺,L =

1− s

σ

εΩ,K =
s

σ
, εΩ,L = −

s

σ
εΓ,K = 0 , εΓ,L = εγ,

(8)

where εγ − 1 � 0 represents the inverse of the elasticity of labor supply
at the individual level, s ∈ (0, 1) the elasticity of the production function
with respect to capital at the individual firm level, and σ > 0 the elasticity
of capital-labor substitution at the individual firm level, all evaluated at
the steady state. For more details see Grandmont et al. (1998). When

9By effective consumption we mean the argument of the utility for consumption, which
in the presence of consumption or public spending externalities on preferences will also
include them.

9



there are market imperfections these six elasticities have more complicated
expressions. In order to be able to take into account all the different types
of market distortions referred before, we assume that these elasticities are
modified with respect to the perfectly competitive case in the following way:

Assumption 2

ε̺,K = αK,K +
βK,K

σ
−
1− s

σ
, ε̺,L = αK,L +

βK,L

σ
+
1− s

σ

εΩ,K = αL,K +
βL,K

σ
+

s

σ
, εΩ,L = αL,L +

βL,L

σ
−

s

σ

εΓ,K = αΓ,K +
βΓ,K
σ

, εΓ,L = αΓ,L +
βΓ,L
σ
+ εγ

with αi,j ∈ R and βi,j ∈ R for i = K, L, Γ and j = K,L.

Note first that, when αi,j = βi,j = 0, with i = K,L,Γ and j = K,L, we
recover the elasticities under perfect competition (8), so that, in each equal-
ity, αi,j + βi,j/σ summarizes the role of market imperfections. Remark that
market imperfections add two new components to the different elasticities: a
first one through αi,j which corresponds to the level of market imperfections
when inputs are high substitutes in production (σ high) and a second one
through βi,j which provides a measure of the importance of market imper-
fections when inputs are weak substitutes in production (σ weak).

Let us also remark that, as we shall see, this specification for the elas-
ticities allow us to focus separately on only either labor market distortions
(which influence only the Ω and Γ functions), or capital market distortions
(which influence only the ̺ function) or output market distortions (which
affect only the Ω and ̺ functions).

In the rest of the paper, we consider that
∣∣βi,j

∣∣ < s < 1/2, for all
i = K,L,Γ and j = K,L. This assumption covers the most interesting
cases presented in the literature and is quite convenient from a technical
point of view, simplifying our analysis. This assumption is also a plausible
assumption, since empirical works usually show that market imperfections
are not too big.

The other assumptions on the parameters that we will consider in this
paper, and that we present below, are also supported by what we observe
in the real world. Empirical studies tell us that the wage bill is increasing
in labor. Without market imperfections this means that consumption is
increasing in labor. By analogy (and continuity) we choose to extend this
assumption to the case of imperfect competition. Therefore we assume that
effective consumption is increasing in labor, i.e. that 1 + ǫΩ,l > 0. Using
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Assumption 2, we can see that this implies αLL > −1 and σ > s−βLL
1+αLL

. Note
that this last condition covers the most empirical relevant situations and
collapses into σ > s in the absence of distortions.10 We also know from
empirical works that capital income (RK) is increasing in capital. Hence,
again by analogy and continuity, we keep this assumption in the case of
market imperfections, requiring that 1 + θǫ̺,K > 0, where θ ≡ 1 − β(1 −
δ) ∈ (0, 1). Therefore, using Assumption 2, this implies αK,K > −1/θ and

σ > θ(1−s−βKK)
1+θαKK

. We further assume that s > θ (1− s) and s < 1/2, which are

usual assumptions in Woodford economies.11 We also consider that s−βLL
1+αLL

>
θ(1−s−βKK)
1+θαKK

. This is not a restrictive assumption, since empirical values of θ

are rather small12, and it becomes s > θ (1− s) in the absence of market
imperfections.

We summarize all the conditions discussed above in the following As-
sumption:

Assumption 3 1. 0 < s < 1/2 and 0 < θ (1− s) < s.

2.
∣∣βi,j

∣∣ < s, for all i = K,L,Γ and j = K,L;

αLL > −1, αK,K > −1/θ and s−βLL
1+αLL

> θ(1−s−βKK)
1+θαKK

.

3. σ > s−βLL
1+αLL

.

3 Geometrical Method

To study the role of market imperfections on local indeterminacy and the
occurrence of endogenous cycles, we analyze the local stability properties
of the dynamic system purposed in Definition 2. In order to do that, we
first linearize the system (6) and (7) around the steady state (K∗, L∗) =
(1, 1).13 Then, we deduce the trace T and the determinantD of the associated
Jacobian matrix, which correspond respectively to the product and the sum
of the roots of the characteristic polynomial P (λ) ≡ λ2 − Tλ +D = 0. The
values taken by T and D depend on the elasticities of the functions ̺, Ω and
Γ, evaluated at the steady state, which are defined in terms of the relevant
parameters of the model within Assumption 2.14

10Empirical studies point to values of σ greater than 0.4. See Hamermesh () and Duffy
and Papageorgiou (2000).
11See, for instance, Grandmont and al. (1998), Cazzavillan et. al. (1998), Barinci and

Chéron (2001), Lloyd-Braga and Modesto (2006), Dufourt et al. (2006)
12Under usual parametrization, θ is around 0.0?.
13The existence of such a steady state is established in the Appendix.
14Some details are given in the Appendix.

11



To simplify our task, we assume in the rest of the paper that:

Assumption 4

(i) (βL,K + s) =
(1−s−βK,K)(s−βL,L)

(1−s+βK,L)
;

(ii) βΓ,K = −βΓ,L
1−s−βK,K
1−s+βK,L

.

This is equivalent to impose that the numerator and the denominator
of T and D linearly depend on the elasticity of capital-labor substitution
σ. This assumption is satisfied in models with no distortion and by all the
works considered in the literature and presented here as applications. Under
Assumption 4, T and D can then be written as:

T =
σ

σ(1 + αL,L)− (s− βL,L)
(εγ − 1) + T1 with

T1 = 1 + {σ[1 + αΓ,L + θ(αK,K(1 + αL,L)− αL,KαK,L)] + βΓ,L

− θ[(1 + αL,L)(1− s− βK,K) + αK,K(s− βL,L) + αL,K(1− s+ βK,L)

+ αK,L

(1− s− βK,K)(s− βL,L)

1− s+ βK,L

]}/{σ(1 + αL,L)− (s− βL,L)}

(9)

D =
σ(1 + θαK,K)− θ(1− s− βK,K)

σ(1 + αL,L)− (s− βL,L)
(εγ − 1) +D1 with

D1 = {σ[(1 + θαK,K)(1 + αΓ,L)− θαΓ,KαK,L] + βΓ,L(1 + θαK,K)

− θ[(1− s− βK,K)(1 + αΓ,L) + αΓ,K(1− s+ βK,L)

− αK,LβΓ,L
1− s− βK,K

1− s+ βK,L

]}/{σ(1 + αL,L)− (s− βL,L)}

(10)

The stability properties, defined by the location of the eigenvalues with
respect to the unit circle, depend on the values taken by T and D. As in
Grandmont, Pintus and de Vilder (1998), we proceed by analyzing the vari-
ations of T and D in the plane (T,D), as some parameters of the model are
made to continuously vary in their admissible range (see Figures 1-6). On
the line (AB), one eigenvalue is equal to −1, i.e. P (−1) ≡ 1 + T +D = 0.
On the line (AC), one eigenvalue is equal to 1, i.e. P (1) ≡ 1−T+D = 0. On
the segment [BC], the two eigenvalues are complex conjugates with a unit
modulus, i.e. D = 1 and |T | < 2. It can be deduced that the steady state
is a sink (asymptotically stable) when D < 1 and |T | < 1 + D, i.e., (T,D)
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is inside the triangle (ABC). It is a saddle-point when |1 +D| < |T |. Oth-
erwise, it is a source (locally unstable). Since only one variable (capital) is
predetermined, the steady state is locally indeterminate if and only if (T,D)
is inside the triangle (ABC), and is locally determinate otherwise. This geo-
metrical method is also convenient to analyze the occurrence of bifurcations,
i.e., the occurrence of a change in the stability properties when some parame-
ter, whose value is made to continuously vary, crosses some critical value.15

Considering, for instance, that εγ is running the interval [1,+∞), a trans-
critical bifurcation generically occurs when (T,D) crosses the line (AC), i.e.
when εγ crosses the critical value εγT .

16 When (T,D) crosses the line (AB),
εγ crossing the critical value εγF , a flip bifurcation generically occurs. When
(T,D) crosses the segment [BC] in its interior, εγ crossing the critical value
εγH , a Hopf bifurcation generically occurs.

17

We proceed now, precisely, by analyzing the variations of T and D in the
plane (T,D), as εγ is running the interval [1,+∞).

3.1 The half-line ∆

From (9) and (10), we see that, in the plane (T,D), the locus of points
(T (εγ), D(εγ)) for εγ ∈ [1,+∞) describes a half-line ∆, starting at (T1, D1)
when εγ = 1, and with a slope S equal to:

S = 1 + θαK,K − θ
1− s− βK,K

σ
(11)

Using (10) and (11), we immediately obtain the following Lemma:

15When the steady state is locally indeterminate, or when it undergoes a local bifurca-
tion, it is possible to construct stochastic and/or deterministic endogenous cycles, driven
by self-fulfilling volatile expectations, that stay in a neighborhood of the steady state. For
more details see for instance Grandmont, Pintus and de Vilder.
16Theoretically, when an eigenvalue crosses the value 1, either a transcritical, or a saddle

node or a pitchfork bifurcation occurs, all of them being associated with the existence of
multiple steady states. The case of a saddle node bifurcation (by which the existence of
the steady state under analysis disappears) is ruled out, since we apply our analysis to
(K∗, L∗) = (1, 1) which existence is persistent under the usual scaling procedure. However,
when εγ crosses the critical value εγT , a pitchfork bifurcation could instead occur, with the
appearance of two other steady states. Here, we assume that pitcfork bifurcations
are ruled out, as a mere exposition device. Notice that several works in related
literature have studied the existence of multiple steady states in parameterized
economies with constant elasticities ǫγ and σ. See, for instance, Cazzavillan
et al. (1998) and Khury (2001) . They found at most two steady states, which
rules out the case of a pitchfork bifurcations.
17The expressions of εγT , εγF and εγH are given in the Appendix.
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Lemma 1 Under Assumption 3, we have D′(εγ) > 0 and S > 0. Moreover,
when σ goes from (s− βLL)/(1 + αLL) to +∞, S increases to 1 + θαK,K.

Since D increases with εγ, the half-line ∆, which is positively sloped,
points upwards to the right, as εγ increases from 1 to +∞. To locate the
half-line ∆ in the plane (T,D), it is important to know, not only the level of
its slope S, but also the position of the starting point (T1, D1), which depends
on the level of different parameters and will be analyzed in detail in the next
sections. We start by discussing the behavior of (T1, D1) as σ varies.

3.2 The half-line ∆1

The locus of points (T1(σ), D1(σ)) obtained as σ decreases from +∞ to
(s− βLL)/(1 +αLL) describes a half-line ∆1, starting at (T1(+∞),D1(+∞))
determined by:

T1(+∞) = 1 +
1 + αΓ,L + θ(αK,K(1 + αL,L)− αL,KαK,L)

1 + αL,L

(12)

D1 (+∞) =
1 + αΓ,L + θ[αK,K(1 + αΓ,L)− αΓ,KαK,L]

1 + αL,L

(13)

In the rest of the paper, we focus on configurations where this starting
point (T1(+∞), D1(+∞)) is on the line (AC), i.e., satisfying 1− T1(+∞) +
D1(+∞) = 0.

18 As the reader can check later on in Section 5, most of the
distortions considered in the literature satisfy this condition. Using (12) and
(13) this leads to the following assumption:

Assumption 5 αK,K(αΓ,L−αL,L) = αK,L(αΓ,K−αL,K), i.e., 1+D1(+∞)−
T1(+∞) = 0.

Under this assumption the slope S1 of the half-line ∆1, is given by:

S1 =
D′

1(σ)

T ′1(σ)
= 1 + θ

I2
I4 − I3

, (14)

18Most of the existing papers have not considered simultaneously distortions on several
markets. In our model with only product market imperfections, we have αΓ,i = 0, αL,K =
αK,K and αL,L = αK,L; with only a capital market distortion, we have αΓ,i = αL,i = 0;
and with only labor market imperfections or externalities in preferences, we have αK,i = 0.
By direct inspection of (12) and (13), we see that 1−T1(+∞) +D1(+∞) = 0 in all these
cases. In this work, although we analyze simultaneously the different distortions, we still
suppose that this last equality is satisfied.
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with

I2 = −(1 + αL,L)[(1− s− βK,K) (αL,L − αΓ,L)

+αK,K(s− βL,L + βΓ,L) + (αL,K − αΓ,K)(1− s+ βK,L)

+αK,L

(1− s− βK,K)(s− βL,L + βΓ,L)

1− s+ βK,L

];

I4 − I3 = θ(1 + αL,L)[(1 + αL,L)(1− s− βK,K)

+αL,K(1− s+ βK,L)

+αK,L

(1− s− βK,K)(s− βL,L)

1− s+ βK,L

]

−(s− βL,L)[1 + αΓ,L − θαL,KαK,L]

−(1 + αL,L)βΓ,L. (15)

Note that the half-line ∆1, that starts on the line (AC), may point up-
wards or downwards, as σ decreases from +∞ to (s − βLL)/(1 + αLL), ac-
cording to whether D′

1 (σ) < 0 or D′

1 (σ) > 0. We proceed our analysis by
considering these two cases separately. Recall that the half-line ∆, for each
given value of σ, starts on the half-line ∆1 and, under Lemma 1, points
upwards as εγ increases, with a positive slope. As σ decreases from +∞,
the half-line ∆ becomes less steeper, but its starting point shifts upwards
or downwards along the half-line ∆1 depending on whether D′

1 (σ) < 0 or
D′

1 (σ) > 0.
19

4 Indeterminacy and bifurcations

4.1 Case 1: D′
1 (σ) < 0

We notice that D1(σ) is decreasing in σ under the following assumption:

Assumption 6 I4 − I3 + θI2 < 0.

Remark that this is the relevant case under perfect competition, for
which Assumptions 1-5 and Equations (9)-(10) apply with the restriction
αi,j = βi,j = 0, i = L,K,Γ and j = K,L. Indeed, under this restriction,
Assumption 3 is now read as σ > s > θ(1 − s). Hence, from (15), we have

19Note that the point (T,D) fall on the critical line (AC) when either σ = +∞ and
εγ = 1, or σ = +∞ and αKK = 0. Therefore, in these situations, an eigenvalue takes
the value 1, and, in view of the Hatman-Grobman theorem, we exclude from our local
dynamic analysis these two particular parameter’s configurations.
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I4− I3+ θI2 = θ(1− s)− s < 0. We further have I2 = 0, so that S1 = 1, and
D1 (+∞) = 1. This implies that the half-line ∆1 is on line (AC), starting at
point C and pointing upwards. The half-line ∆, which starts on the half-line
∆1, also points upwards with a slope S ∈ (0, 1), by Lemma 1. Hence, we can
easily see that the half-line ∆ is above (AB) and below (AC), which allows
us to recover the Grandmont et al. (1998) result:

Proposition 1 (Perfect Competition) Under Assumptions 1-3, for αi,j =
βi,j = 0 with i = L,K,Γ and j = K,L, the steady state is always a saddle.

This proposition underlines the fact that without market imperfections,
local indeterminacy is not possible for sufficiently high and plausible values
of σ. Indeed, indeterminacy requires D < 1. Since D increases with εγ (see
Lemma 1) the lowest value for D is D1(σ). Also, since in the case studied
in this section D1(σ) is decreasing, the lowest value for D1(σ) is D1(+∞).
Therefore, D1(+∞) < 1 is a necessary condition for indeterminacy. This
inequality is not met under perfect competition but can be satisfied in the
presence of market imperfections. Since we want to investigate the occurrence
of indeterminacy, we will impose it throughout the rest of this section. As
explained below, we will also assume that D1 (+∞) > −1:

Assumption 7

1. D1 (+∞) < 1, i.e., αL,L − αΓ,L > θ[αK,K(1 + αΓ,L)− αΓ,KαK,L];

2. D1 (+∞) > −1, i.e., θ[αK,K(1+αΓ,L)−αΓ,KαK,L] > − (2 + αL,L + αΓ,L).

The second inequality is obviously satisfied without distortions (αi,j =
βi,j = 0 for i = K,L,Γ and j = K,L) and, therefore, is also verified for values
of αi,j not arbitrarily large. Since we are not interested in unrealistically
strong market imperfections, this seems to be a reasonable assumption.

To analyze local dynamics, we need more information about the slope of
the ∆1 line. Using (14), we can make a classification according to the level
of the slope of ∆1 and obtain then four different relevant configurations:

- Configuration (i): S1 ∈ (0, 1) if I4 − I3 < −θI2 < 0;

- Configuration (ii): |S1| > 1 if:

(a) either I4 − I3 < 0 and I2 < 0, where S1 > 1;

(b) or 0 < I4 − I3 < −θI2/2, where S1 < −1;
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- Configuration (iii): S1 ∈ (−1, SB) if
0 < (1− SB) (I4 − I3) < −θI2 < 2 (I4 − I3)

- Configuration (iv): S1 ∈ (SB, 0) if
0 < I4 − I3 < −θI2 < (1− SB) (I4 − I3) ;

where we denote by SB < 0 the critical value of S1 such that the ∆1 line
goes through B given by:

SB = 1 +
4(1 + αL,L)

−3(1 + αL,L)− (1 + θαK,K)(1 + αΓ,L) + θαΓ,KαK,L

We now proceed with the full discussion of local stability properties and
bifurcations, analyzing the location of the half-line ∆ for each of these config-
urations. We begin by a more detailed presentation of configuration (i), and
continue with configurations (ii) − (iv). A relevant issue in the discussion
below is whether the slope of the half-line ∆ is higher or lower than 1. Using
(11), straightforward computations lead to the following Lemma:20

Lemma 2 Under Assumption 3, if αKK ≤ 0 then S < 1, with S tending
to 1 when σ tends to +∞ and αKK = 0, whereas if αKK > 0, then S > 1 if
and only if σ > σT , and S = 1 if and only if σ = σT , with σT ≡ (1 − s −
βKK)/αKK.

4.1.1 Configuration (i) (S1 ∈ (0, 1))

In this configuration, the half line ∆1 starts (for σ = +∞) on the line (AC)
between A and C (see Assumption 7), with a slope lower than 1, i.e., lower
than the slope of (AC), and points upwards, thereby lying on the right of
(AC). Two main cases can arise (see also Figure 1).

If αKK ≤ 0, then S < 1 (Lemma 2) and the half-line ∆ is entirely below
line (AC) and above line (AB). Hence, the steady state is a saddle.

If αKK > 0, there exists the critical value σT such that S = 1 (Lemma 2).
Hence, for σ ≤ σT , the same as before happens, since the half-line∆, starting
on a point at the right of (AC), has a slope S ≤ 1. However, if σ > σT , then
S > 1, and the half-line ∆ will cross (AC). Consider the definition of the
following critical value of σ:

20Note that, under Assumption 3, σT is only relevant for our analysis if σT >
s−βLL
1+αLL

, which requires that αKK is bounded above by a positive value, i.e., αKK <
(1+αLL)(1−s−βKK)

s−βLL
.
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Definition 3 σH2 is a critical value of σ such that the half-line ∆ goes
through the point (T,D) = (2, 1), i.e., goes through point C.21

For σ = +∞, the half-line ∆ starting on (AC) points upwards with a
slope higher than 1 for αKK > 0. By continuity, the critical value σH2, in this
configuration greater than σT , exists.

22 For σ > σH2 , ∆ crosses [BC] after
crossing (AC), i.e., the steady state is a saddle for 1 ≤ εγ < εγT , undergoes
a transcritical bifurcation at εγ = εγT , becomes a sink for εγT < εγ < εγH ,
undergoes a Hopf bifurcation at εγ = εγH , and becomes a source for εγ > εγH .
For σT < σ < σH2 , the Hopf bifurcation disappears and the steady state is
either a saddle (1 ≤ εγ < εγT ) or a source (εγ > εγT ).

These results can be summarized as follows:23

Proposition 2 (S1 ∈ (0, 1)) Under Assumptions 1-7, for I4 − I3 < −θI2 <
0, the following results for the steady state generically hold:

1. If αK,K ≤ 0: saddle.

2. If αK,K > 0, then:

(i) when s−βLL
1+αLL

< σ ≤ σT : saddle;

(ii) when σT < σ < σH2: saddle (1 ≤ εγ < εγT ) - transcritical (εγ =
εγT ) - source (εγ > εγT );

(iii) when σ > σH2: saddle (1 ≤ εγ < εγT ) - transcritical (εγ = εγT ) -
sink (εγT < εγ < εγH )- Hopf (εγ = εγH ) - source (εγ > εγH ).

4.1.2 Configuration (ii) (|S1| > 1)

Since the half-line ∆1 starts on the line (AC), between A and C, and points
upwards with a slope S1 strictly greater than 1 or strictly smaller than −1,
it crosses neither (AB), nor (AC). However, since ∆1 crosses the segment
[BC], we now give the following definition:

Definition 4 σH1 is the critical value of σ such that D1(σH1) = 1.
24

21In the Appendix, we show conditions for its existence and uniqueness. Recalling the
definitions of εγT and εγH , note that εγT = εγH for σ = σH2

.
22In the Appendix, we show the uniqueness of σH2

in the configuration under analysis.
23Of course, if αKK > (1+αLL)(1−s−βKK)

s−βLL
Proposition 2.2 (i) becomes irrelevant since

σT < s−βLL
1+αLL

.
24The expression for σH1

is given in the Appendix.
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As in the previous configuration, the analysis depends on the value of
αK,K. Consider first that αK,K ≤ 0, which means that S < 1. If σ ≤ σH1 ,
the half-line ∆ starts above [BC] and crosses (AC). For σ > σH1, (T1(σ),
D1(σ)) is inside (ABC). When σH1 < σ < σH2 , ∆ crosses first the segment
[BC] and then line (AC), above point C. For σ > σH2 , ∆ only crosses (AC)
below point C.

Assuming now that αK,K > 0, the critical value σT > 0 exists (see Lemma
1). We assume that σT is sufficiently big,

25 so that σT > σH1, i.e., the slope
of the half-line ∆ at σH1 is lower than 1. This is ensured by

26:

Assumption 8 If αK,K > 0, then −1− T1(σT ) < D1(σT ) < 1.

As before, when σ ≤ σH1 , (T1(σ), D1(σ)) is above or on the segment [BC]
and the half-line ∆ only crosses (AC). Now, to simplify the analysis, we
consider that:27

Assumption 9 If σ > σH1 and αK,K > 0, then εγH < εγT .

As a consequence, when σH1 < σ < σT , ∆ crosses first the segment [BC]
and then line (AC) above C. When σ ≥ σT , the half-line ∆ only crosses
[BC].

The results obtained under this configuration can be summarized in the
following proposition:

Proposition 3 (|S1| > 1) Under Assumptions 1-9, for either I4 − I3 < 0
and I2 < 0, or 0 < I4−I3 < −θI2/2, the following results for the steady state
generically hold:

1. If αK,K ≤ 0, then:

(i) when s−βLL
1+αLL

< σ ≤ σH1: source (1 ≤ εγ < εγT ) - transcritical
(εγ = εγT ) - saddle (εγ > εγT );

(ii) when σH1 < σ < σH2: sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH )
- source (εγH < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

25This assumption is also considered in Cazzavillan et al. (1998), see their Assumption
4.1. Remark also that for σ > σT we have that ρ is increasing in K (see Assumption 2),
which is at odds with empirical results. Hence, considering a high value for σT shrink the
range of values for σ that are less relevant.
26More precisely, Assumption 8 ensures that, for configurations (ii), (iii) and (iv), the

point (T1(σT ),D1(σT )) lies within the triangle (ABC) when αKK > 0.
27See Appendix 7.5 on the existence of σH2

. This condition is ensured, by assuming
that (32) is satisfied.
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(iii) when σ > σH2: sink (1 ≤ εγ < εγT ) - transcritical (εγ = εγT ) -
saddle (εγ > εγT ).

28

2. If αK,K > 0, then:

(i) when s−βLL
1+αLL

< σ ≤ σH1: source (1 ≤ εγ < εγT ) - transcritical
(εγ = εγT ) - saddle (εγ > εγT );

(ii) when σH1 < σ < σT : sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH )
- source (εγH < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(iii) when σ ≥ σT : sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH ) - source
(εγ > εγH ).

4.1.3 Configuration (iii) (S1 ∈ (−1, SB))

In this configuration the slope S1 is negative and greater than −1, and the
half-line∆1, that starts on (AC) and points upwards to the left, crosses (AB)
above point B. Let us then define the following critical value:

Definition 5 The critical value σF is defined by 1+D1(σF )+T1(σF ) = 0.
29

Consider first that αK,K ≤ 0, i.e., the slope of ∆ is always smaller or
equal to 1. When σ < σF , (T1(σ),D1(σ)) is below line (AB) and above
segment [BC]. Since the half-line ∆ points upwards it does not cross [BC],
but crosses (AB) before crossing (AC). When σF ≤ σ ≤ σH1 , (T1(σ), D1(σ))
is above (AB) and above [BC]. Then, ∆ only crosses (AC). When σ > σH1 ,
the point (T1(σ),D1(σ)) is inside the triangle (ABC). As in the previous
configuration, σH2 , as defined in Definition 3, is greater than σH1 . Therefore,
for σH1 ≤ σ < σH2 , the half-line ∆ crosses first [BC] and then (AC) above
C, and for σ > σH2 , the half-line ∆ only crosses (AC) below C.

Consider now that αK,K > 0. In this case, the critical value σT > 0 exists
and, under Assumption 8, we have σT > σH1 > σF . Therefore, when σ < σH1 ,
we obtain the same results as before. When σH1 < σ < σT , (T1(σ), D1(σ))
is inside the triangle (ABC) and, under Assumption 9, ∆ crosses first [BC],
and then (AC) above point C. When σ ≥ σT , S becomes greater than 1,
which means that ∆ only crosses [BC].

The following proposition gives the results under this configuration.

28Note that when σH2
does not exist (see the Appendix), case 1.(ii) applies for all

σ > σH1
and case 1.(iii) disappears.

29The expression for σF is given in the Appendix.
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Proposition 4 (S1 ∈ (−1, SB)) Under Assumptions 1-9, for 0 < (1 −
SB)(I4 − I3) < −θI2 < 2(I4 − I3), the following results for the steady state
generically hold:

1. If αK,K ≤ 0, then:

(i) when s−βLL
1+αLL

< σ < σF : saddle (1 ≤ εγ < εγF ) - flip (εγ = εγF )
- source (εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(ii) when σF ≤ σ ≤ σH1: source (1 ≤ εγ < εγT )- transcritical (εγ =
εγT ) - saddle (εγ > εγT );

(iii) when σH1 < σ < σH2: sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH )
- source (εγH < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(iv) when σ > σH2: sink (1 ≤ εγ < εγT )- transcritical (εγ = εγT ) -
saddle (εγ > εγT ).

30

2. If αK,K > 0, then:

(i) when s−βLL
1+αLL

< σ < σF : saddle (1 ≤ εγ < εγF ) - flip (εγ = εγF )
- source (εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(ii) when σF ≤ σ ≤ σH1: source (1 ≤ εγ < εγT )- transcritical (εγ =
εγT ) - saddle (εγ > εγT );

(iii) when σH1 < σ < σT : sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH )
- source (εγH < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(iv) when σ ≥ σT : sink (1 ≤ εγ < εγH )- Hopf (εγ = εγH ) - source
(εγ > εγH ).

4.1.4 Configuration (iv) (S1 ∈ (SB, 0))

In this configuration, the slope S1 is negative and greater than −1, and the
half line ∆1, that points upwards to the left, crosses line (AB) below point
B. In this configuration, a new critical value, σH3, becomes relevant:

30Note that when σH2
does not exist (see the Appendix), case 1.(iii) applies for all

σ > σH1
and case 1.(iv) disappears.
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Definition 6 σH3 is the critical value of σ such that the half line ∆ goes
through the point (T,D) = (−2, 1), i.e., goes through point B.31

We begin by assuming αK,K ≤ 0, which implies S smaller than 1. For
σ < σH3, ∆ starts on the left-side of (AB), crosses (AB) above B and (AC).
For σH3 < σ < σF , ∆ also starts on the left-side of (AB), but crosses (AB)
below B, the segment [BC], and (AC) above C. Recall that when σH2

exists, the ∆ line crosses point C (Definition 3). Then, for σF ≤ σ < σH2 ,
(T1(σ), D1(σ)) is now inside (ABC), and ∆ crosses [BC] and (AC) above C.
For σ > σH2 , (T1(σ), D1(σ)) is still inside (ABC) and ∆ crosses (AC) below
C.

We consider now the case where αK,K > 0. Since we assume that σT is
sufficiently big, we have that σT > σF (> σH3) (Assumption 8). Then, for
σ < σH3, the half-line∆ crosses (AB) above B and (AC). For σH3 < σ < σF ,
∆ crosses (AB) below B, the segment [BC] and (AC) above C (Assumption
9). For σF ≤ σ < σT , ∆ starts inside (ABC) with a slope smaller than 1.
Then, it crosses [BC] and (AC) above C. For σ ≥ σT , the slope S being
greater than 1, ∆ only crosses [BC].

The results obtained under this configuration are summarized in the fol-
lowing proposition:

Proposition 5 (S1 ∈ (SB, 0)) Under Assumptions 1-9, for 0 < I4 − I3 <
−θI2 < (1−SB)(I4−I3), the following results for the steady state generically
hold:

1. If αK,K ≤ 0, then:

(i) when s−βLL
1+αLL

< σ < σH3: saddle (1 ≤ εγ < εγF ) - flip (εγ = εγF )
- source (εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(ii) when σH3 < σ < σF : saddle (1 ≤ εγ < εγF ) - flip (εγ = εγF ) - sink
(εγF < εγ < εγH) - Hopf (εγ = εγH) - source (εγH < εγ < εγT ) -
transcritical (εγ = εγT ) - saddle (εγ > εγT );

(iii) when σF ≤ σ < σH2: sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH )
- source (εγH < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

31Recalling the definitions of εγF and εγH , note that εγF = εγH for σ = σH3
. In

the Appendix, we prove that in this configuration, there exists a unique critical value
σH3

∈ (σH1
, σF ) such that the half-line ∆ goes through point B and crosses [BC] on the

right of B for σ > σH3
.

22



(iv) when σ > σH2: sink (1 ≤ εγ < εγT ) - transcritical (εγ = εγT ) -
saddle (εγ > εγT ).

32

2. If αK,K > 0, then:

(i) when s−βLL
1+αLL

< σ < σH3: saddle (1 ≤ εγ < εγF )- flip (εγ = εγF )
- source (εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(ii) when σH3 < σ < σF : saddle (1 ≤ εγ < εγF ) - flip (εγ = εγF ) - sink
(εγF < εγ < εγH) - Hopf (εγ = εγH) - source (εγH < εγ < εγT ) -
transcritical (εγ = εγT ) - saddle (εγ > εγT );

(iii) when σF ≤ σ < σT : sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH )
- source (εγH < εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT );

(iv) when σ ≥ σT : sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH )- source
(εγ > εγH ).

4.2 Case 2: D′
1(σ) > 0

Since in this case D′

1(σ) > 0, we have:

Assumption 10 I4 − I3 + θI2 > 0.

Note that this case is not possible when the Γ function is not affected by
market imperfections, i.e. when αΓ,i = βΓ,i = 0.

33 Therefore, throughout this
section, distortions on the Γ function are required. Moreover, using (15), we
can easily see that the sign of I4−I3+θI2 is not strongly affected by αK,i and
βK,i, under θ small. Hence, to simplify the analysis, in the remainder of this
section we will not consider distortions on the ̺ function (αK,i = βK,i = 0).
Note that when αK,i = βK,i = 0, the condition D > T − 1 required for
indeterminacy becomes I2 < 0, i.e. αL,L−αΓ,L > αΓ,K−αL,K

34 Therefore we

32Note that when σH2
does not exist (see the Appendix), case 1.(iii) applies for all

σ > σF and case 1.(iv) disappears.
33Indeed, we then have I4−I3+θI2 = θ(1+αL,L)(1−s−βK,K)−(s−βL,L)(1+θαK,K),

which is always strictly negative under Assumption 3. Hence, Case 1 is the relevant one
when the Γ function is not affected by market imperfections.
34With αK,i = βK,i = 0, D > T − 1 becomes

θ (1− s) [(αL,L+αL,K)−(αΓ,L+αΓ,K)]−(ǫγ−1)
σ(1+αL,L)−(s−βL,L)

> 0. Since ǫγ − 1 > 0, this condition can

only be satisfied when (αL,L + αL,K) − (αΓ,L + αΓ,K) > 0, which for αK,i = βK,i = 0
(i = K,L) implies I2 ≡ − (1 + αLL) (1 − s) [(αL,L + αL,K)− (αΓ,L + αΓ,K)] < 0, since
1 + αLL > 0 by Assumption 3.
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impose the latter, which, together with Assumption 10, implies I4 − I3 > 0
and 0 < S1 < 1.

In Case 1 we introduced Assumption 7 which implied that D1(+∞) ∈
(−1, 1). In this section, since D′

1(σ) > 0, D1(+∞) < 1 is no longer a neces-
sary condition for indeterminacy. However, we keep it for the sake of compa-
rability. Also, since we are not interested in unrealistically strong distortions,
we continue to assume that D1(+∞) > −1. We summarize the conditions
considered in this section in the following assumption:

Assumption 11 1. αK,i = βK,i = 0, for i = K,L, and I2 < 0, i.e.
αL,L − αΓ,L > αΓ,K − αL,K;

2. D1(+∞) < 1, i.e., αL,L−αΓ,L > 0 and D1(+∞) > −1, i.e., 2+αL,L+
αΓ,L > 0.

Since, from Assumption 5, the starting point (T1(+∞), D1(+∞)) of ∆1

is on (AC) and, from Assumption 10 and 11.1, D′

1(σ) > 0 and 0 < S1 < 1,
∆1 is a half-line lying on the left of (AC). Moreover, as D1(+∞) > −1 (see
Assumption 11.2.), ∆1 crosses (AB) between A and B at the critical value

σF ∈ (
s−βL,L
1+αL,L

,+∞).

The half-line ∆, beginning on line ∆1 for εγ = 1, points upwards by
Lemma 1. Since D′

1(σ) > 0, it must then cross (AB) at εγF > 1 if and only

if s−βLL
1+αLL

< σ < σF . Moreover, ∆ always crosses (AC) at a value εγT > 1,
since by Lemma 1 and Assumption 11.1 it has a slope S ∈ (0, 1), with S
tending to 1 when σ tends to +∞ . Notice also that, since D1(+∞) < 1 and
D′

1(σ) > 0, the half-line ∆, pointing upwards, also always crosses the line
(BC), defined by D = 1, at εγH > 1. However, whether Hopf bifurcations
occur or not, depend on whether ∆ crosses the segment [BC] in its interior
or not. The following Lemma, proved in the Appendix, will help us with this
question:

Lemma 3 Let SD ≡ 1−
θ(1+αLL)(1−s)

s−βLL
.

1. If S1 < SD, (i) when αΓ,K ≤ αL,K then ǫγH < ǫγT ; (ii) when αΓ,K >

αL,K, then ǫγH < ǫγT for
s−βL,L
1+αL,L

< σ < σH2 and ǫγH > ǫγT for σ > σH2.

2. If S1 > SD, (i) when αΓ,K ≥ αL,K then ǫγH > ǫγT ; (ii) when αΓ,K <

αL,K, then: ǫγH > ǫγT for
s−βL,L
1+αL,L

< σ < σH2 and ǫγH < ǫγT for σ > σH2.

According to this Lemma, it is convenient to analyze the local dynamics
considering separately the two following sub-configurations, defined in terms
of the slope of ∆1:
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- Configuration (v): S1 ∈ (0, SD) if −
(I4−I3)

θ
< I2 < −

(1+αLL)(1−s)
s−βLL

(I4 − I3) <
0;

- Configuration (vi): S1 ∈ (SD, 1) if −
(1+αLL)(1−s)

s−βLL
(I4 − I3) < I2 < 0.

4.2.1 Configuration (v) (S1 ∈ (0, SD))

In the Appendix (Lemma 4), we show that in this configuration S1 < S.
Hence, for s−βLL

1+αLL
< σ < σF , ∆ crosses (AC) only after having crossed line

(AB), i.e. εγT > εγF > 1 (see Figure 5).
For σ < σH3 ∆ crosses line (BC) on the left of point B, i.e., εγH <

εγF , whereas for σ > σH3 it lies on the right of point B, i.e., εγH > εγF .
35

In the first case (σ < σH3) there can be no Hopf bifurcations, since the
crossing point lies out, on the left, of segment [BC]. However, for σ > σH3 ,
this crossing point can be either on the left or on the right of point C,
according to whether εγH < εγT or εγH > εγT . In the latter situation there
are again no Hopf bifurcations, since the half-line∆ will not cross the interior
of segment [BC]. Under Lemma 3, this will depend not only on the sign of
αΓ,K − αL,K but also on whether σ is higher or lower than σH2 . With the

help of geometrical arguments we can see that when σH2 > s−βLL
1+αLL

exists, then

σH2 > σH3 .
36 However σH2 may be higher or lower than σF . To simplify the

exposition we summarize the results for this configuration considering only
that σH2 > σF .

37

Proposition 6 (S1 ∈ (0, SD))Under Assumptions 1-5, and 10-11, for − (I4−I3)
θ

<

I2 < − (1+αLL)(1−s)
s−βLL

(I4 − I3) < 0, the following results for the steady state
generically hold when σH2 > σF :

1. If αΓ,K − αL,K > 0, then

(i) when s−βLL
1+αLL

< σ < σH3: saddle (1 ≤ εγ < εγF ) - flip (εγ = εγF ) - source
(εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle (εγ > εγT ).

(ii) when σH3 < σ < σF : saddle (1 ≤ εγ < εγF ) - flip (εγ = εγF ) - sink
(εγF < εγ < εγH) - Hopf (εγ = εγH) - source (εγH < εγ < εγT ) -
transcritical (εγ = εγT ) - saddle (εγ > εγT ).

35See Definition 6 for σH3
. We can see geometrically that σH3

< σF . In the
Appendix, more details are given on σH3

.
36Suppose on the contrary that σH2

< σH3
. For σH2

< σ < σH3
, ∆ could not cross the

line (BC) on the right of point C because for σ < σH3
, as shown in the Appendix, it must

cross line (BC) on the left of point B.
37Using geometrical considerations, the reader can easily adapt Proposition 6 to the

case where σF > σH2
.
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(iii) when σF < σ < σH2: sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH ) - source
(εγH < εγ < εγT ) - transcritical (εγ = εγT ) - saddle (εγ > εγT ).

(iv) when σ > σH2: sink (1 ≤ εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT ).

2. If αΓ,K − αL,K ≤ 0, then

(i) when s−βLL
1+αLL

< σ < σH3: saddle (1 ≤ εγ < εγF ) - flip bifurcation (εγ =
εγF ) - source (εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle(εγ >
εγT ).

(ii) when σH3 < σ < σF : saddle (1 ≤ εγ < εγF ) - flip bifurcation (εγ = εγF )
- sink (εγF < εγ < εγH ) - Hopf (εγ = εγH ) - source (εγH < εγ < εγT ) -
transcritical (εγ = εγT ) - saddle (εγ > εγT ).

(iii) when σ > σF : sink (1 ≤ εγ < εγH ) - Hopf (εγ = εγH ) - source (εγH <
εγ < εγT ) - transcritical (εγ = εγT ) - saddle (εγ > εγT ).

4.2.2 Configuration (vi) (S1 ∈ (SD, 1))

In this configuration, as shown in the Appendix (Lemma 4), S < S1 for all
s−βLL
1+αLL

< σ < σS1 and S > S1 for all σ > σS1, where σS1 is the value of σ for

which S = S1.
38 Consider also the following critical value of σ:

Definition 7 σS2 is the critical value of σ such that the half line ∆ goes
through the point (T,D) = (−1, 0), i.e., goes through point A.39

When s−βLL
1+αLL

< σ < σS2 , the half-line ∆, pointing upwards with having a
slope lower than ∆1 (we can see geometrically that σS2 < σS1), crosses first
(AC) at εγT > 1, then it crosses (AB) at εγF > 1, both below point A. What
happens for σ > σS2 depends on whether ∆ goes through (AB), which will
only happen when σ < σF , and on whether ∆ crosses the segment [BC] in
its interior or not.

We will assume that (T1,D1) for σ = σS1 is inside the triangle (ABC):

38The expression of σS1 is given in the Appendix 7.7
39The expression for σS2 is given in the Appendix. As the slope of ∆ increases and

its initial point shifts upwards along ∆1, εγT < εγF for s−βLL
1+αLL

< σ < σS2 , and

εγT > εγF for σ > σS2 . Easy analytical computations show that σS2 ∈
(
s−βLL
1+αLL

,∞
)

exists if s−βLL1+αLL
(1 + αLL + αLK − αΓK) > θ (1− s) (1 + αLL + αLK)−βΓL. Hence, if this

condition is not met, then εγT > εγF for all σ > s−βLL
1+αLL

.
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Assumption 12 D1(σS1) > −1− T1(σS1)

Hence, σS1 > σF .
40 Then, for σS2 < σ < σF , ∆ still has a slope lower

than ∆1, but it first crosses (AB) and then (AC). For σ > σF , ∆ no longer
crosses (AB). Whether ∆ goes through (BC) on the left or on the right
of point C depends, according to Lemma 3, on the sign of αΓK − αLK and
on whether σ is higher or lower than σH2 . We can see geometrically that
σH2 > σS1 and therefore σH2 > σF . The following proposition summarizes
these results:41

Proposition 7 (S1 ∈ (SD, 1))Under Assumptions 1- 5, 10-11 and 12, for

− (1+αLL)(1−s)
s−βLL

(I4 − I3) < I2 < 0, the following results for the steady state
generically hold:

1. If αΓ,K − αL,K ≥ 0, then

(i) when s−βLL
1+αLL

< σ < σS2: saddle (1 < εγ < εγT ) - transcritical (εγ = εγT )
- source (εγT < εγ < εγF ) - flip (εγ = εγF ) - saddle (εγ > εγF );

(ii) when σS2 < σ < σF : saddle (1 < εγ < εγF ) - flip (εγ = εγF ), - sink
(εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle (εγ > εγT ),

(iii) when σ > σF : sink (1 ≤ εγ < εγT ) - transcritical (εγ = εγT ) - saddle
(εγ > εγT ).

2. If αΓ,K − αL,K < 0, then

(i) when s−βLL
1+αLL

< σ < σS2: saddle (1 < εγ < εγT ) - transcritical (εγ = εγT )
- source (εγT < εγ < εγF ) - flip (εγ = εγF ) - saddle (εγ > εγF );

(ii) when σS2 < σ < σF : saddle (1 < εγ < εγF ) - flip (εγ = εγF ), - sink
(εγF < εγ < εγT ) - transcritical (εγ = εγT ) - saddle (εγ > εγT )

(iii) when σF < σ < σH2: sink (1 ≤ εγ < εγT ) - transcritical (εγ = εγT ) -
saddle (εγ > εγT ).

(iv) when σ > σH2: sink (1 ≤ εγ < εγH) - Hopf (εγ = εγH ) - source (εγH <
εγ < εγT ) - transcritical (εγ = εγT ) - saddle (εγ > εγT ).

40Note that then we have εγH > εγF for all σ >
s−βLL
(1+αLL)

. See Definition 6 and Appendix

on the existence of σH3
. Indeed, there cannot exist σH3

> s−βLL
1+αLL

, since its existence would
require that σS1 < σH3

< σF , which is ruled out by Assumption 12.
41Of course, when s−βLL

1+αLL
(1 + αLL + αLK − αΓK) > θ (1− s) (1 + αLL + αLK) − βΓL,

1(i) and 2(i) of Proposition 7 are not relevant, since in that case σS2 <
s−βLL
1+αLL

(see footnote
on the definition of σS2).
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4.3 Discussion of the results

When capital and labor are sufficiently substitutable in production, indeter-
minacy emerges in the presence of market imperfections, in contrast to the
perfectly competitive case (see Propositions 1-7).

Indeed, Propositions 2 to 7 show that indeterminacy may occur if the
elasticity of substitution between capital and labor (σ) is higher than a lower
bound. However, the value of this lower bound depends on the different con-
figurations obtained. In Case 1, where D′

1(σ) < 0, this lower bound is higher
or equal than σH1 , because σ > σH1 is a necessary condition for indeter-
minacy.42 In fact, in configurations (i) and (iv), indeterminacy respectively
requires43 σ > σH2 > σH1 and σ > σH3 > σH1, while in configurations (ii)
and (iii), σH1 is the lower bound. In Case 2, where D′

1(σ) > 0, although
σ > σH1 is no longer a necessary condition for indeterminacy, indeterminacy
also requires a lower bound for σ (σ > σH3 in configuration (v), and σ > σS2

in configuration (vi)).
Another result is that indeterminacy never emerges when εγ is sufficiently

high, i.e. εγ has to be lower than an upper bound whose value (either ǫγH
or ǫγT ) depends on the configuration considered. However, except in con-
figurations (ii) and (iii) of Case 1, indeterminacy may be ruled out if ǫγ is
sufficiently close to 1. Therefore, imposing an infinitely elastic labor supply
at the individual level (εγ = 1) may not be appropriate to study the implica-
tions of market distortions on local indeterminacy. This is a new interesting
result because, as it will be illustrated in the examples (see Section 5.2), we
find that if distortions affecting effective consumption and/or the offer curve
are strong enough, indeterminacy may only be possible for intermediate val-
ues of the elasticity of substitution between inputs, if the (private) labor
supply curve is not infinitely elastic.

We will now discuss the role played by the different distortions on inde-
terminacy. We shall focus on the role of the distortions represented by αi,j,
which are the most relevant ones when high levels of σ are considered (see
Assumption 2), as assumed in our analysis (Assumption 3).
Consider first the case without distortions on the Γ function, so

that αΓ,i = βΓ,i = 0, as it happens, for example, when we only have product
or capital market imperfections (see Section 5.1). Then, only configurations
(i) − (iv) of Case 1, and Propositions 2-5, can be obtained. Indeed, with
αΓ,i = βΓ,i = 0, Assumption 3 implies that I4 − I3 + θI2 < 0, as already

42Indeterminacy requires D < 1. Since D is increasing with εγ this implies D1(σ) < 1,
which, under the Assumption D′

1(σ) < 0 of Case 1, is equivalent to σ > σH1
.

43Using geometrical arguments one can easily see that σH2
> σH1

in configuration (i),
and that and σH3

> σH1
in configuration (iv).
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discussed at the beginning of section 4.2.44 It is interesting to note that the
necessaary condition for indeterminacy D1(+∞) < 1, which becomes αL,L >
θαK,K when αΓ,i = βΓ,i = 0 (see Assumption 7.1), has a suitable economic
interpretation: the response of effective consumption to employment (1 +
αL,L) must be stronger than the response of capital income to capital (1 +
θαK,K), when σ = +∞.

Although every configuration of Case 1 can a priori be obtained when
there are no distortions on the Γ function, configurations (i) and (ii)(a) are
the most relevant ones, since empirical values of θ are rather small. Indeed,
when θ is small,45 we obtain I4 − I3 ≈ −(s − βL,L) which is negative by
Assumption 3, so that only configurations (i) and (ii)(a) of Case 1, and
Propositions 2 and 3, apply. From Proposition 2, indeterminacy occurs only
if αL,L > θαK,K > 0 and I2 > 0, which implies αL,K < 0 and /or αK,L < 0.
As it is illustrated in the next section, these conditions are never satisfied
in the economic examples presented. On the contrary, the indeterminacy
conditions required in Proposition 3 are often met by standard examples, for
instance with product market imperfections.

Let us now discuss in more details the role of distortions affecting the ̺
function. For αK,K < 0, indeterminacy does not occur under configuration
(i), which is the unique one where I2 > 0 (see Proposition 2.1). There-
fore, in this case, indeterminacy requires I2 < 0. Note that, I2 < 0 ⇔
1−s−βK,K
s−βL,L

αL,L + αL,K
1−s+βK,L
s−βL,L

+ αK,L
1−s−βK,K
1−s+βK,L

+ αK,K > 0. Hence, under As-

sumption 3, indeterminacy is ruled out if αL,L, αK,L, αK,L and αK,K all have a
negative sign. Moreover, for αL,j = βL,j = 0 (i.e. in the absence of distortions
on the Ω function), indeterminacy, with αK,K < 0, requires a positive lower

bound on αK,L, i.e., αK,L > −αK,K
1−s+βK,L
1−s−βK,K

> 0, and therefore the existence

of cross effects (αK,L) with an opposite sign from the direct effects (αK,K) is
also necessary. For αK,K ≥ 0, given the necessary condition αL,L > θαK,K,
indeterminacy requires a positive value for αL,L. We may then conclude that
distortions affecting the ̺ function, i.e., affecting the capital accumulation
equation, do not seem to play a crucial role for indeterminacy. Indeed, inde-
terminacy, in the presence of distortions on ρ, either requires opposite effects
of capital and labor on the distortions affecting the capital accumulation
equation and a distortion due to labor effects (αK,L) positive and bounded
away from zero, or the presence of some other market failures, distorting the
intertemporal arbitrage between future consumption and labor.

We now provide arguments explaining why distortions affecting the Ω

44See footnote 31.
45Note that this approximation is relevant with respect to empirical estimates. See

footnote ??.
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function are more relevant for indeterminacy. For αL,L ≤ 0, the neces-
sary condition for indeterminacy (αL,L > θαK,K) implies αK,K < 0, i.e.,
requires also distortions on the ̺ function. However, this is no longer true
for αL,L > 0. Indeed, without distortions on the ̺ function, the necessary
condition αL,L > θαK,K is satisfied for all αL,L > 0. Moreover, I2 < 0 is also

required for indeterminacy,46 which implies αL,K > −αL,L
1−s−βK,K
1−s+βK,L

. Hence,

opposite effects of capital and labor on the distortions influencing Ω are not
nedeed. Moreover, indeterminacy does not require that αL,K �= 0, and it may
occur as soon as there is an arbitrarily small positive distortion on effective
consumption due to labor effects. .
Taking now into account distortions on the Γ function, new results

and configurations may appear. To simplify the exposition we assume that
distortions on the ̺ function are absent (αK,i = βK,i = 0), since, as discussed
above, they do not seem to play a relevant role for indeterminacy. Hence, we
only consider distortions on Ω and Γ, both solely influencing the equilibrium
arbitrage condition of workers, as it happens, for instance, when we only have
labor market imperfections (see Section 5.2). In the absence of distortions
affecting capital accumulation, a necessary condition for indeterminacy is
that I2 < 0, i.e. αL,L + αL,K > αΓ,L + αΓ,K, as discussed at the beginning
of Section 4.2. In economic terms, αL,L+ αL,K summarizes the global effect
of distortions on the Ω function, and αΓ,L+αΓ,K represents the global effect
of distortions in the Γ function, when σ tends to +∞, (see Assumption 2).
Therefore, indeterminacy requires a positive difference between these two
global distortion effects on Ω and Γ.

With αK,i = βK,i = 0, we obtain I4 − I3 + θI2 = −(s− βL,L)(1 + αΓ,L)−
βΓ,L(1+αL,L)+θ (1− s) (1 + αL,L) (1 + αΓ,L + αΓ,K), which a priori can take
a positive or negative sign. Hence, not only configurations of Case 1 are pos-
sible, but also configurations (v) and (vi) of Case 2 can emerge. Case 2

obtains when αΓL < −1 −
βΓ,L(1+αL,L)−θ(1−s)(1+αL,L)αΓ,K

(s−βL,L)−θ(1−s)(1+αL,L)
≡ α∗ΓL and is not

possible without effects through Γ, whereas it can appear without effects
through Ω.47 Indeterminacy is possible in the absence of distortions on ef-
fective consumption, even with arbitrarily low levels of distortions on on Γ.
However, the new configurations of Case 2 can only emerge if some distor-
tions are bounded away from zero, since α∗ΓL is close to -1 when both βΓL and
αΓK are close to zero. If distortions on Γ are such that Case 1 applies, then48

46When αK,K = 0, indeterminacy does not occur under configuration (i), the unique
configuration where I2 > 0 (see Proposition 2).
47Note that, under Assumption 3, (1 + αLL) θ < s− βLl when αK,i = βK,i = 0.
48Recall that in Case 1 (i.e, in the case I4 − I3 + θI2 < 0), indeterminacy requires that

D1 (+∞) < 1, which becomes αL,L − αΓ,L > 0 in the absence of distortions in the ̺
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αLL > αΓL and σ > σH1 are also necessary conditions for indeterminacy, and
a smaller value for αL,L−αΓ,L leading to a higher σH1 , reduces the scope for
indeterminacy.49

Finally, let us remark that indeterminacy with arbitrarily small distor-
tions is possible if, as seen above, some of the distortions affect the effective
consumption or the offer curve. However, it requires that the elasticity of the
private labor supply and the elasticity of substitution between inputs take
extreme values. Indeed, when θ take realistically small values (Assumption
3), I4 − I3 takes negative values in the absence of distortions, and will keep
its sign if distortions are close to zero. Hence, only configurations (i) and
(ii) of Case 1 become possible, and both, σ > σH1 and either ǫγ < ǫγH or
ǫγ < ǫγT are required for indeterminacy. As the limit value of σH1 tends to
+∞, and the limit value of 1/ (ǫγH − 1) and 1/(ǫγT − 1) tends also to +∞
when distortions are close to zero and σ close to +∞, both elasticities should
be close to infinity if indeterminacy occurs.

From the above discussion on the role of distortions, we conclude that,
while general distortions on real interest rate do not seem to play a major role
on the occurrence of indeterminacy when inputs are sufficiently substitutable,
distortions on the generalized offer curve that negatively depend on capital
and labor, and distortions on the effective consumption that depend posi-
tively on capital and labor, seem to help the fulfillment of requirements for
the possible occurrence of indeterminacy. Also, a minimal degree of general
distortions, in the real interest rate, in the generalized offer curve and/or the
effective consumption, is a requirement for indeterminacy to occur, at least
if plausible values for the elasticity of substitution between capital and labor
are considered.

An important issue is to understand what type of specific distortions on
output, capital and labor markets, are more relevant for the occurrence of
indeterminacy. Therefore, we now proceed by applying our general method-
ology and results to several examples of specific market distortions.

5 Applications and discussion

In this section we present several examples of specific market distortions and
that fit into our general formulation, so that they can be analyzed using our
framework. These examples also provide microeconomic foundations for the

function.
49Note that σH1

, in the absence of distortions in the ̺ function, can be written as σH1
≡

s−βL,L
1+αL,L

− I4−I3+θI2
(1+αL,L)(αL,L−αΓ,L)

. Note also that, since in Case 1 we have I4 − I3 + θI2 < 0,

we obtain that lim σH1
→ +∞ when αL,L > αΓ,L tends to zero.
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model developed in the previous sections. We first consider examples without
distortions in the Γ function (αΓ,i = βΓ,i = 0). In the second subsection, we
present examples where distortions in the Γ function also appear (αΓ,i �= 0
and/or βΓ,i �= 0). Many examples considered here have already been studied
in the literature, but not always in a Woodford economy, while some of them
are new and allow us to exhibit phenomena that are not illustrated otherwise.

5.1 Examples where αΓ,i = βΓ,i = 0

In all these examples, we have I4 − I3 + θI2 < 0 (D′

1(σ) < 0) and Case 1
applies. We will see that, even if the models presented below have different
microeconomic foundations and economic meanings, most of them enter the
same configuration (configuration (ii) of Case 1), meaning that the mecha-
nisms for indeterminacy are not strongly different.

5.1.1 Externalities in Production

Externalities in production have often been introduced in macro-dynamic
models. See among others Barinci and Chéron (2001), Benhabib and Farmer
(1994), Cazzavillan (2001), Cazzavillan et al. (1998). For a survey see Ben-
habib and Farmer (1999). In these papers all markets are perfectly com-
petitive, and the representative firm produces the final good using labor
and capital with an internal constant returns to scale technology. However,
production benefiting from positive externalities,50 returns to scale are in-
creasing at the social level. Here, we will extend this formulation, allowing
also for negative productive externalities51 so that, at the social level, returns
to scale can be decreasing. We consider therefore that production is given by
y = ALf(a)ξ(K,L), where ξ(K,L) stands for the externality function and
a = K/L the capital-labor ratio. Since firms take as given externalities when
maximising profits we have:

Ωt = Aω(Kt−1/Lt)ξ(Kt−1, Lt)

̺t = Aρ(Kt−1/Lt)ξ(Kt−1, Lt)

where ρ(K/L) and ω(K/L) are given in Definition 1. Since Γ(Kt−1,Lt) =
γ(Lt), we obtain, using (2), αL,L = αK,L = εξ,L, αL,K = αK,K = εξ,K and
αΓ,i = βj,i = 0, for i = K,L and j = K,L,Γ, where εξ,i denotes the elasticity
of the function ξ with respect to i = K,L evaluated at the steady state.
Therefore, denoting ν = εξ,L+ εξ,K , Assumption 5 is satisfied, and we obtain

50They are usually justified by learning by doing or matching problems on labor market.
51These can be justified, for instance, by congestion or pollution arguments.
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I2 = −(1 + ν − εξ,K)v and I4− I3 = θ(1+ ν − εξ,K)(1− s+ ν)− s(1 + θεξ,K).
Assumption 3 implies that s(1+θεξ,K) > θ(1+ν−εξ,K)(1−s), i.e. I4−I3 < 0,
so that D′

1(σ) < 0. Moreover, from Assumption 7, we have that −2 − ν <
(1 + θ)εξ,K < ν.

Therefore, as assumed in Cazzavillan, Lloyd-Braga and Pintus (1998),
positive externalities ensure I2 < 0. Configuration (iia) of Case 1 where
S1 > 1 applies and indeterminacy can emerge for σ > σH1 = (s − θ(1 −
s))/(ν − (1 + θ)εξ,K).

52 Remark that σH1 can be below one. However this
requires sufficiently strong labor externalities. Indeed, in the absence of
capital externalities (εξ,K = 0, ν = εξ,L), for indeterminacy to emerge in
the Cobb-Douglas case, labor externalities must exceed s− θ(1− s), a value
which is too high in empirical terms.

In the case of negative externalities, we have I2 > 0. Configuration (i) of
Case 1 where 0 < S1 < 1 applies. Since we have αK,K < 0, the steady state
is always a saddle.53

5.1.2 Imperfect Competition, Mark-up Variabilty, Taste for Vari-
ety and Free Entry

Several authors have introduced imperfectly competitive product market in
macro-dynamic models to analyze how this market failure can promote in-
determinacy and endogenous cycles. As underlined by Benhabib an Farmer
(1994) and Cazzavillan, Lloyd-Braga and Pintus (1998), imperfectly com-
petitive economies with constant mark-up and decreasing marginal cost (in-
creasing returns) have the same dynamic stability properties than perfectly
competitive models with positive externalities in production, as presented
above in Section 5.1.1. However, two other properties of imperfect compe-
tition can be exploited in a dynamic framework: mark-up variability and
taste for variety. On the one hand, while several economic features can ex-
plain mark-up variability, we focus here on mark-up variability due to busi-
ness formation (Dos Santos Ferreira and Lloyd-Braga (2005), Kuhry (2001),
Seegmuller (2007a), Weder (2000a)). On the other hand, following Benassy
(1996), we define taste for variety as the consumer utility gain of consuming
one unit of all the Nt varieties of goods instead of consuming Nt units of a
single variety (Jacobsen (1998), Seegmuller (2007b)). In these two types of

52See Proposition 3.2.
53See Proposition 2.1.
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models,54 increasing returns come from the existence of a fixed cost55 and
the number Nt of producers is determined by the usual zero profit condition.
At equilibrium, one typically obtains the number of firms as an increasing
function of aggregate production, i.e.

Nt = N(f(at)Lt) (16)

with ǫN(Y ) ≡ N ′(Y )Y/N(Y ) ≥ 0, and a same distortion µ(Nt), increasing
with Nt, affects both the real wage and the real interest rate:

Ωt = µ(Nt)Aω(Kt−1/Lt) (17)

̺t = µ(Nt)Aρ(Kt−1/Lt) (18)

with ǫµ(N) ≡ µ′(N)N/µ(N) ≥ 0. In models with a counter-cyclical mark-up,
µ(Nt) can be interpreted as the inverse of the mark-up factor, while when
there is taste for variety, it represents the ratio between the price set by a
single firm and the aggregate price. We notice that substituting (16) into (17)
and (18), we obtain expressions for Ωt and ̺t similar to those of the model
with productive externalities (see Section 5.1.1). Moreover, since imperfect
competition do not affect the Γ function, we also have Γ(Kt−1,Lt) = γ(Lt).
Defining ν ≡ ǫµ(N)ǫN(Y ), we obtain αL,L = αK,L = (1−s)ν, αL,K = αK,K =
sν and αΓ,i = βj,i = 0, for i = K,L and j = K,L,Γ. Therefore, the
models studied here correspond to a particular case of positive productive
externalities, where εξ,K/εξ,L = s/ (1− s). We deduce that I4−I3 < 0, I2 < 0
andD′

1(σ) < 0, but Assumption 7 is satisfied for 1−s > θs. These imperfectly
competitve models enter configuration (iia) of Case 1 where S1 > 1. Hence,
indeterminacy can emerge for σ > σH1 = (s−θ(1−s))/[ν(1−(1+θ)s)]. Note
that the range of elasticities of capital-labor substitution for indeterminacy
increases (σH1 decreases) with more counter-cyclical mark-ups, larger fixed
cost or degree of taste for variety.

5.1.3 Fiscal Policy, Balanced Budget Rules and Variable Tax Rates

In this section we present another application that does not affect the Γ
function. We consider a perfectly competitive economy characterized by a
balanced budget rule and variable tax rates. We also introduce the possibility
of government spending externalities in preferences. The example presented

54For sake of conciseness, we do not present models with mark-up variability or taste
for variety in details, but rather give their main economic features. For more details, the
reader can refer to the references cited just above.
55Using our notations, the production of a firm i = 1, ..., Nt is given by yit = A(f(ait)lit−

φ), where lit represents labor hired by firm i and φ > 0 a fixed cost.
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follows closely, although extending it by considering capital income taxation,
the work of Lloyd-Braga et al. (2006), and covers as particular cases those
considered in Dromel and Pintus (2004), Giannitsarou (2005), Guo and Lans-
ing (1998), Gokan (2005), Pintus (2003), Schmitt-Grohé and Uribe (1997),
and also the case of constant tax rates.

We assume that the government chooses the tax policy and balances its
budget at each period in time. The government can levy tax on capital in-
come (ρtKt−1), labor income (ωtLt) and on private aggregate consumption
(Ct = Cw

t + Cc
t ). Therefore, real public spending in goods and services in

period t, Gt ≥ 0 is given by Gt = τ (ωtLt)ωtLt+τ (Ct)Ct+τ (ρtKt−1) ρtKt−1,
where the tax rates on labor and capital income, and on consumption are re-
spectively given by τ (ωtLt) = zL (ωtLt/ωL)

φL , τ (ρtKt−1) = zK (ρtKt−1/ρK)
φK

and τ (Ct) = zc (Ct/C)
φc , where ωL is the steady state value of the wage bill,

ρK the steady state value of capital income and C the steady state level of
consumption, and zi ∈ (0, 1) for i = L,K and zc > 0 the level of the tax
rates at the steady state. The parameters φj ∈ R, with j = L,K,C denote
the elasticities of the tax rates with respect to the tax bases. When φj = 0
the tax rate is constant. Finally, we denote by η > 0 the elasticity of public
spending externalities in preferences that affect workers’ utility of consump-
tion.56 Assuming that agents take as given the tax rules and externalities,
the functions Ω and ̺ are given by:

Ω(Kt−1, Lt) = AGη
t

1− zL (ωtLt/ωL)
φL

1 + zc (Ct/C)
φc

ω(Kt−1/Lt)

̺(Kt−1, Lt) = A[1− zK (ρtKt−1/ρK)
φK ]ρ(Kt−1/Lt)

where ρ(K/L) and ω(K/L) are given by Definition 1 and Γ(Kt−1,Lt) = γ(Lt).
To ease the exposition we will present separately the different types of tax-

ation. We start with the case of capital taxation, without considering public
spending externalities in preferences. In this case, market imperfections only
appear in the ̺ function so that, using (2) we have αj,i = βj,i = 0 for i = K,L
and j = L,Γ, αK,K = −φK

zK
1−zK

, αK,L = 0 and βK,K = −αK,K(1 − s) =
−βK,L. Therefore, Assumption 5 is satisfied. Under θ small, Assumptions

3 and 7 imply that 0 < φK < (1−zK)s
zK(1−s)

so that I2 > 0, I4 − I3 < 0, and

I4 − I3 + θI2 < 0. This means that we are in configuration (i) of Case 1,
where 0 < S1 < 1, and since we have αK,K < 0 the steady state is always a
saddle (see Proposition 2).

In the case of labor income taxation only, and considering public spending
externalities in preferences, we have only imperfections through the Ω func-
tion, i.e. αj,i = βj,i = 0 for i = K,L and j = K,Γ, αL,L = η(1+φL)−φL

zL
1−zL

,

56See Lloyd-Braga, Modesto and Seegmuller (2006) for more details.
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αL,K = 0 and βL,L = −αL,Ls = −βL,K . As before, Assumption 5 is
satisfied. Moreover, Assumptions 3 and 7 imply that 0 < αL,L < 1, i.e.

− η(1−zL)
η(1−zL)−zL

< φL < (1−η)(1−zL)
η(1−zL)−zL

if η > zL
1−zL

, or (1−η)(1−zL)
η(1−zL)−zL

< φL < − η(1−zL)
η(1−zL)−zL

if η < zL
1−zL

. In this case, I4 − I3 + θI2 < 0, I2 < 0, and I4 − I3 can be

negative or positive but satisfying I4 − I3 < −θI2/2.
57 This means that

we are in configuration (ii) of Case 1 where |S1| > 1, with αK,K = 0 so
that Proposition 3.1 applies and indeterminacy may emerge if σ > σH1 =
s(1+αL,L)−θ(1−s)

αL,L
= (1−zL)[s(1+η)−θ(1−s)]+φLs[η(1−zL)−zL]

η(1−zL)+φL[η(1−zL)−zL]
. Remark that σH1 < 1

for [s− θ(1− s)]/(1− s) < αL,L < 1, i.e., under a Cobb-Douglas production
function, the distortion introduced and its variability cannot be too small.

From the previous discussion, it is easy to see that without public spend-
ing externalities in preferences (η = 0), indeterminacy is only possible if
−1−zL

zL
< φL < 0, i.e., constant tax rates or tax rates that vary positively

with the tax base promote determinacy. Moreover, in this case, indetermi-
nacy for values of σ above one requires −1−zL

zL
< φL < −1−zL

zL

s−θ(1−s)
(1−s)

, i.e., φL
cannot be too close to zero.58 However, by direct inspection of the expres-
sions of αL,L and σH1, we notice that these conclusions are no longer valid
in the presence of public spending externalities in preferences (η > 0) where
indeterminacy remains possible under a constant or a positively elastic tax
rate.

In the case of consumption taxation only, imperfections again only appear
in the Ω function, i.e. αj,i = βj,i = 0 for i = K,L and j = K,Γ, and
Assumption 5 is satisfied. Considering for simplicity the case without public
spending externalities in preferences (η = 0), we have αL,L = −

zcφc
1+zc(1+φc)

ψ,

αL,K = −
zcφc

1+zc(1+φc)
(1 − ψ), βL,L = −αL,Lβs and βL,K = −βL,L, where ψ =

θ(1− s)/[θ(1− s)+ (1−β)s]. Moreover, for θ sufficiently weak, Assumptions

3 and 7 imply that 1/β > αL,L > 0, i.e., that − (1+zc)
zc

1
1+βψ

< φc < 0, so
that I4 − I3 + θI2 < 0 and I2 < 0. Therefore, if φc is not too negative,
I4− I3 < 0 and we are in configuration (iia) of Case 1. On the contrary, if φc
is sufficiently negative, we have 0 < I4− I3 < −θI2/2 and configuration (iib)
of Case 1 applies.59 Using Proposition 3 with αK,K = 0, indeterminacy may

emerge if σ > σH1 =
(1+zc)[s−θ(1−s)]+zcφc[s(1−βψ)−θ(1−s)]

−zcφcψ
. In the particular case

where government spending is constant (φc = −1), indeterminacy occurs for

57We assume that 2[s− θ(1− s)] > θ(1− s) which implicitly requires a sufficiently weak
θ.
58Similarly, if we fix the value of φL < 0, indeterminacy requires a sufficiently high

value for zL. For example, for η = 0 and φL = −1 (the case considered in Schmitt-Grohé
and Uribe (1997), Pintus (2003) and Gokan (2005) of a constant government spending),
indeterminacy only emerges for σ ≥ 1 if zL > [s− θ(1− s)]/[1− θ(1− s)].
59As before, this requires a sufficiently weak θ.
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σ higher than one provided zc is larger than a lower bound (zc > [s− θ(1−
s)]/(1− sβ)ψ).

5.1.4 Externalities in Consumption Preferences

Several works have modified consumers’ preferences introducing consumption
and/or leisure externalities, that affect respectively utility for consumption
and leisure, to analyze the role of these externalities in preferences on equi-
librium dynamics. In this section we discuss only the case of consumption
externalities that will modify the Ω function. Leisure externalities, that
rather affect the Γ function, will be discussed in the next section.

The existence of consumption externalities corresponds to the idea that
individual utility of consumption is affected by the consumption of oth-
ers (envy or altruism), so that aggregate or average consumption becomes
an argument of the utility function (Alonso-Carrera et al. (2005), Gali
(1994), Ljungqvist and Uhlig (2000), Weder (2000b)). In our framework, this
amounts to consider that workers’ utility is given by U(Cw

t+1ϕ(Ct+1)/B) −
V (Lt), where Ct+1 denotes average consumption and ϕ(Ct+1) the externali-
ties function,60 so that, at equilibrium, the Ω function is given by:

Ω(Kt−1, Lt) = Aϕ(Ct)ω(Kt−1/Lt)

where ω(K/L) is given in Definition 1. We also have ̺(Kt−1, Lt) = Aρ(Kt−1/Lt)
and Γ(Kt−1,Lt) = γ(Lt), as defined in Definition 1.

Since we have only imperfections through the Ω function, αj,i = βj,i = 0
for i = K,L and j = K,Γ. However, to compute the values of αL,i and
βL,i (i = K,L), we have to precise whether individual workers compare
themselves to the average worker or to the average consumer, i.e., whether
C = Cw or C = Cw +Cc. Denote by υ the elasticity of ϕ with respect to C,
evaluated at the steady state. In the first case (C = Cw), we have αL,L =
υ, αL,K = 0 and βL,L = −αL,Ls = −βL,K. As in the previous examples,
Assumption 5 is satisfied. Moreover, Assumptions 3 implies −1 < υ < 1and
Assumption 7, required for indeterminacy, imply that υ > 0, so that I2 < 0.
Notice that indeterminacy is only possible when consumption externalities
are of the "keeping-up with the Joneses" type, since υ > 0 is required.61

Considering θ small, 62 we have I4 − I3 < −θI2/2, and configuration (ii)
of Case 1 applies. From Proposition 3, taking into account that αK,K = 0,

60We do not introduce externalities into capitalists preferences because, since they have
a log-linear utility function, such externalities would not affect the dynamics.
61∂2U/∂C∂C̄ > 0, so that an increase in average consumption in the economy as a

whole renders more valuable any addition to the individual own consumption.
62We assume that 2[s− θ(1− s)] > θ(1− s), which is ensured by θ sufficiently weak.
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indeterminacy may emerge as soon as σ > σH1 = [s(1 + υ) − θ(1 − s)]/υ
(see Proposition 3.1). For [s − θ(1 − s)]/(1 − s) < υ < 1 we have σH1 < 1.
Therefore, in the Cobb-Douglas case, indeterminacy requires an elasticity of
externalities higher than a positive lower bound, i.e., not too close to zero.
This is important to note that the parameters αj,i and βj,i are equivalent
to those of labor taxation only, presented above.63 Hence, from the point
of view of local indeterminacy and dynamics, the two models are perfectly
similar, i.e, the mechanisms operating for indeterminacy are the same, even
if their economic interpretations are different.

When C = Cw + Cc, the results are slightly different. Now αL,L = υψ,
αL,K = υ(1 − ψ) and βL,L = −αL,Lsβ = −βL,K, with ψ = θ(1 − s)/[(1 −
β)s+ θ(1− s)], while αj,i = βj,i = 0 for i = K,L and j = K,Γ. Assumption
5 still holds. Taking into account that θ is small, Assumptions 3 and 7 imply
that 0 < υ < 1/ψβ, so that I4 − I3 + θI2 < 0 and I2 < 0. Again we have
consumption externalities of the "keeping-up with the Joneses" type. Since
θ is assumed to be sufficiently weak, I4− I3 < 0 or 0 < I4− I3 < −θI2/2. We
are in configuration (ii) of Case 1 and, as αK,K = 0, Proposition 3.1 applies.
Indeterminacy may emerge if σ > σH1 = [s(1 + υψβ) − θ(1 − s)]/(υψ).
Again, to get indeterminacy when the production function is Cobb-Douglas,
υ can not be below a positive threshold, given by [s − θ(1 − s)]/ψ(1 − βs).
As before, it is important to notice that this model is equivalent to the
model with consumption taxation only, presented earlier.64 The distortions
introduced operate exactly in the same way, although they have very different
microeconomic foundations.

We can therefore conclude that labor and consumption taxation on the
one hand, and consumption externalities on the other hand, introduce the
same type of distortions, sharing therefore the same mechanisms for indeter-
minacy.

5.2 Examples where αΓ,i �= 0 and βΓ,i �= 0.

We start with examples where these imperfections only affect the Γ function
(leisure externalities, efficiency wages). Then, we present examples were the
imperfections introduced have also an influence on the Ω and ̺ functions
(unions). With respect to the previous examples, we will see that, since the
Γ function is modified, different configurations can apply in the models that
we present below.

63Taking υ = η(1 + φL)− φL
zL
1−zL

, αj,i and βj,i are exactly the same in both models.
64The parameters αj,i and βj,i are identical in both models for υ = −

zcφc
1+zc(1+φc)

.
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5.2.1 Leisure externalities

The idea behind leisure externalities is that an individual’s utility from leisure
is affected by the amount of labor supplied by other people. Let the utility
function of workers be written as Cw

t+1/B−L
µ

t L
ǫγ
t , where µ ∈ ℜ is a parameter

and Lt denotes aggregate labor, which is taken as given by individual workers,
but modifies their welfare. Solving the model with this utility function,
imperfections only appear through the Γ function i.e. αj,i = βj,i = 0 for
{i, j} = {K,L}. Moreover, it is also easy to see that distortions only appear
through the parameter αΓ,L = µ, i.e., βΓ,i = αΓ,K = 0.

Most of the papers that have introduced leisure externalities (Benhabib
and Farmer (2000), Weder (2004)) assumed that the desutility of work is
greater when an individual is working more than the other members of so-
ciety, i.e., αΓ,L < 0. Note that this inequality is in fact required for indeter-
minacy when inputs are sufficiently substitutes, since it is imposed by our
assumptions required for indeterminacy (Assumption 7 for Case 1 and As-
sumption 11.1 for Case 2). Indeed, from Assumption 7 for Case 1 and from
Assumption 11 for Case 2, we will focus on the cases where −2 < αΓ,L < 0.65

Simple computations give us I2 = (1 − s)αΓ,L < 0, I4 − I3 = θ(1 −
s) − s(1 + αΓ,L) and I4 − I3 + θI2 = −(1 + αΓ,L)[s − θ(1 − s)]. Then, for
−1 < αΓ,L < 0 we have I4 − I3 + θI2 < 0, so that Case 1 applies. Let

us define α∗Γ,L ≡ [2[s− θ(1− s)]− 2
√

s[s− θ(1− s)]]/[θ(1 − s)]. If α∗Γ,L <
αΓ,L < 0, configurations (ii) and (iii) apply. From Propositions 3.1 and
4.1, indeterminacy requires σ > σH1.

66 Since σH1 < 1 when αΓ,L < −[s −
θ(1−s)]/[1−θ(1−s)], we can conclude that indeterminacy is possible in the
Cobb-Douglas case for α∗Γ,L < αΓ,L < −[s− θ(1− s)]/[1− θ(1− s)].

For αΓ,L < α∗Γ,L, indeterminacy requires a different condition on the
elasticity of capital-labor substitution. For −1 < αΓ,L < α∗Γ,L, configura-
tion (iv) of Case 1 applies, so that indeterminacy may emerge as soon as
σ > σH3. From Proposition 5.1. the steady state is locally indeterminate if
εγF < εγ < εγH when σH3 < σ < σF , if 1 ≤ εγ < εγH when σF < σ < σH2 ,
and if 1 ≤ εγ < εγT when σ > σH2. If αΓ,L < −1, as in Benhabib and Farmer
(2000) that set αΓ,L = −1.23, we have I4−I3+θI2 > 0, so that Case 2 applies.
Simple computations show that we have S1 < SD, so that we are in configura-
tion (v) of Case 2. Then, since αΓ,K = αL,K = 0, Proposition 6.2 applies and
the conditions for indeterminacy are qualitatively similar to those obtained
in Configuration (v). However, quantitatively the results are different. Note

that σF =
2s+(1−s)θ(2+αΓL)

2(2+αΓL)
. Hence σF < 1 for αΓ,L > α∗∗Γ,L ≡

−2[2−s−θ(1−s)]
2−θ(1−s)

,

65We can easily see that Assumptions 3 and 5 are ensured.
66Note that configuration (iii) requires more negative values of αΓ,L than configuration

(ii).
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with −2 < α∗∗Γ,L < −1. Hence, while in configuration (iv) indeterminacy
emerges with a Cobb-Douglas tecnhology when the private labor supply is
infinitely elastic, the same does not always apply in configuration (v), more
precisely, when αΓ,L takes values such that −2 < αΓ,L < α∗∗Γ,L. However, it
is possible that, for values of externality degrees falling in this interval, in-
determinacy occurs with a Cobb-Dougals technology, if ǫγ > ǫF > 1.67 This
shows that we shoud not limit our analysis to the case of an infinitely elastic
labor supply, when we want to fully study the role of some labor market
distortions on the occurrence of indeterminacy.

5.2.2 Efficiency Wages

Several papers have analyzed the role of efficiency wage arguments on the
emergence of indeterminacy. One can refer to Coimbra (1999), Nakajima
(2006) and Grandmont (2006). The example we present here follows closely
Grandmont (2006), where efficiency wage, involuntary unemployment and
unemployment insurance (unemployment compensation is a constant rate of
wages, finaced by taxation on labor income at a uniform rate) are intro-
duced in a otherwise standard finance constrained economy, as developed
by Woodford (1986). The distortions introduced in Grandmont (2006) only
affect the Γ function: Γ(Kt−1,Lt) = g(Lt), where g(L) stands for aggre-
gate consumption of employed and unemployed workers. Note that 0 <
ǫg = Lg′(L)/g(L) < 1, with ǫg close to 1 when there is weak unemploy-
ment insurance and is decreasing to zero when unemployment insurance
becomes larger. Moreover, due to the existence of a constant reservation
wage (not depending on the number of labor units supplied)68 ǫγ = 1.
Hence, −1 < αΓ,L = (ǫg − 1) < 0. Since market imperfections only af-
fect the Γ function, we have αi,j = βi,j = 0 for {i, j} = {K,L}. Moreover,
βΓ,L = βΓ,K = αΓ,K = 0.

It is easy to see that Assumptions 3, 5 and 7 are satisfied. We also have
I2 = (1 − s)αΓ,L < 0, I4 − I3 = θ(1 − s) − s(1 + αΓ,L) and I4 − I3 + θI2 =
−(1 + αΓ,L)[s − θ(1 − s)] < 0. This last inequality means that this model
provides an example of Case 1. In fact, by direct inspection of the parameters
αi,j and βi,j, this economy with efficiency wages and unemployment insurance
is formally identical to the example, presented above, on leisure externalities
with −1 < αΓ,L < 0, taking into account that here ǫγ = 1. Therefore, the
analysis is similar to the previous one and we obtain the same qualitative

67This will happen if σH3 < 1.
68Each individual worker supplies one unit of labor with a labor disutility that depends

on the level of effort. Since at equilibrium the level of effort is constant, the indiviudual
labor supply is infinitely elastic.
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results, provided we properly restrain the possible domain of values for αΓ,L.
For −1 < αΓ,L < α∗Γ,L, the model is in configuration (iv): given Proposi-

tion 5.1, and since ǫγ = 1, indeterminacy emerges for σ > σF =
2s+(1−s)θ(1+ǫg)

2(1+ǫg)
,

with σF < 1, since ǫg > 0. For α∗Γ,L < αΓ,L < 0, we are in configurations
(ii) and (iii). Propositions 3.1 and 4.1 apply, i.e., indeterminacy emerges for
σ > σH1. Since σH1 < 1 requires 0 < ǫg < (1− s)/[1− θ(1− s)], we see that
unemployment insurance cannot be arbitrarily weak when the technology is
represented by the standard Cobb-Douglas production function.69 However,
the range of values for ǫg such that indeterminacy emerges for all σ ≥ 1 is
compatible with a wide and quite plausible range of values of unemployment
and unemployment insurance rates.70

5.2.3 Unions

Efficiency wage is not the unique labor market imperfection considered in
the literature. Using a financed constrained economy of the Woodford type,
Lloyd-Braga and Modesto (2006) and Dufourt et al. (2006) have introduced
union power and unemployment to analyze their role on local indeterminacy.
In both papers, wages and employment are determined through an efficient
bargaining mechanism between unions and firms. Unions are able to set
wages above a reservation wage, with a markup factor µ(K,L) = 1−αs(a)

1−s(a)
≥ 1,

a = K/L, increasing in the (constant) bargaining power of unions 1 − α ∈
[0, 1). Moreover, employment is determined by the equality between the
reservation wage and the marginal productivity of labor.71

Lloyd-Braga and Modesto (2006) do not only consider labor market im-
perfections, but also introduce productive labor externalities that positively
affect the total productivity of factors. More specifically, they consider the
production function F (K,L) = ALf(a)ξ(L), where the strictly increasing
function ξ(L) stands for the externalities. In this model, market imperfec-
tions appear in the three functions Ω, ̺ and Γ, respectively given by:

Ω(Kt−1, Lt) = Aµ(Kt−1/Lt)ξ(Lt)ωt

̺(Kt−1, Lt) = Aαξ(Lt)ρt
Γ(Kt−1,Lt) = µ(Kt−1/Lt)γt

69From the previous example on leisure externalities, remember that σH1 < 1 requires
αΓ,L < −[s− θ(1− s)]/[1− θ(1− s)].
70See Grandmont (2006) for a more detailed discussion.
71Here the reservation wage is due to the existence of home production, workers sup-

plying inelastically one unit of labor. Note also that the case of a perfectly competitive
labor market would be obtained with µ(K,L) = 1, i.e., α = 1.
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where ρt, ωt and γt are defined in Definition 1. In this example, due to the
existence of a reservation wage, we have that γt = Lt, i.e., ǫγ = 1. Using

the elasticity of the markup with respect to a, given by s(1−α)
1−αs

σ−1
σ
, and the

elasticity of ξ(L), given by εξ,L > 0, both evaluated at the steady state,
we obtain αΓ,K = αL,K = −αΓ,L = −βΓ,K = βL,L = −βL,K = βΓ,L =
s(1−α)
1−αs

∈ (0, s), αL,L = αΓ,L + εξ,L, αK,L = εξ,L and αK,K = βK,L = βK,K = 0.

One can see that Assumptions 5 and 7 are satisfied and I2 = −( 1−s
1−αs

+
εξ,L)εξ,L < 0. Assumption 3 implies that αs > θ[1− s+ εξ,L(1−αs)], so that
I4 − I3 + θI2 < 0 and Case 1 applies. Furthermore, under I4 − I3 < 0, as
assumed in Lloyd-Braga and Modesto (2006), the model enters configuration

(iia), i.e., indeterminacy emerges for σ > σH1 =
[s−θ(1−s)](1−αs)+θs(1−α)εξ,L

εξ,L[1−αs+θs(1−α)]

(see Proposition 3.1). Remark finally that when the technology is Cobb-
Douglas, indeterminacy requires σH1 < 1, and thereby εξ,L > s − θ(1 − s),
i.e., labor productive externalities not too small.

Dufourt et al. (2006) do not introduce productive externalities (the tech-
nology exhibits constant returns to scale), but, besides unions, they also
consider the existence of imperfect unemployment insurance: a constant real
unemployment benefit financed by taxes on those employed. In their case,
the functions Ω, ̺ and Γ can be written as:

Ω(Kt−1, Lt) = Aµ(Kt−1/Lt)ωt

̺(Kt−1, Lt) = Aαρt

Γ(Kt−1,Lt) = b
µ(Kt−1/Lt)

Lt

γt

where ρt, ωt and γt are given in Definition 1, and b > 0 is the real unemploy-
ment benefit. In this example, again due to the existence of a reservation
wage72 we have that γt = Lt, i.e., ǫγ = 1. Comparing this model with Lloyd-
Braga and Modesto (2006), we can see that, except the existence or not of
productive externalities, the main difference between them concerns Γ(K,L).
Indeed, the unemployment insurance scheme considered introduces another
distortion that operates only through the parameter αΓ,L. Moreover, in Du-
fourt et al. (2006), there is a significant difference between the parameters
αΓ,L and αL,L.

Using (2), we get αK,j = βK,j = 0 for j = K,L, αΓ,K = αL,K = −αL,L =

−βΓ,K = βL,L = −βL,K = βΓ,L =
s(1−α)
1−αs

∈ (0, s), and αΓ,L = αL,L − 1.
One can check that Assumption 5 is satisfied, Assumption 7 is ensured by

72In Dufourt et. al (2006) workers also supply inelastically 1 unit of labor. Due to the
unemployment benefit there is a reservation wage below which individuals prefer not to
work.
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s < 1/2 and Assumption 3 by αs > θ(1 − s). Moreover, I1 = 0, I2 =

− (1−s)2

1−αs
< 0 and I4 − I3 + θI2 = −(1 − s)s(1 − α)/(1 − αs) < 0, implying

that Case 1 applies. Then, for θ(1 − s)/s < α < 1 − [θ(1 − s)/s(4 − θ)],
configurations (ii) and (iii) are the relevant ones and indeterminacy emerges
for σ > σH1 = s (see Propositions 3.1 and 4.1). For 1− [θ(1− s)/s(4− θ)] <
α ≤ 1, configuration (iv) applies. Since ǫγ = 1, indeterminacy emerges when

σ > σF =
2s[α(2−s)−1]+θ(1−s)(1−αs)

2[1−s(2−α)]
(see Proposition 5.1). Remark that since,

for 1− [θ(1− s)/s(4− θ)] < α ≤ 1, we have s < σF < 1. We deduce that the
steady state of this economy is always indeterminate, if the technology is of
a Cobb-Douglas type.

5.2.4 Public spending externalities in preferences

In this example, the standard Woodford model is modified introducing pub-
lic spending, financed by taxation on capital and labor incomes through a
balanced budget rule, which will provide illustrations of Proposition 7. More-
over, we assume that government expenditures (G) provide services that af-
fect not only workers’ utility for consumption, but also their desutility of
labor. To focus only on the role of public spending externalities on local
indeterminacy, tax rates on capital and labor incomes, that we respectively
note τK ∈ (0, 1) and τL ∈ (0, 1), are supposed to be constant and the level
of government spending is defined by:

Gt = τKρtKt−1 + τLωtLt

Let the utility of the representative worker be defined byGη
t+1C

w
t+1/B−Gµ

t L
ǫγ
t ,

where η and µ are parameters representing, respectively, the elasticity of
government spending affecting utility for consumption and desutility of labor.
Then, we obtain:

Ω(Kt−1, Lt) = [τKAρtKt−1 + τLAωtLt]
η(1− τL)Aωt

̺(Kt−1, Lt) = (1− τK)Aρt
Γ(Kt−1,Lt) = [τKAρtKt−1 + τLAωtLt]

µγt,

where ρt and ωt are given in Definition 1.
By direct inspection of ̺(Kt−1, Lt), we immediately deduce that its elas-

ticities are not affected by the distortions introduced, i.e., αK,i = βK,i =
0.73 Let us define ψ ≡ τL(1 − s)/[τL(1 − s) + sτK ] ∈ (0, 1). Comput-
ing the elasticities of Ω(Kt−1, Lt) and Γ(Kt−1,Lt) with respect to Kt−1 and

73This means that in a local dynamics point of view, the model that we study in this
example is as if the function ̺(Kt−1, Lt) is not affected by government intervention.
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Lt, evaluated at the steady state, we get αL,L = ηψ, αL,K = η(1 − ψ),
βL,L = (1 − s − ψ)η = −βL,K, and αΓ,L = µψ, αΓ,K = µ(1 − ψ), βΓ,L =
(1 − s − ψ)µ = −βΓ,K . Before analyzing the conditions for indeterminacy,
and to simplify the presentation, we further suppose η > max{µ, 0,−2/ψ−µ}
and ψ < min{1− s[(1+η)/(1− s+η)], (1− θ)/(1+ θη)} < (1− s). Moreover
Assumption 3 implies that η < s/(1 − s − ψ), µ > −s/(1 − s − ψ), and
θ < [s− η(1− s− η)]/(1 + ηψ)(1− s).

Since αK,i = βK,i = 0, I2 < 0 is a necessary condition for indetermi-
nacy. Using the expressions above, this is equivalent to η > µ. Straight-
forward computations show that for µ > µa = θ(1+ηψ)(1+η)(1−s)−[s−(1−s−ψ)η]

(1−s)(1−ψ)

we have I4 − I3 < 0, and for µ > µb = η(1−s)(1−ψ)−(1+ηψ)[s−θ(1−s)]
(1−s)[1−ψ−θ(1+ηψ)]

, where

µb < µa, we have I4 − I3 + θI2 < 0. Therefore for µ > µa we obtain con-
figuration (iia) of Case 1, for µb < µ < µa, configurations (iib), (iii) and
(iv) of Case 1 are the relevant ones. Indeterminacy emerges for σ > σH1 =
s−(1−s−ψ)(η−µ)−θ(1−s)(1+µ)

ψ(η−µ)
in configurations (ii) and (iii) (see Propositions 3.1

and 4.1). In configuration (iv) of Case 1 (see Proposition 5.1), indetermi-
nacy requires εγF < εγ < εγH for σH3 < σ < σF and 1 < εγ < min{εγH , εγT }

for σ > σF , with σF ≡ 2[s−(1−s−ψ)(η+µ)]+θ(1−s)(2+η+µ)
2[2+ψ(η+µ)]

. When µ < µb, we

obtain Case 2. Configuration (v) appears for µc < µ < µb, where µc =
η[s−(1−s−ψ)η−(1−s)(1−ψ)]+(1+ηψ)[s−θ(1−s)(1+η)]

s−(1−s−ψ)η−(1−s)(1−ψ)
, while for µ < µc we obtain con-

figuration (vi).74 In configurations (v), indeterminacy occurs under similar
conditions than in configuration (iv) (see Proposition 6.2). In configura-
tion (vi), indeterminacy requires εγF < εγ < εγT for σS2 < σ < σF and
1 ≤ εγ < min{εγH , εγT } for σ > σS2 (see Proposition 7.2).75

5.3 Discussion of the Examples

The above examples highlight some important results already stressed be-
fore. In all the examples presented that did not introduce market distortions
affecting the generalized offer curve, only configurations (i) and (ii) of Case
1 emerged (see section 5.1). Configuration (i) appeared with negative pro-
ductive externalities and with capital taxation. In both cases αK,K < 0 so
that the steady state was never indeterminate (a saddle). Therefore, without
distortions affecting the generalized offer curve, indeterminacy only appeared
in configuration (ii), requiring a lower bound for the elasticity of substitu-
tion: σ > σH1. Moreover, we have also seen that this lower bound was only
below unity for relatively high levels of distortions. Indeed, in the standard

74Note that µc falls into the appropriate range of values for µ if η is sufficiently large.
75Note that αΓ,K − αL,K = −(η − µ)(1− ψ) < 0.
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case of a Cobb-Douglas technology, indeterminacy requires either sufficiently
high positive production, consumption or public spending externalities, high
rates of labor income/consumption taxation, or sufficiently (negative) elastic
tax rates. This shows that the indeterminacy mechanism operating in all
these last examples of market distortions is quite similar, even if the eco-
nomic interpretation of distortions across these examples is different. More
specifically, we have shown that many models with product market imper-
fections (mark-up variability, taste for variety) can be seen as a particular
case of positive productive externalities and that labor and consumption tax-
ation on the one hand, and consumption externalities on the other hand are
perfectly equivalent from a local dynamics point of view.

Once distortions affecting the offer curve are considered, the situation
changes drastically, since new configurations are obtained. Indeed, besides
configurations (ii) of Case 1 as above, configurations (iii)-(iv) of Case 1,
and (v) -(vi) of Case 2 may also appear. This is what happens for instance
with leisure externalities and/or public spending externalities in preferences,
where configurations of Case 2 emerge when the difference between the elas-
ticities of the generalized and private offer curve with respect to labor supply
is sufficiently negative. Let us remark, however, that in configurations (v)
and (vi), which are obtained when the degree of externalities is sufficiently
negative and bounded away from zero, indeterminacy may be excluded for
reasonable values of the elasticity of substitution between inputs, if the elas-
ticity of labor supply at the individual level is sufficiently high. This is a new
result, and shows that we should be careful in not constrain our analysis,
on the role of some labor market distortions for the occurrence of indetermi-
nacy, to the situation where an infinitely elastic labor supply is considered,
although this assumption is widely used in the literature.

The model with efficiency wages can be seen as a particular case of, neg-
ative and not too large, aggregate labor externalities in leisure utility, so
that configuration of Case 2 do not emerge. With unions, also only Case 1
emerges. However, with labor market rigidities, not only configuration (ii)
appear, but configurations (iii) and (iv) are also obtained in the presence of
unemployment insurance, either when union power is close to zero (the case
of unions with constant real unemployment benefit/taxes) or when unem-
ployment insurance is sufficiently large (the case of efficiency wages with a
constant rate of unemployment compensation/ tax rate over the wage rate).
In both examples, indeterminacy occurs with a Cobb-Douglas technology
without requiring high degrees of distortions: in the example with unions,
the steady state is always indeterminate when the union power is sufficiently
weak; in the example with efficiency wages, indeterminacy occurs for plausi-
ble levels of the unemployment compensation rate, although it is not possible
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when this rate is arbitrarily weak.

6 Concluding Remarks

Our work developed a useful general methodology to analyze the role of
market distortions on the emergence of local indeterminacy, bifurcations and
business cycles driven by expectations, which we applied to a Woodford econ-
omy. We fully characterized the local dynamics, according to several different
configurations for the parameters of the model. We then applied our results
to several examples of specific market distortions and compared them.

Some results, already latent in previous works, are here confirmed and
put in evidence. In particular, we found that capital market distortions do
not seem to play a role for the occurrence of indeterminacy. On the contrary,
we have seen that indeterminacy emerges under labor market rigidities, in
the financially constrained Woodford economy, without imposing strange or
implausible values for the parameters, whereas if distortions mainly affect
the output market, indeterminacy requires parameters values that might be
considered as less relevant from an empirical point of view. These find-
ings suggest that, in economies where workers are financially constrained,
the functioning of labor markets, which in the real world show significant
deviations from the competitive paradigm, may create additional volatility
along business cycles caused by self fulfilling volatile expectations. Empirical
analysis on this issue is therefore an important direction for further research.

Finally, other results show that several standard different types of macro-
dynamic models have some similarities in terms of local dynamic stability.
We have shown that indeterminacy, in the Woodford economy, can only
occur with arbitrarily small distortions if the elasticity of capital-labor sub-
stitution is high enough and the elasticity of private labor supply is strong
enough. This result is indeed similar to those obtained in standard Ram-
sey and overlapping generations economies with productive externalities.76

Hence, this seems to be a consistent result in these type of models, which
share in common the fact that only future expectations in consumption deci-
sions of consumers/workers are relevant, opening the room for the existence
of cycles driven by self fulfilling volatile expectations. This fact may indeed
explain why standard distortions in the capital accumulation equilibrium dy-
namic equation do not play a role for the emergence of local indeterminacy,

76See Lloyd-Braga et al. (2007) and Pintus (2006). There it is also shown that pos-
itive productive externalities from labor affecting the intertemporal arbitrage curve of
consumers/workers, αLL, must exist, while externalities from capital affecting the capital
accumulation equation, αKK , are not nedeed.

46



while distortions affecting the intertemporal arbitrage equilibrium condition
for consumers are important. However, in all these standard models, the
modeling of the behavior for capital dynamics is quite simple, productive
capital being just rented by consumers/capitalists to firms. Strategic consid-
erations by firms owning productive capital, which are usually disregarded,
may create a new channel for the relevance of future expectations of capi-
talists/producers and change the results. Hence, although some works have
already considered some of these aspects,77 further research on this issue is
welcome.

An important final remark is wortwhile. Due to our methodology, we were
able to find several equivalences across different types of specific distortions,
in terms of the general equilibrium dynamic equations and the respective
local dynamics. This has some strong implications. In particular, this means
that, if what we observe is aggregate and equilibrium variables, we might
not be able to distinguish productive externalities from the existence of taste
for variety or mark up variability in the output market, since both models
are observationally equivalent; also, we might not be able to distinguish
aggregate consumption externalities in private utility of consumption from
taxation on labor income/consumption spending; we might not be able to
distinguish the existence of efficiency wages with unemployment insurance
from aggregate labor externalities in private utility of leisure. Moreover, the
level of a specific distortion required for indeterminacy may be considered as
implausibly high, while the same conditions on indeterminacy are obtained
with another equivalent specific distortion for which the required degree of
distortions is considered reasonable.

7 Appendix

7.1 Existence of a Steady State

A stationary equilibrium of the dynamic system (6)-(7) is a solution (K,L) =
(Kt−1, Lt) for all t, that satisfies:

A̺(K,L) = θ/β (19)

(A/B)Ω(K,L)L = Γ(K,L) (20)

with θ ≡ 1− β(1− δ).
The existence of a steady state can be established by choosing appropri-

ately the two scaling parameters A > 0 and B > 0 so as to ensure that one

77See for instance d’Aspremont et. al (2000).
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steady state coincides with (K∗, L∗) = (1, 1). From equation (19), we obtain
a unique solution A > 0, determined by:

A = θ/(β̺(1, 1)) (21)

Substituting (21) into (20), we then obtain the unique solution for B:

B =
θΩ(1, 1)

β̺(1, 1)Γ(1, 1)
(22)

Proposition 8 (Existence of the normalized steady state) Under As-
sumption 1, (K∗, L∗) = (1, 1) is a stationary solution of the dynamic system
(6)-(7) if and only if A and B are the unique solutions of (21) and (22).

7.2 Trace T and determinant D of the Jacobian matrix

To determine the trace T and the determinant D of the Jacobian matrix,
we first differentiate the dynamic system (4) and (5) in the neighborhood of
(K,L) = (1, 1) (see Proposition 8):

dKt

K
= (θε̺,K + 1)

dKt−1

K
+ θε̺,L

dLt

L
(23)

dLt+1

L
=

ǫΓ,K − εΩ,K(1 + θε̺,K)

1 + εΩ,L

dKt−1

K
+

εΓ,L − θεΩ,Kε̺,L
1 + εΩ,L

dLt

L
(24)

We deduce the trace T and the determinant D of the associated Jacobian
matrix, which correspond respectively to the sum and the product of the two
roots of the characteristic polynomial P (λ) ≡ λ2 − Tλ +D = 0:

T = 1 +
εΓ,L + θ(ε̺,K(1 + εΩ,L)− εΩ,Kε̺,L)

1 + εΩ,L
(25)

D =
εΓ,L(1 + θε̺,K)− θεΓ,Kε̺,L

1 + εΩ,L
(26)

Substituting the expressions given in Assumption 2 in these two equa-
tions, we obtain (9) and (10).
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7.3 Expressions for critical values of εγ

7.3.1 The value of εγH

εγH is such that D = 1, which is equivalent to:

εγH = 1 + {σ[αL,L − αΓ,L + θ(αΓ,KαK,L − αK,K(1 + αΓ,L))]

+ θ[(1− s− βK,K)(1 + αΓ,L) + αΓ,K(1− s+ βK,L)

− αK,LβΓ,L
1− s− βK,K

1− s+ βK,L

]− βΓ,L(1 + θαK,K)− (s− βL,L)}

/[σ(1 + θαK,K)− θ(1− s− βK,K)]

(27)

7.3.2 The value of εγF

εγF is such that 1 + T +D = 0. After some computations, we obtain:

εγF = 1 + {σ[2(2 + αL,L + αΓ,L) + θ(αK,K(2 + αL,L + αΓ,L)− αK,L(αL,K + αΓ,K))]

− 2(s− βL,L − βΓ,L)− θ[(1− s− βK,K)(2 + αL,L + αΓ,L)

+ αK,K(s− βL,L − βΓ,L) + (αL,K + αΓ,K)(1− s + βK,L)

+ αK,L(s− βL,L − βΓ,L)
1− s− βK,K

1− s+ βK,L

]}/[θ(1− s− βK,K)− σ(2 + θαK,K)]

(28)

7.3.3 The value of εγT

εγT is such that 1− T +D = 0. After some computations, we obtain:

εγT = 1 + {(1− s− βK,K)(αL,L − αΓ,L) + αK,K(s− βL,L + βΓ,L)+

+ (αL,K − αΓ,K)(1− s+ βK,L) + αK,L(s− βL,L + βΓ,L)
1− s− βK,K

1− s + βK,L

}

/(1− s− βK,K − σαK,K)

(29)
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7.4 Expressions for critical values of σ

7.4.1 The value of σH1

σH1 is the critical value of σ such that D1(σH1) = 1.

σH1 ≡
s− βL,L + βΓ,L(1 + θαK,K)

αL,L − αΓ,L − θ[αK,K(1 + αΓ,L)− αΓ,KαK,L]
(30)

−
θ[(1− s− βK,K)(1 + αΓ,L) + αΓ,K(1− s+ βK,L)− αK,LβΓ,L

1−s−βK,K
1−s+βK,L

]

αL,L − αΓ,L − θ[αK,K(1 + αΓ,L)− αΓ,KαK,L]

7.4.2 The value of σF

The critical value σF is defined by 1 +D1(σF ) + T1(σF ) = 0.
78

σF ≡
(s− βLL − βΓ,L)

[
2 + θ(αKK + αKL

1−s−βKK
1−s+βKL

]

(2 + θαKK)(2 + αLL + αΓ,L)− θαKL(αLK + αΓ,K)
(31)

+
θ[(1− s− βKK)(2 + αLL + αΓ,L) + (1− s+ βKL)(αLK + αΓ,K)]

(2 + θαKK)(2 + αLL + αΓ,L)− θαKL(αLK + αΓ,K)

7.4.3 The value of σS2

σS2 is the value of σ such that εγT = εγF , with αKi = βKi = 0.

σS2 ≡
θ (1− s) (1 + αLL + αLK) + (s− βLL − βΓL)

2 (1 + αLL) + αLK − αΓK

7.5 Existence of σH2
and Proof of Lemma 3

Recall that when σ = σH2 we have ǫγH = ǫγT , i.e. the ∆ line goes through the
point C (see Definition 3). To discuss the existence and uniqueness of σH2 ,
we consider first the configurations where S1 ∈ (0, 1), and then the remaining
ones.
1. Configurations where S1 ∈ (0, 1).
When D′

1(σ) < 0 (as in configuration (i) of Case 1), the existence of
σH2 requires αK,K > 0. Since D′

1(σ) < 0 and S(σ) increases with σ (with
S(+∞) > 1), we deduce by direct geometrical considerations the existence
and uniqueness of σH2(> σT ), such that ǫγH < ǫγT for σ < σH2 , and ǫγH > ǫγT
for σ > σH2.

78Note that using Assumption 5 the denominator of σF can also be written as 2(2 +
αL,L + αΓ,L)− 2θ[αΓ,KαK,L − αK,K(1 + αΓ,L) > 0 from Assumption 7.
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WhenD
′

1(σ) > 0, Lemma 3 is helpful. Let us prove it. With αK,i = βK,i =
0, i = K,L (as in Case 2), note that ǫγH > ǫγT ⇔ (σ − σH2) (αΓ,K − αL,K) >

0, where σH2 ≡
s−βL,L
1+αL,L

−

s−βL,L

(1+αL,L)(1−s)
I4−I3
θ

(S1−SD)

(αΓ,K−αL,K)(1+αL,L)
is the value of σ such that

ǫγH (σH2) = ǫγT (σH2). Hence, when S1 < SD and αΓ,K < αL,K or when

S1 > SD and αΓ,K > αL,K , we have σH2 ≤
s−βL,L
1+αL,L

so that σ > σH2 for

all σ under consideration. Otherwise, we get σH2 >
s−βL,L
1+αL,L

. In the case

where αΓ,K = αL,K , (σ − σH2) (αΓ,K − αL,K) =
s−βL,L

(1+αL,L)
2
(1−s)

I4−I3
θ
(S1 − SD).

Therefore, ǫγH > ǫγT for S1 > SD and ǫγH < ǫγT for S1 < SD. Lemma 3
immediately follows.
2. Configurations where S1 > 1 or S1 < 0.
Consider first the case where αK,K < 0. Note that the equation ǫγH = ǫγT

is a polynomial of degree 2, i.e. has at most two solutions. Since S(+∞) ∈
(0, 1), we can see geometrically that a solution σH2 ∈ (σH1 ,+∞) must exist
and the number of these solutions is odd. We deduce the uniqueness of
σH2(> σH1), such that ǫγH < ǫγT for σ < σH2 , and ǫγH > ǫγT for σ > σH2 .

Consider now that αK,K = 0. Note that in this particular case, ǫγT
does not depend on σ. The equation ǫγH = ǫγT has at most one solution
σH2 ∈ (σH1 ,+∞) and this solution σH2 is by continuity such that again
ǫγH < ǫγT for σ < σH2 , and ǫγH > ǫγT for σ > σH2 .

Finally, consider that αK,K > 0. We can see geometrically that if there is
a solution σH2 to ǫγH = ǫγT then σH2 ∈ (σH1 , σT ). The inequality ǫγH ≤ ǫγT
is equivalent to g(σ) ≥ 0, where

g(σ) ≡ αK,K[αL,L − αΓ,L + θ(αΓ,LαK,L − αK,K(1 + αΓ,L))](σ − σT )(σ − σH1)

−
I2

1 + αL,L

[σ(1 + θαK,K)− θ(1− s− βK,K)]

This function describes a convex parabola with g(0) > 0, g(σH1) > 0, g(σT ) >
0 and g(+∞) = +∞. Hence, either it can exist two solutions (if g′(σH1) < 0)
or none (if g′(σH1) ≥ 0) to the equation g(σ) = 0. As:

g′(σ) = αK,K[αL,L − αΓ,L + θ(αΓ,LαK,L − αK,K(1 + αΓ,L))]

[2σ − (σT + σH1)]−
I2

1 + αL,L

(1 + θαK,K)

We deduce that g′(σH1) ≥ 0 is equivalent to:

I2 ≤αK,K(1 + αL,L)[αL,L − αΓ,L + θ(αΓ,LαK,L − αK,K(1 + αΓ,L))]

(σH1 − σT )/(1 + θαK,K)
(32)
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Hence, when this inequality is satisfied, there is no solution to g(σ) = 0,
because g(σT ) ≥ g(σH1) > 0. This implies that ǫγH < ǫγT for all σ > σH1 ,
i.e. the half-line ∆ always goes above point C.

7.6 Existence of σH3

Using (27) and (28) we have that ǫγH = ǫγF ⇔ h(σ) = 0, and ǫγH > ǫγF ⇔
h(σ) > 0, where:

h(σ) ≡[σ(2 + θαK,K)− θ(1− s− βK,K)][αL,L − αΓ,L + θ(αΓ,KαK,L

− αK,K(1 + αΓ,L))](σ − σH1) + 2[σ(1 + θαK,K)− θ(1− s− βK,K)]

[2 + αL,L + αΓ,L − θ(αΓ,KαK,L − αK,K(1 + αL,L))](σ − σF ),

By Definition 6, σH3 is a value of σ such that ǫγH = ǫγF and therefore it
must be a solution of h(σ) = 0.

Since h(σ) is a polynomial of degree 2, the equation h(σ) = 0 has at
most two solutions. Here we limit our analysis to configurations (iv) of Case
1, and (v) and (vi) of Case 2 since σH3 may only be relevant under these
configurations. In all of them, since ∆ is positively sloped (see Lemma 1)
pointing upwards, it can only go through point B if its initial point in∆1 is on
the left of line (AB), i.e., σH3 < σF . Also, in all these three configurations
the polynomial h(σ) is a convex function of σ since the coefficient of the
quadratic term σ2 is positive.79

Consider first configuration (iv) of Case 1. We can see geometrically
that if there is a σH3 > s−βLL

1+αLL
then it must satisfy s−βLL

1+αLL
< σH1 < σH3 <

σF . Straight computations show that in this configuration h(σF ) > 0 and
h (σH1) < 0. Therefore there is a unique σH3 ∈ (σH1 , σF ) such that h (σH3) =
0. By continuity, we have that ǫγH > ǫγF for σF > σ > σH3 , and ǫγH < ǫγF
for σH1 < σ < σH3.

Consider now configurations (v) and (vi) of Case 2. As seen above if
σH3 > s−βLL

1+αLL
exists it must satisfy σH3 < σF . Straight computations show

that in these configurations h(σF ) > 0. In configuration (v) of Case 2 we also

have that h
(
s−βLL
1+αLL

)
< 0, which proves existence and uniqueness of σH3 . We

79Indeed, this coefficient is given by

c ≡ (2 + θαKK) {αLL − αΓL + θ [αΓKαKL − αKK (1 + αΓL)]}

+2 (1 + θαKK) {2 + αLL + αΓL − θ [αΓKαKL − αKK (1 + αLL)]}

In configuration (iv) c > 0, by Assumption 3 and 7. In configurations (v) and (vi) it is
also positive since, by Assumption 11, αKi = βKi = 0 and c becomes c ≡ 4 (1 + αLL)
which is positive by Assumption 3.
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then have ǫγH > ǫγF for σ > σH3 , and ǫγH < ǫγF for σ < σH3 . In configuration

(vi), on the contrary, h
(
s−βLL
1+αLL

)
> 0. Therefore two cases are possible. Either

there are two roots, σa
H3
and σb

H3
, for the polynomial h (σH3) = 0, such that

s−βLL
1+αLL

< σa
H3

< σb
H3

< σF , and in this case εγH < εγF for σ ∈
(
σHa

3
, σHb

3

)
, and

εγH > εγF otherwise. Notice however that the existence of σH3 ∈
(
s−βLL
1+αLL

, σF

)

in this configuration requires that S > S1, which is ruled out by Assumption

12. Alternatively there is no σH3 ∈
(
s−βLL
1+αLL

, σF

)
and εγH > εγF for all

σ > s−βLL
1+αLL

.

7.7 Configurations of Case 2 and Lemma 4

Lemma 4 Under Assumptions 3, 10 and 11.1, if 0 < S1 < SD, then S > S1
for all σ > s−βLL

1+αLL
; while if SD < S1 < 1, then S < S1 ⇔

s−βLL
1+αLL

< σ < σS1 ,

where σS1 ≡ − (I4−I3)(1−s)
I2

.

Proof: Notice that using (11), (14), Lemma 3, Assumptions 10 and 11.1, we

can write S1 − SD = − θI2
(I4−I3)

1+αLL
s−βLL

[
σS1 − s−βLL

1+αLL

]
and S − S1 = − θI2

σ(I4−I3)[
σ − σS1

]
. Hence, since I2 < 0 and I4 − I3 > 0 under Assumptions 10 and

11.1, and since 1+αLL
s−βLL

> 0 under Assumption 3, we see that S > S1 ⇔

σ > σS1 , while σS1 < s−βLL
1+αLL

⇔ S1 < SD. Therefore, when S1 < SD, S > S1

for all σ > s−βLL
1+αLL

. When S1 > SD then S < S1 ⇔
s−βLL
(1+αLL)

< σ < σS1.
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