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1 Introduction

We consider a class of pure exchange economies with consumption externali-
ties. Our goal is to provide sufficient conditions for the generic regularity when
externalities appear both in utility functions and in consumption sets.

In presence of externalities, competitive equilibria are not necessarily Pareto
optimal. It is therefore an open and important issue to study Pareto improving
policies. Our work is a first step to study that issue. 3

There is a large and growing literature on general equilibrium models with
externalities. Regarding recent contributions, we can quote Cornet and Top-
uzu (2005), Scotchmer (2005), Noguchi and Zame (2006), del Mercato (2006),
Carvajal (2007), Geanakoplos and Polemarchakis (2007), Heidhues and Riedel
(2007), Kung (2007). We follow Laffont and Laroque (1972) and Laffont (1976,
1977, 1988) by incorporating consumption externalities not only in the pref-
erences but also in the consumption sets. So, we consider individual consump-
tion sets (which embody consumption constraints independently from wealth
constraints) depending on the consumptions of the others. We provide some
evidences of this dependency.

• Noise. “... The consumption by consumer i’s neighbor of loud music at three
in the morning may prevent her from sleeping” (Mas-Colell et al., 1995). So,
without loud music the consumption set of consumer i allows any sleeping or
working consumption up to 24 hours per day. But, the consumption of loud
music m−i by consumer i’s neighbor decreases the physiologically possible
daily consumption of sleeping or working by consumer i to a level si(m−i)
less than 24 hours.

• Pollution. (a) The global consumption of some goods pollutes rivers and
seas. Without pollution the consumption set of household h allows any
swimming daily consumption up to 24 hours. On the other hand, the pres-
ence of polluting consumptions by households other that h, z−h, decreases
the physiologically possible daily consumption of swimming by household h
to a level αh(z−h) less than 24 hours. However, the level can increase with
the consumption of health cares (Laffont, 1988). (b) A high level of pollution
due to the global consumption of energy may induce authorities to impose
some upper limit on the possibility of physical exercise of households.

• Congestion. The available quantity and quality of a service in a network
industry like telephone, internet or electricity depend on the global con-
sumption. Externalities in consumption possibilities may naturally arise due
to the negative effect of congestion. For instance, the consumption set of
an Italian household usually allows any daily consumption of natural gas.

3 See, in different settings, Geanakoplos and Polemarchakis (1986) and Citanna,
Kajii and Villanacci (1998).
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During Winter 2006, the Italian government has imposed upper bounds on
the possible daily consumption of natural gas by households, public schools
and public administrations, due to the high level of global consumption of
natural gas by Russia and Ukraine. 4

We consider smooth consumption sets, that is, each consumption set is de-
scribed by an inequality on a differentiable function (called possibility func-
tion), in the spirit of Smale’s work (1974b). In the same line, on the financial
markets side, many different authors have considered portfolio sets described
in terms of functions, Siconolfi (1986a, 1986b), Balasko, Cass and Siconolfi
(1990), Cass (1992), Polemarchakis and Siconolfi (1997), Cass, Siconolfi and
Villanacci (2001), Carosi and Villanacci (2006).

We follow Smale’s extended approach where the study is directly focused on
households characteristics (i.e., utility and possibility functions) and conse-
quently, the equilibrium function is explicitly described using Kuhn-Tucker
conditions without involving individual demand functions. 5 In presence of
externalities, this approach can be useful since otherwise one should work
with individual demand functions which depend on the individual demand
functions of the others, which depend on the individual demand functions of
the others, and so on. Assumptions 1 and 2 on utility and possibility functions
are enough to get the non-emptiness and the compactness of the equilibrium
set associated with a given economy (del Mercato, 2006). 6

But, we provide an example of an exchange economy with externalities and no
consumption constraints where all endowments are singular with an infinite
equilibrium set. 7 So, for our purpose, that is regularity results, we introduce
Assumption 10.

Point 1 of Assumption 10 means that the effect of change in the consump-
tions of the others on the marginal utility of an individual (with respect to
his own consumption) is “dominated” by the effect of change in his own con-
sumption. Point 2 of Assumption 10 is an analogous condition on possibility
functions. Assumption 10 is satisfied when no externalities are taken into ac-
count or when utility and possibility functions are additively separable with
respect to the own consumption and the consumption of the others. This lat-
ter condition is often assumed on utility functions (Crès, 1996, Geanakoplos

4 The Russian Company Gazprom provides 27 percent of Italy’s gas. In 2007, the
governments of Russia and Italy signed a protocol to cooperate on the improvement
of gas pipelines from Russia to Europe.
5 See Smale (1974a, 1974b, 1981). The reader can also find a survey of this approach
in Villanacci et al. (2002).
6 In this paper, possibility functions also depend on endowments. For the sake of
clarity, here we consider only externalities.
7 We thank Andreu Mas-Colell and Paolo Siconolfi who have greatly help us for it.
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and Polemarchakis, 2007).

We have also to overcome a difficulty coming from the fact that the equilibrium
function is not everywhere differentiable, since equilibrium consumptions may
be on the boundary of the consumption sets. We follow the strategy laid
out in Cass, Siconolfi and Villanacci (2001), where general portfolio sets are
encompassed while still permitting differential techniques. But, the presence
of externalities in the possibility functions leads to a possible strong lack of
continuity in the set of household’s supporting prices. Then, we also consider
simple perturbations of the possibility functions, that is, translations of the
possibility functions (see major details in Section 5).

Our main result are Theorem 16 and and Corollary 18. Theorem 16 states
that almost all perturbed economies are regular and Corollary 18 provides the
generic regularity result in the space of endowments and possibility functions. 8

As usual, a regular economy has only a finite number of equilibria which
locally depend on the parameters describing the economy in a continuous or
a differentiable manner. 9

There is a large and huge literature on regularity results without externali-
ties. For major and exhaustive expositions see Smale (1981), Dierker (1982),
Debreu (1983), Mas-Colell (1985), and Balasko (1988). Regarding analysis
encompassing various sorts of consumption constraints, in Smale (1974a), Vil-
lanacci (1993) and Shannon (1994), consumption sets allow zero consumptions
and in Bonnisseau and Rivera Cayupi (2006), consumptions may be restricted
to be above minimal levels. Most related to our purpose is Smale (1974b),
where households have general consumption sets described in terms of in-
equalities on functions. But, in Smale (1974b), no externalities are taken into
account.

It could be surprising, but to the best of our knowledge, there are only few
results on regularity in presence of consumption externalities and no one con-
siders consumption constraints. In Crès (1996) and in Geanakoplos and Pole-
marchakis (2007), each utility function is additively separable. In Heidhues
and Riedel (2007), utility functions have a functional form which generalizes
the additive separable case. In both cases, point 1 of Assumption 10 is clearly
satisfied. Nevertheless, the main purpose of these papers concerns Pareto opti-
mality issues. In Bonnisseau (2003), preferences satisfy Assumption DP which
is more general than point 1 of Assumption 10. We extend Assumption DP
to our setting. Its extension is weaker than Assumption 10 but the economic

8 Following Smale (1974a), almost all means in an open and full measure subset.
Following Mas-Colell (1985), generic means in an open and dense subset, since the
space of possibility functions is not a finite dimensional space.
9 Note that if the parameters are elements of an arbitrary topological space, then
differentiability is a meaningless idea, but one still gets continuity.
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interpretation would be hazardous (see the details in Subsection 4.1). In Kung
(2007), there is no specific assumption on the utility functions, but the author
has to perturb the utility functions.

The paper is organized as follows. Section 2 is devoted to the model and to
the basic assumptions. In Section 3, we present the definitions of competi-
tive equilibrium and of equilibrium function. Theorem 9 recalls non-emptiness
and compactness results. In Section 4, we provide an example, then we state
Assumption 10 and we compare it with assumptions previously made in litera-
ture. In Section 5, we state the definitions of regular economy and of perturbed
economy. In Section 6, we present the main results of this paper, Theorem 16
and Corollary 18. In Section 7, we prove our main results. Finally, all proofs
of the lemmas are gathered in Appendix A. In Appendix B, the reader can
find results from differential topology used in our analysis.

2 Model and basic assumptions

There is a finite number C of physical commodities labeled by the superscript
c ∈ {1, ..., C}. The commodity space is RC

++. There is a finite number H of
households labeled by subscript h ∈ H := {1, ..., H}. Each household h ∈ H is
characterized by an endowment of commodities, a possibility function and a
utility function. Possibility and utility function depend on the consumptions
of all households.

The notations are summarized below.

• xc
h is the consumption of commodity c by household h; xh := (x1

h, .., x
c
h, .., x

C
h )

denotes household h’s consumption and x−h := (xk)k 6=h the consumptions of
households other than h called environment of household h; x := (xh)h∈H.

• ec
h is the endowment of commodity c by household h; eh := (e1

h, .., e
c
h, .., e

C
h )

denotes household h’s endowment; e := (eh)h∈H.
• As in general equilibrium model à la Arrow-Debreu, each household h has

to choose a consumption in his consumption set Xh, i.e., in the set of all
consumption alternatives which are a priori possible for him. In the spirit
of Smale’s work (1974b), the consumption set of household h is described
in terms of an inequality on a function χh. We call χh possibility function.
Observe that this idea is usual for smooth economies with production where
each production set is described by an inequality on a function called trans-
formation function (see Villanacci et al. (2002), for instance).

Also note that in Smale (1974b), each consumption set is described by
more than one function. Our results can be extended to this case, but this
is not our main objective. The main innovation of this paper comes from
the dependency of the consumption set of each household with respect to
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the consumptions of households other than h, i.e., given x−h ∈ RC(H−1)
++ , the

consumption set of household h is the following set,

Xh(x−h) =
{
xh ∈ RC

++ : χh(xh, x−h) ≥ 0
}

where the possibility function χh is a function from RC
++ × RC(H−1)

+ to R.
• Each household h ∈ H has preferences described by a utility function uh

from RC
++ × RC(H−1)

+ to R, and uh(xh, x−h) is household h’s utility level
associated with the consumption xh and the environment x−h.

• (uh, χh, eh)h∈H is an economy.
• pc ∈ R++ is the price of one unit of commodity c; p := (p1, .., pc, .., pC) ∈

RC
++.

• Given a vector w = (w1, .., wc, .., wC) ∈ RC , we denote
w\ := (w1, .., wc, .., wC−1) ∈ RC−1.

From now on, we make the following assumptions on utility and possibility
functions taken from del Mercato (2006).

Assumption 1 For all h ∈ H,

(1) uh is continuous on RC
++×RC(H−1)

+ and C2 in the interior of its domain.

(2) for each x−h ∈ RC(H−1)
++ , the function uh(·, x−h) is differentiably strictly

increasing, i.e., for every xh ∈ RC
++, Dxh

uh(xh, x−h) ∈ RC
++.

(3) For each x−h ∈ RC(H−1)
++ , the function uh(·, x−h) is differentiably strictly

quasi-concave, i.e., for every xh ∈ RC
++, D2

xh
uh(xh, x−h) is negative defi-

nite on Ker Dxh
uh(xh, x−h).

10

(4) For each x−h ∈ RC(H−1)
+ and for every u ∈ Im uh, clRC{xh ∈ RC

++ :
uh(xh, x−h) ≥ u} ⊆ RC

++.

Assumption 2 For all h ∈ H,

(1) χh is continuous on RC
++×RC(H−1)

+ and C2 in the interior of its domain.

(2) (Convexity of the consumption set) For each x−h ∈ RC(H−1)
+ , the function

χh(·, x−h) is quasi-concave. 11

10 Let v and v′ be two vectors in Rn, v · v′ denotes the inner product of v and v′.
Let A be a real matrix with m rows and n columns, and B be a real matrix with
n rows and l columns, AB denotes the matrix product of A and B. Without loss
of generality, vectors are treated as row matrix and A denotes both the matrix and
the following linear application A : v ∈ Rn → A(v) := AvT ∈ R[m] where vT is the
transpose of v and R[m] := {wT : w ∈ Rm}. When m = 1, A(v) coincides with the
inner product A · v, treating A and v as vectors in Rn.
11 Since χh is C2 in the interior of its domain, then for each x−h ∈ RC(H−1)

++ , the
function χh(·, x−h) is differentiably quasi-concave, i.e., and for every xh ∈ RC

++,
D2

xh
χh(xh, x−h) is negative semidefinite on KerDxh

χh(xh, x−h).
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(3) (Survival condition) There exists x̄h ∈ RC
++ such that χh(x̄h, x−h) ≥ 0 for

every x−h ∈ RC(H−1)
+ .

(4) (Non-satiation) For each x−h ∈ RC(H−1)
++ and for every xh ∈ RC

++,
(a) Dxh

χh(xh, x−h) 6= 0; (b) Dxh
χh(xh, x−h) /∈ −RC

++.
(5) (Global desirability) For each x ∈ RCH

++ and for each c ∈ {1, ..., C} there
exists h(c) ∈ H such that Dxc

h(c)
χh(c)(xh(c), x−h(c)) ∈ R+.

For the interpretation of points 1, 2, 4 and 5 of Assumption 2 we refer to del
Mercato (2006), pp. 529-530.

Point 3 of Assumption 2 guarantees that there exists one point which belongs
to the consumption set Xh(x−h) of household h whatever are the consumptions

x−h ∈ RC(H−1)
++ of others. Hence we call point 3 of Assumption 2 “survival

condition”. Moreover, by Definition 4 and the condition (1) given below, it
follows that point 3 of Assumption 2 implies the existence of endowments
satisfying the survival assumption whatever is the environment. 12

Note that in order to get compactness and properness results, in points 1 and
4 of Assumption 1 and in points 1, 2 and 3 of Assumption 2, we consider
x−h ∈ RC(H−1)

+ , which gives some information on the boundary behavior of uh

and χh (see the proof of Lemmas 21 and 24 in Appendix A).

Definition 3 U denotes the set of u = (uh)h∈H which satisfies Assumption 1,
and X denotes the set of χ = (χh)h∈H which satisfies Assumption 2.

We now define the set of endowments, which satisfy the survival assumption
for given possibility functions.

Definition 4 Let χ ∈ X . Define the set Eχ :=
∏
h∈H

Eχh
⊆ RCH

++ where

Eχh
:=

 ⋂
x−h∈RC(H−1)

+

{
xh ∈ RC

++ : χh(xh, x−h) ≥ 0
}+ RC

++

From point 3 of Assumption 2, Eχ 6= ∅. Moreover, by definition, Eχ is an open
subset of RCH

++ . Observe that if e = (eh)h∈H ∈ Eχ, then the following condition
is satisfied for every h ∈ H.

∀ x−h ∈ RC(H−1)
+ , ∃ x̃h ∈ RC

++ : χh(x̃h, x−h) > 0 and x̃h � eh (1)

Note that he above condition is nothing else than the survival condition given
by point 3 of Assumption 2 in del Mercato (2006).

12 The survival assumption states that for each household there is an interior point
of his consumption set, which is strictly smaller than his endowment.
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Remark 5 From now on, u ∈ U is kept fixed and an economy is parameterized
by (χ, e) taken in the following set.

Θ := {(χ, e) ∈ (C0−2(T, R))H × RCH
++ : χ ∈ X and e ∈ Eχ} (2)

where T := RC
++ ×RC(H−1)

+ and C0−2(T, R) is defined by (19) in Appendix B.

3 Competitive equilibrium

The definitions and the results stated in this section are direct transpositions
of the ones in del Mercato (2006).

Without loss of generality, commodity C is the numéraire good. Then, given
p\ ∈ RC−1

++ with innocuous abuse of notation we denote p := (p\, 1) ∈ RC
++.

Definition 6 (x∗, p∗\) ∈ RCH
++ × RC−1

++ is a competitive equilibrium for the
economy (χ, e) if for all h ∈ H, x∗h solves the following problem

max
xh∈RC

++

uh(xh, x
∗
−h)

subject to χh(xh, x
∗
−h) ≥ 0

p∗ · xh ≤ p∗ · eh

(3)

and x∗ satisfies market clearing conditions∑
h∈H

x∗h =
∑
h∈H

eh (4)

Proposition 7 Let (χ, e) ∈ Θ be an economy, x∗−h ∈ RC(H−1)
++ and p∗\ ∈

RC−1
++ . Problem (3) has a unique solution. x∗h ∈ RC

++ is the solution to problem
(3) if and only if there exists (λ∗h, µ

∗
h) ∈ R++ × R such that (x∗h, λ

∗
h, µ

∗
h) is the

unique solution of the following system.
(h.1) Dxh

uh(xh, x
∗
−h)− λhp + µhDxh

χh(xh, x
∗
−h) = 0

(h.2) −p∗ · (xh − eh) = 0

(h.3) min
{
µh, χh(xh, x

∗
−h)

}
= 0

(5)

Define the set of endogenous variables as Ξ := (RC
++ × R++ × R)H × RC−1

++ ,
with generic element ξ := (x, λ, µ, p\) := ((xh, λh, µh)h∈H, p\). We can now
describe extended equilibria using system (5) and market clearing conditions
(4). Observe that, from Definition 6 and Proposition 7, the market clearing
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condition for good C is “redundant” (see equations (h.2)h∈H in (5)). The
equilibrium function defined below takes into account this aspect. For each
economy (χ, e) ∈ Θ, the equilibrium function Fχ,e : Ξ → Rdim Ξ

Fχ,e(ξ) :=
((

F h.1
χ,e (ξ), F h.2

χ,e (ξ), F h.3
χ,e (ξ)

)
h∈H

, FM
χ,e(ξ)

)
(6)

is defined by

F h.1
χ,e (ξ) := Dxh

uh(xh, x−h)−λhp+µhDxh
χh(xh, x−h), F h.2

χ,e (ξ) := −p · (xh−eh),

F h.1
χ,e (ξ) := min {µh, χh(xh, x−h)}, and FM

χ,e(ξ) :=
∑
h∈H

(x
\
h − e

\
h).

Remark 8 ξ∗ ∈ Ξ is an extended competitive equilibrium for the economy
(χ, e) ∈ Θ if and only if (x∗h, λ

∗
h, µ

∗
h) solves system (5) at (x∗−h, p

∗\) for all

h ∈ H and
∑
h∈H

(x
∗\
h −e

\
h) = 0 or, in other words, F−1

χ,e (ξ
∗) = 0. With innocuous

abuse of terminology, we call ξ∗ simply an equilibrium.

Theorem 9 (Existence and compactness). For each economy (χ, e) ∈ Θ, the
equilibrium set F−1

χ,e (0) is non-empty and compact.

4 An additional assumption

To illustrate the fact that the two previous assumptions are not sufficient
to get generic regularity, we consider the following example. Consider a two
commodity-two household economy with consumption sets coinciding with the
whole commodity space R2

++ and with the following utility functions.

u1(x1, x2) := ln((1 + ε)x1
1 + x1

2) + x2
1 +

1

1 + ε
x2

2 := u2(x2, x1), with ε > 0

One easily checks that for each (e1, e2) ∈ (R2
++)2, we have that

(
(e1

1 − t1, e
2
1 + t2), (e

1
2 + t1, e

2
2 − t2), p

∗1 =
1 + ε

(e1
1 + e1

2) + ε(e1
1 − t1)

)

is an equilibrium for every (t1, t2) ∈ R2 such that t1 belongs to an appropriate
neighborhood of 0 and t2 = t1p

∗1. So, no economy (e1, e2) ∈ (R2
++)2 has a

finite number of equilibria, which implies that all economies are singular.

This phenomenon can be explained by the fact that the external effect of
household 1 on household 2 is too strong with respect to the effect of household
2’s own consumption. Indeed, let us consider the marginal rate of substitution
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MRS2(x1, x2) of household 2 at (x1, x2), which is equal to
(1 + ε)

(1 + ε)x1
1 + x1

2

. So

∣∣∣∣∣∂ MRS2

∂x1
1

(x1, x2)

∣∣∣∣∣ = (1 + ε)2

((1 + ε)x1
1 + x1

2)
2

>

∣∣∣∣∣∂ MRS2

∂x1
2

(x1, x2)

∣∣∣∣∣ = (1 + ε)

((1 + ε)x1
1 + x1

2)
2

Thus, we introduce the following additional assumption.

Assumption 10 Let (x, v) ∈ RCH
++×RCH such that v ∈

∏
h∈H

Ker Dxh
uh(xh, x−h)

and
∑
h∈H

vh = 0. Then,

(1) vh

∑
k∈H

D2
xkxh

uh(xh, x−h)(vk) < 0 whenever vh 6= 0, and

(2) vh

∑
k∈H

D2
xkxh

χh(xh, x−h)(vk) ≤ 0 whenever vh ∈ Ker Dxh
χh(xh, x−h).

Point 1 of Assumption 10 means that the effect of changes in the consumptions
(xk)k 6=h of households other than h on the marginal utility Dxh

uh(xh, x−h) of
household h is “dominated” by the effect of changes in the consumption xh of
household h. Indeed, under point 3 of Assumption 1, point 1 of Assumption
10 states that the absolute value of vhD

2
xh

uh(xh, x−h)(vh) is larger than the

remaining term vh

∑
k 6=h

D2
xkxh

uh(xh, x−h)(vk). Under points 1b and 2 of Assump-

tion 2, point 2 of Assumption 10 has an analogous meaning for the possibility
functions.

4.1 Comparison with previous assumptions

First, let us consider the case where utility and possibility functions do not
depend on the environment in the spirit of Smale (1974b), that is, when the
following assumption holds true.

Assumption 11 For all h ∈ H, uh and χh depend only on xh.

Then Assumption 10 is trivially satisfied, since utility functions are differen-
tiably strictly quasi-concave and possibility functions are differentiably quasi-
concave.

Now, when externalities are taken into account, there are only few results
on regularity. Importantly, note that consumption constraints are never taken
into account. In all of these results, every consumption set coincides with RC

++.
Crès (1996), Bonnisseau (2003), and Geanakoplos and Polemarchakis (2007)
concern exchange economy where preferences depend on the consumptions of
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all households. Whereas Kung (2007) concerns production economies where
all households’ consumptions (private and public) and all firms’s productions
enter into utility functions.

In Kung (2007), utility functions satisfy assumptions similar to the ones given
in Assumption 1. There are no additional assumption on the utility functions
but the author needs to perturb the utility functions.

In Crès (1996) and in Geanakoplos and Polemarchakis (2007), each utility
function is additively separable, that is, for all h ∈ H the utility function uh

takes the following form

uh(xh, x−h) = ũh(xh) + vh(x−h)

But, their objective mainly concerns Pareto optimality issues.

However, first, observe that the equilibrium set associated with a given econ-
omy coincides with the one in which no externalities are taken into account,
i.e., where the utility functions are (ũh)h∈H.

Second, observe that point 1 of Assumption 10 is satisfied since in the above
case for all h ∈ H and for every (xh, x−h) ∈ RCH

++ ,

D2
xkxh

uh(xh, x−h) = 0, ∀ k 6= h

Assumption 10 also holds true when the utility function has the following
functional form, which generalizes the additively separable case:

uh(xh, x−h) = Vh(ũh(xh), x−h)

where Vh is strictly increasing with respect to the first variable. We refer to
Heidhues and Riedel (2007) where it is shown that the above functional form is
a necessary and sufficient condition for the equality between the equilibrium
set associated with the utility functions (Vh)h∈H and the one in which no
externalities are taken into account, i.e., where preferences are represented by
the utility functions (ũh)h∈H. So, once again, to study regular economies, one
can apply the results of the literature concerning regularity results without
externalities.

In an analogous way, under points 1 and 2 of Assumption 2, point 2 of As-
sumption 10 is satisfied if possibility functions are additively separable or,
more generally, if they have the following functional form.

χh(xh, x−h) = Ph(χ̃h(xh), x−h)

In Bonnisseau (2003), preferences are more general than the ones considered
in this paper, since they are non transitive and non complete. In this general
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setting, the author obtains the result of regularity for almost all endowments,
under a geometric assumption. When preferences are represented by smooth
utility functions, this assumption can be restated as follows.

Assumption 12 (Assumption DP; Bonnisseau, 2003). For all x ∈ RCH
++ ,

proj
Ku(x)

(Im Γu(x) + Su(x)) = Ku(x)

where Ku(x) :=
∏
h∈H

Ker Dxh
uh(x), Γu(x) := Dx (Dxh

uh(x))h∈H,

Su(x) :=

{(
∂uh

∂xC
h

(x)s

)
h∈H

∣∣∣ s ∈ RC

}
, proj

Ku(x)
(v) :=

 proj
Ker Dxh

uh(x)
(vh)


h∈H

for all v ∈ RCH . 13

But, observe that Assumption 12 is mainly an assumption on the quantita-
tive behavior of households’ supporting prices with respect to an infinitesimal
perturbation of consumption allocations, i.e., on Dx (Dxh

uh(x))h∈H. When ex-
ternalities are present in both utility and possibility functions, it follows from
Kuhn-Tucker conditions that supporting prices also depend on the Lagrange
multipliers associated with the possibility functions, i.e., they are determined
by (Dxh

uh(x) + µhDxh
χh(x))h∈H. Therefore, Assumption 12 can not be ex-

tended to our setting without involving the Lagrange multipliers (µh)h∈H.
That is, Assumption 12 can be generalized as follows.

Assumption 13 (Generalization of Assumption DP). For all x ∈ RCH
++ and

for all µ = (µh)h∈H ∈ RH
+ such that (Dxh

uh(x) + µhDxh
χh(x))h∈H ∈ RCH

++ ,

proj
Ku,µ,χ(x)

(Im Γu,µ,χ(x) + Su,µ,χ(x)) = Ku,µ,χ(x)

where Ku,µ,χ(x) :=
∏
h∈H

(Ker Dxh
uh(x) ∩Ker µhDxh

χh(x)),

Γu,µ,χ(x) := Dx (Dxh
uh(x) + µhDxh

χh(x))h∈H,

Su,µ,χ(x) :=

{(
∂uh

∂xC
h

(x)s + µh
∂χh

∂xC
h

(x)s

)
h∈H

∣∣∣ s ∈ RC

}
, and

proj
Ku,µ,χ(x)

(v) :=

 proj
Ker Dxh

uh(x) ∩Ker µhDxh
χh(x)

(vh)


h∈H

for all v ∈ RCH .

It can be shown that the above assumption is weaker than Assumption 10.
The major drawback of the above assumption is that it involves the Lagrange

13 proj
Ker Dxh

uh(x)
(vh) denotes the orthogonal projection of vh on KerDxh

uh(x). Also

note that Assumption 12 is weaker than the following assumption: for all x ∈ RCH
++

and for all v ∈ Ku(x), vΓu(x)(v) = 0 implies v = 0.

12



multipliers associated with the possibility functions. Consequently, utility and
possibility functions are not independently considered. So, the economic in-
terpretation would be hazardous.

5 Regular economies and possibility perturbations

Let us start with the definition of regular economy.

Definition 14 (χ, e) ∈ Θ is a regular economy if for each ξ∗ ∈ F−1
χ,e (0),

(1) Fχ,e is a C1 function around ξ∗. 14

(2) The differential mapping DξFχ,e(ξ
∗) is onto.

Our analysis is based on results from differential topology, in the spirit of
Balasko, Debreu, Mas-Colell and Smale. Since nothing prevents the equilib-
rium consumptions to be on the boundary of the consumption sets, then for
every h ∈ H the function F h.3

χ,e (ξ) = min {µh, χh(xh, x−h)} is not C1 if µh = 0
and χh(xh, x−h) = 0. Therefore, first of all, it shall be shown that this case is
exceptional at each equilibrium. For that purpose we follow the strategy laid
out by Cass, Siconolfi and Villanacci (2001). 15

But, the presence of externalities in the possibility functions leads to a possible
strong lack of continuity in the set of household’s supporting prices. Indeed,
consider the situation in which, at equilibrium, household h is on the boundary
of his consumption set, i.e., χh(x

∗
h, x

∗
−h) = 0. If the associated multiplier µ∗h is

equal to 0, household h’s supporting prices belong to the positive half-line gen-
erated by Dxh

uh(x
∗
h, x

∗
−h). If, in every neighborhood of x∗−h, households other

than h can move to x−h in a such way that x∗h remains on the boundary of
the consumption set, i.e., χh(x

∗
h, x−h) = 0 then, the positive half-line of house-

hold h’s supporting prices might spreads over the cone positively generated
by Dxh

uh(x
∗
h, x−h) and Dxh

χh(x
∗
h, x−h).

If the associated multiplier µ∗h is positive, household h’s supporting prices
belong to the cone positively generated by Dxh

uh(x
∗
h, x

∗
−h) and Dxh

χh(x
∗
h, x

∗
−h).

If, in every neighborhood of x∗−h, households other than h can move to x−h

in a such way that x∗h is now in the interior of the consumption set, that is
χh(x

∗
h, x−h) > 0 then, the positive cone of household h’s supporting prices

collapses into the positive half-line generated by Dxh
uh(x

∗
h, x−h).

14 Fχ,e is a C1 function around ξ∗ means that there exists an open neighborhood
I(ξ∗) of ξ∗ in Ξ such that the restriction of Fχ,e to I(ξ∗) is a C1 function.
15 The reader can find a survey of this approach in Villanacci et al. (2002).
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Therefore, we consider simple perturbations of the possibility functions, that is,
translations of the possibility functions. Following is the definition of perturbed
economies for a given χ ∈ X .

Definition 15 A perturbed economy (χ + a, e) is parameterized by possibility
levels a = (ah)h∈H ∈ RH

++ and endowments e ∈ Eχ, and it is defined by

χ + a := (χh + ah)h∈H

Λχ := RH
++ × Eχ denotes the set of perturbed economies.

It is an easy matter to check that for every (a, e) ∈ Λχ, the perturbed economy
(χ + a, e) ∈ Θ.

Finally, note that for the reasons mentioned above, if Assumption 11 holds
true, then perturbations of the possibility functions are not needed. Indeed, the
set of household h’s supporting prices does not depend on the consumptions
of others.

6 Main results

We now state the main results of the paper: the regularity for almost all
perturbed economies and the generic regularity in the space of endowments
and possibility functions.

Theorem 16 (Regularity for almost all perturbed economies). Let χ ∈ X .
The set Λr

χ of (a, e) ∈ Λχ such that (χ + a, e) is a regular economy is an open
and full measure subset of Λχ.

Under Assumption 11, that is when utility and possibility functions do not
depend on the environment, then regularity holds for almost all endowments
without perturbing possibility functions. It suffices to follow the same strategy
and computations as in the proof of Theorem 16 (see Subsections 7.1 and 7.2).

Theorem 17 (Regularity for almost all endowments). If utility and possibility
functions satisfy Assumption 11, then set Er

χ of endowments e ∈ Eχ such that
(χ, e) is a regular economy is an open and full measure subset of Eχ.

Now, endow the set C0−2(T, R) with the topology of the C0−2 uniform con-
vergence on compacta (see Definition 26 in Appendix B), the set RCH

++ with
the topology induced by the usual topology on RCH , and the set Θ with the
topology induced by the product topology on (C0−2(T, R))H × RCH

++ . As a
consequence of Theorem 16 we obtain the following corollary.

14



Corollary 18 (Generic regularity). The set R of (χ, e) ∈ Θ such that (χ, e)
is a regular economy is an open and dense subset of Θ.

From Corollary 18, Theorem 9, a consequence of the Regular Value Theorem,
and the Implicit Function Theorem (see Corollary 30 and Theorem 33 in
Appendix B), we obtain the following proposition which provides the main
properties of regular economies.

Proposition 19 (Properties of regular economies). For each (χ, e) ∈ R,

(1) the equilibrium set associated with the economy (χ, e) is a non-empty
finite set, i.e.,

∃ r ∈ N \ {0} : F−1
χ,e (0) = {ξ1, ..., ξr}

(2) there exist an open neighborhood I of (χ, e) in Θ, and for each i = 1, . . . , r
an open neighborhood Ni of ξi in Ξ and a continuous function gi : I → Ni

such that

(a) Nj ∩Nk = ∅ if j 6= k,
(b) gi(χ, e) = ξi,
(c) for all (χ′, e′) ∈ I, F−1

χ′,e′(0) = {gi(χ
′, e′) : i = 1, . . . , r},

(d) the economies (χ′, e′) ∈ I are regular.

7 Proofs

The proof of Theorem 16 is divided into two steps: first, we prove that the
equilibrium function is C1 around each equilibrium for almost all perturbed
economies. Second, we show that almost all perturbed economies are regular.

Corollary 18 is then deduced from Theorem 16 by using the particular form
of perturbations. The proofs of the lemmas are gathered in Appendix A.

7.1 The equilibrium function is almost everywhere C1

Take for fixed χ ∈ X and consider the set of perturbed economies Λχ given in
Definition 15. We prove the following statement.

Proposition 20 The set Λ1
χ of (a, e) ∈ Λχ such that for each ξ∗ ∈ F−1

χ+a,e(0),
Fχ+a,e is a C1 function around ξ∗ is an open and full measure subset of Λχ.

From Assumptions 1 and 2, the equilibrium function Fχ+a,e is differentiable
everywhere but not at any point ξ such that µh = χh(xh, x−h) + ah = 0. To
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prove that this so-called border line case is exceptional, we consider a finite
family of auxiliary functions. We then show that a border line case is a pre-
image of 0 by one of these functions and that the set of perturbed economies
for which the pre-image of 0 is non-empty is exceptional.

We consider the equilibrium function F̃ : Ξ× Λχ → Rdim Ξ defined by

F̃ (ξ, a, e) := Fχ+a,e(ξ) (7)

We also consider the mapping Φ which is the restriction to F̃−1(0) of the
projection of Ξ× Λχ onto Λχ, that is:

Φ : (ξ, a, e) ∈ F̃−1(0) → Φ(ξ, a, e) := (a, e) ∈ Λχ

We state a fundamental property of Φ. A similar result is proved in del Mercato
(2006).

Lemma 21 The projection Φ : F̃−1(0) → Λχ is a proper function.

For all h ∈ H, we consider the set

B̃h :=
{
(ξ, a, e) ∈ F̃−1(0) : µh = χh(xh, x−h) + ah = 0

}
and B̃ :=

⋃
h∈H

B̃h

We remark that

Λ1
χ = Λχ \ Φ(B̃) (8)

Then Λ1
χ is open since B̃ is clearly closed in F̃−1(0) and Φ(B̃) is then closed

by the properness of Φ.

We now show that Φ(B̃) is of measure zero in Λχ. For this, we consider the
following finite set

P :=

J = {J1,J2,J3}
Ji ⊆ H, ∀ i = 1, 2, 3; J1 ∪ J2 ∪ J3 = H;

Ji ∩ Jj = ∅, ∀ i, j = 1, 2, 3, i 6= j.


For all J ∈ P, |Ji| denotes the number of elements of Ji and

ΞJ := R(C+1)H
++ × (R|J1|+|J3| × R|J2|

++ )× R(C−1)
++ (9)

The function F̃J : ΞJ × Λχ → Rdim ΞJ is defined by

F̃J (ξ, a, e) := ((F̃ h.1(ξ, a, e), F̃ h.2(ξ, a, e), F̃ h.3
J (ξ, a, e))h∈H, F̃M(ξ, a, e))
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where F̃J differs from F̃ defined in (7), for the domain and for the component
F̃ h.3
J defined by

F̃ h.3
J (ξ, a, e) :=

µh if h ∈ J1 ∪ J3,

χh(xh, x−h) + ah if h ∈ J2

(10)

When J3 is non-empty, for each h̄ ∈ J3, we define the function F̃J ,h̄ : ΞJ ×
Λχ → RdimΞJ+1 where

F̃J ,h̄(ξ, a, e) := (F̃J (ξ, a, e), F̃ h̄.4
J (ξ, a, e)) ∈ Rdim ΞJ+1

where F̃ h̄.4
J (ξ, a, e) := χh̄(xh̄, x−h̄) + ah̄

(11)

Note that F̃J and F̃J ,h̄ are C1 functions on their domains. Furthermore, for
all J ∈ P, dim ΞJ = dim Ξ. The key lemma of this step is the following one.

Lemma 22 For every J ∈ P such that J3 6= ∅ and for each h̄ ∈ J3, 0 is a
regular value for F̃J ,h̄.

Since the dimension dim ΞJ + 1 of the target space is strictly larger than
the dimension of ΞJ , the Regular Value Theorem and a consequence of Sard’s
Theorem (see Theorems 29 and 31 in Appendix B) imply that for every J ∈ P
such that J3 6= ∅ there exists a full measure subset ΩJ ,h̄ of Λχ such that for
each (a, e) ∈ ΩJ ,h̄,

{ξ ∈ ΞJ : F̃J ,h̄(ξ, a, e) = 0} = ∅

Now, let us consider an element (a, e) ∈ Φ(B̃). Then, there exist ξ ∈ Ξ such
that F̃ (ξ, a, e) = 0 and h̄ ∈ H such that µh̄ = χh̄(xh̄, x−h̄)+ah̄ = 0. Let J ∈ P
defined by

J1 := {h ∈ H : µh = 0 and χh(xh, x−h) + ah > 0},
J2 := {h ∈ H : µh > 0 and χh(xh, x−h) + ah = 0},
J3 := {h ∈ H : µh = χh(xh, x−h) + ah = 0}.

One easily checks that F̃J ,h̄(ξ, a, e) = 0. So, (a, e) /∈ ΩJ ,h̄. Hence, we have

prove that Φ(B̃) is included in the finite union of the complements of ΩJ ,h̄

over all J ∈ P such that J3 6= ∅ and h̄ ∈ J3. Since each of these sets is of
measure zero, so is Φ(B̃).

17



7.2 Almost all perturbed economies are regular

Take for fixed χ ∈ X . Observe that for given (a, e) ∈ Λχ, by Definition 14, the
economy (χ + a, e) is regular if (a, e) belongs to the open and full measure set
Λ1

χ given by (8) in the previous subsection, and

∀ ξ∗ ∈ F−1
χ+a,e(0), rank DξFχ+a,e(ξ

∗) = dim Ξ

From now on, with innocuous abuse of notation:

• the domain of F̃ defined in (7) will be Ξ× Λ1
χ instead of Ξ× Λχ,

• Φ denotes the restriction to F̃−1(0) of the projection of Ξ× Λ1
χ onto Λ1

χ.

Importantly, one easily checks that from (8), now DξF̃ (ξ, a, e) = DξFχ+a,e(ξ)
for every (ξ, a, e) ∈ F̃−1(0). Then, from Assumptions 1 and 2, DξF̃ is now a
continuous function on F̃−1(0).

Let us consider the following set

C̃ :=
{
(ξ, a, e) ∈ F̃−1(0) : rank DξF̃ (ξ, a, e) < dim Ξ

}
We remark that

Λr
χ = Λ1

χ \ Φ(C̃)

Then, we have to prove that Φ(C̃) is closed in Λ1
χ and Φ(C̃) is of measure zero.

Step 1. An element (ξ, a, e) of C̃ is characterized by the fact that the determi-
nant of all the square submatrices of DξF̃ (ξ, a, e) of dimension dim Ξ is equal
to zero. C̃ is closed in F̃−1(0) since the determinant is a continuous function
and DξF̃ is continuous on F̃−1(0). Then, Φ(C̃) is closed since Φ is proper. 16

Step 2. We now show that Φ(C̃) is of measure zero in Λ1
χ. The key lemma is

the following one.

Lemma 23 For every J ∈ P such that J3 = ∅, 0 is a regular value for F̃J .

Then, from a consequence of Sard’s Theorem (see Theorem 31 in Appendix
B), for every J ∈ P such that J3 = ∅, there exists a full measure subset ΩJ
of Λ1

χ such that for each (a, e) ∈ ΩJ and for each ξ∗ such that F̃J (ξ∗, a, e) = 0,

rank DξF̃J (ξ∗, a, e) = dim ΞJ .

Now, let us consider (a, e) ∈ Φ(C̃). Then, there exists ξ ∈ Ξ such that
F̃ (ξ, a, e) = 0 and rank DξF̃ (ξ, a, e) < dim Ξ. Let us consider the partition

16 The proof of the properness of Φ can be easily obtained using the same steps as
in the proof of Lemma 21.
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J associated to (ξ, a, e) as in the previous subsection. Since (a, e) belongs to
Λ1

χ, then J3 = ∅. Hence, one easily checks that F̃J(ξ, a, e) = F̃ (ξ, a, e) on a
neighborhood of (ξ, a, e). So, the partial differential with respect to ξ are the
same and one concludes that (a, e) /∈ ΩJ .

This prove that Φ(C̃) is included in the finite union of the complementary of
ΩJ over all J ∈ P such that J3 = ∅. Since these sets have zero measure, so
is Φ(C̃).

7.3 Generic regularity result in the space of economies

In this subsection, we prove Corollary 18. To show openess and density re-
sults, we follow a similar strategy to the one presented in Citanna, Kajii and
Villanacci (1998). 17

Let R be the set of economies (χ, e) ∈ Θ such that (χ, e) is a regular economy.
The density ofR is a direct consequence of Theorem 16. Indeed, let (χ, e) ∈ Θ.
Using Theorem 16, since an open and full measure subset is dense, one can
find a sequence (aν , eν)ν∈N ⊆ Λχ converging to (0, e) such that (χ + aν , eν)
is a regular economy for every ν ∈ N. From Remark 28 in Appendix B, the
sequence (χ + aν , eν)ν∈N converges to (χ, e), hence R is dense in Θ.

We now show that R is open. We consider the global equilibrium function
F : Ξ×Θ → Rdim Ξ defined by

F (ξ, χ, e) := Fχ,e(ξ) (12)

By Assumptions 1 and 2 and Remark 27 in Appendix B, F is continuous. Let
us also define the restriction Π to F−1(0) of the projection of Ξ×Θ onto Θ,

Π : (ξ, χ, e) ∈ F−1(0) → Π(ξ, χ, e) := (χ, e) ∈ Θ

The important property of Π is given in the following lemma.

Lemma 24 The projection Π : F−1(0) → Θ is a proper function.

For every h ∈ H, we define the following set

Bh := {(ξ, a, e) ∈ F−1(0) : µh = χh(xh, x−h) = 0} and B :=
⋃

h∈H
Bh

Let
Θ1 := Θ \ Π(B) (13)

17 Observe that in Citanna, Kajii and Villanacci (1998), openess and density results
mainly concern constrained suboptimality issues.
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Θ1 is the set of (χ, e) ∈ Θ such that for every ξ∗ ∈ F−1
χ,e (0), Fχ,e is a C1 function

around ξ∗. Definition 14 implies that R ⊆ Θ1.

Θ1 is open in Θ. Indeed, B is closed in F−1(0) as a consequence of Remark 27
(see Appendix B), and Π(B) is closed from the properness of Π.

Now, we prove that R is open in Θ1. We denote again by F the mapping now
defined on Ξ × Θ1 instead of Ξ × Θ and by Π the restriction to F−1(0) of
the projection from Ξ×Θ1 onto Θ1. Importantly, one easily checks that from
(13), now DξF (ξ, χ, e) = DξFχ,e(ξ) for every (ξ, a, e) ∈ F−1(0). Then, from
Assumptions 1 and 2 and Remark 27 in Appendix B, DξF is now a continuous
function on F−1(0).

Let us consider the set

C := {(ξ, χ, e) ∈ F−1(0) : rank DξF (ξ, χ, e) < dim Ξ}

Definition 14 implies that

R = Θ1 \ Π(C)

C is closed due to the continuity of the determinant function and of DξF ,
Π(C) is closed due to the properness of Π. Consequently, R is open in Θ1.

Appendix A

We start by a selection property of the consumption sets, which will play a
fundamental role in the properness result used to show openess properties in
the space of economies Θ (see the proof of Lemma 24). Next, we show all the
lemmas stated in Section 7.

Proposition 25 Let h ∈ H, Θh is the projection of Θ onto C0−2(T, R)×RC
++

equipped with the metric induced by the one on C0−2(T, R)× RC. 18 For each

h ∈ H, there is a continuous function x̂h : RC(H−1)
+ ×Θh → RC

++ such that for

each (z, χh, eh) ∈ RC(H−1)
+ ×Θh, χh(x̂h(z, χh, eh), z) > 0 and x̂h(z, χh, eh) � eh.

Proof of Proposition 25. First, observe that RC(H−1)
+ × Θh is a metric

space. Second, the correspondence φh : RC(H−1)
+ × Θh ⇒ RC defined by

φh(z, χh, eh) :=
{
xh ∈ RC

++ : χh(xh, z) > 0 and xh � eh

}
is non-empty con-

vex valued by (1) and Definition 15, and by point 2 of Assumption 2. We now
prove that φh has open fiber, that is, for all xh ∈ RC

+, the following set

φ−1
h (xh) :=

{
(z, χh, eh) ∈ RC(H−1)

+ ×Θh : χh(xh, z) > 0 and xh � eh

}
18 The metric on C0−2(T, R)×RC is given by summing the metric d̃ on C0−2(T, R)
(see Definition 26 in Appendix B) and the Euclidean metric on RC .
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is open in RC(H−1)
+ ×Θh. This follows from Remark 27 in Appendix B, which

shows that the application (χh, xh, z) → χh(xh, z) is continuous on C0−2(T, R)×
T . Finally, we get the desired result since the correspondence φh satisfies the
assumptions of Michael’s Selection Theorem (see Florenzano, 2003).

Proof of Lemma 21. The proof is a direct consequence of Lemma 24 since
the mapping (χ, a) → χ+a is continuous on (C0−2(T, R))H×RH (see Remark
28 in Appendix B).

Proof of Lemma 22. The function F̃J ,h̄ is defined in (11). We have to show

that for each (ξ∗, a∗, e∗) ∈ F̃−1
J ,h̄

(0), the Jacobian matrix Dξ,a,eF̃J ,h̄(ξ
∗, a∗, e∗)

has full row rank.

Let ∆ := ((∆xh, ∆λh, ∆µh)h∈H, ∆p\, ∆w) ∈ R(C+2)H ×RC−1×R. It is enough
to show that ∆Dξ,a,eF̃J ,h̄(ξ

∗, a∗, e∗) = 0 implies ∆ = 0. To prove it, we consider
the computation of the partial Jacobian matrix with respect to the following
variables

((xh, λh, eh)h∈H, (ah′)h′∈J2 , ah̄, p
\)

The partial system ∆Dξ,a,eF̃J ,h̄(ξ
∗, a∗, e∗) = 0 is written in detail below.



∑
h∈H

∆xhD
2
xkxh

uh(x
∗
h, x

∗
−h) +

∑
h′∈J2

µ∗h′∆xh′D
2
xkxh′

χh′(x
∗
h′ , x

∗
−h′)+∑

h′∈J2

∆µh′Dxk
χh′(x

∗
h′ , x

∗
−h′)−∆λkp

∗ + ∆p\ [IC−1|0] +

∆wDxk
χh̄(x

∗
h̄, x

∗
−h̄) = 0, ∀ k ∈ H

−∆xh · p∗ = 0, ∀ h ∈ H

∆xh ·Dxh
χh(x

∗
h, x

∗
−h) + ∆µh = 0, ∀ h ∈ J1 ∪ J3

∆xh′ ·Dxh′
χh′(x

∗
h′ , x

∗
−h′) = 0, ∀ h′ ∈ J2

∆λhp
∗ −∆p\ [IC−1|0] = 0, ∀ h ∈ H

∆µh′ = 0, ∀ h′ ∈ J2

∆w = 0∑
h∈H

λ∗h∆x
\
h +

∑
h∈H

∆λh(x
∗\
h − e

∗\
h ) = 0

(14)

Since p∗C = 1, we get ∆λh = 0 for each h ∈ H and ∆p\ = 0. Then, the
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relevant equations of the above system become

∀ k ∈ H,∑
h∈H

∆xhD
2
xkxh

uh(x
∗
h, x

∗
−h) +

∑
h′∈J2

µ∗h′∆xh′D
2
xkxh′

χh′(x
∗
h′ , x

∗
−h′) = 0

−∆xh · p∗ = 0, ∀ h ∈ H

∆xh ·Dxh
χh(x

∗
h, x

∗
−h) + ∆µh = 0, ∀ h ∈ J1 ∪ J3

∆xh′ ·Dxh′
χh′(x

∗
h′ , x

∗
−h′) = 0, ∀ h′ ∈ J2∑

h∈H
λ∗h∆xh = 0

(15)

Observe that from F̃ h.1
J (ξ∗, a∗, e∗) = 0 and the above system, we get

(∆xh)h∈H ∈
∏
h∈H

Ker Dxh
uh(x

∗
h, x

∗
−h)

Indeed, Dxh
uh(x

∗
h, x

∗
−h) · ∆xh = λ∗hp

∗ · ∆xh = 0 for each h ∈ J1 ∪ J3, and
Dxh′

uh′(x
∗
h′ , x

∗
−h′) · ∆xh′ = λ∗h′p

∗ · ∆xh′ − µ∗h′Dxh′
χh′(x

∗
h′ , x

∗
−h′ , e

∗
h′) · ∆xh′ = 0

for each h′ ∈ J2. Now, for each h ∈ H define

vh := λ∗h∆xh (16)

From equations in (15) and the above conditions, it follows that the vector
(x∗h, vh)h∈H ∈ RCH

++ × RCH satisfies the following conditions

∑
h∈H

vh = 0 and (vh)h∈H ∈
∏
h∈H

Ker Dxh
uh(x

∗
h, x

∗
−h)

and

vh′ ∈ Ker Dxh′
χh′(x

∗
h′ , x

∗
−h′) for each h′ ∈ J2 (17)

Now, observe that the first equation of system (15) implies that for each k ∈ H∑
h∈H

∆xhD
2
xkxh

uh(x
∗
h, x

∗
−h)(vk) = −

∑
h′∈J2

µ∗h′∆xh′D
2
xkxh′

χh′(x
∗
h′ , x

∗
−h′)(vk)

Since λ∗h 6= 0 for all h ∈ H, then it follows by (16) that for each k ∈ H
∑
h∈H

vh

λ∗h
D2

xkxh
uh(x

∗
h, x

∗
−h)(vk) = −

∑
h′∈H2

µ∗h′
vh′

λ∗h′
D2

xkxh′
χh′(x

∗
h′ , x

∗
−h′)(vk)

Summing up k ∈ H, we get

∑
h∈H

vh

λ∗h

∑
k∈H

D2
xkxh

uh(x
∗
h, x

∗
−h)(vk) = −

∑
h′∈J2

µ∗h′

λ∗h′
vh′
∑
k∈H

D2
xkxh′

χh′(x
∗
h′ , x

∗
−h′)(vk)
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Since λ∗h′ > 0 and µ∗h′ > 0 for each h′ ∈ J2, then from the above condition,
(17) and point 2 of Assumption 10 we have that

∑
h∈H

1

λ∗h
vh

∑
k∈H

D2
xkxh

uh(x
∗
h, x

∗
−h)(vk) ≥ 0

Therefore, since λ∗h > 0 for all h ∈ H, point 1 of Assumption 10 implies that
vh = 0 for each h ∈ H. By (16), we get ∆xh = 0 for all h ∈ H. Then, by
system (15), we have that ∆µh = 0 for each h ∈ J1 ∪ J3. Thus, ∆ = 0.

Proof of Lemma 23. The function F̃J is defined in (7). We have to show
that for each (ξ∗, a∗, e∗) ∈ F̃−1

J (0), the Jacobian matrix Dξ,a,eF̃J (ξ∗, a∗, e∗) has
full row rank.

Let ∆ := ((∆xh, ∆λh, ∆µh)h∈H, ∆p\) ∈ R(C+2)H ×RC−1. It is enough to show
that ∆Dξ,a,eF̃J (ξ∗, a∗, e∗) = 0 implies ∆ = 0. To prove it, we consider the
computation of the partial Jacobian matrix with respect to the following vari-
ables

((xh, λh, eh)h∈H, (ah′)h′∈J2 , p
\)

and the corresponding partial system. Then, the proof follows the same steps
as in the proof of Lemma 22. Indeed, note that there is a slight difference
between this partial system and the one given in (14): now J3 = ∅. Then, we
have one variable less, i.e., ∆w, and one equation less, i.e., ∆w = 0.

Proof of Lemma 24. We show that any sequence (ξν , χν , eν)ν∈N ⊆ F−1(0), up
to a subsequence, converges to an element of F−1(0), knowing that (χν , eν)ν∈N ⊆
Θ converges to (χ∗, e∗) ∈ Θ.

We recall that ξν = (xν , λν , µν , pν\).

• (xν)v∈N, up to a subsequence, converges to x∗ ∈ RCH
++ .

(xν)v∈N ⊆ RCH
++ . From FM(ξν , χν , eν) = 0 and F k.2(ξν , χν , eν) = 0, xν

k =∑
h∈H

eν
h−

∑
h 6=k

xν
h ≤

∑
h∈H

eν
h for each k ∈ H. Then, (xν)ν∈N is bounded from above by

an element of RCH
++ , since for each h ∈ H, (eν

h)ν∈N converges to e∗h ∈ Eχ∗
h
⊆ RC

++.
Then, (xν)ν∈N, up to a subsequence, converges to x∗ ≥ 0.

Now, we prove that x∗h � 0 for each h ∈ H.

By F h.1(ξν , χν , eν) = 0, F h.2(ξν , χν , eν) = 0 and F h.3(ξν , χν , eν) = 0, it fol-
lows that uh(x

ν
h, x

ν
−h) ≥ uh(x̂h(x

ν
−h, χ

ν
h, e

ν
h), x

ν
−h) for every ν ∈ N, where x̂h

is the continuous selection function given by Proposition 25. Define 1 :=
(1, ..., 1) ∈ RC

++, from point 2 of Assumption 1 we have that for each ε > 0,
uh(x

ν
h + ε1, xν

−h) ≥ uh(x̂h(x
ν
−h, χ

v
h, e

ν), xν
−h) for every ν ∈ N. So taking the
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limit on ν, since (χν
h, e

ν
h)ν∈N converges to (χ∗h, e

∗
h) ∈ Θh, and uh and x̂h are

continuous functions (see point 1 of Assumption 1 and Proposition 25), then
uh(x

∗
h + ε1, x∗−h) ≥ uh(x̂h(x

∗
−h, χ

∗
h, e

∗
h), x

∗
−h) := uh for each ε > 0. By point

4 of Assumption 1, x∗h ∈ RC
++ since x∗h belongs to the set clRC{xh ∈ RC

++ :
uh(xh, x

∗
−h) ≥ uh}.

• (λν , µν)v∈N, up to a subsequence, converges to (λ∗, µ∗) ∈ RH
+ × RH

+ .

It is enough to show that (λν
hp

ν , µν
h)ν∈N is bounded for each h ∈ H. Then,

(λν
hp

ν , µν
h)ν∈N ⊆ RC

++ × R+, up to a subsequence, converges to (π∗h, µ
∗
h) ∈

RC
+ × R+, and λ∗h = π∗Ch since pvC = 1 for each ν ∈ N.

Suppose otherwise that there is a subsequence of (λν
hp

ν , µν
h)ν∈N (that with-

out loss of generality we continue to denote with (λν
hp

ν , µν
h)v∈N) such that

‖(λν
hp

ν , µν
h)‖ → +∞. Consider the sequence

(
(λν

hpν ,µν
h)

‖(λν
h
pν ,µν

h
)‖

)
ν∈N

in the sphere, a

compact set. Then, up to a subsequence
(

(λν
hpν ,µν

h)

‖(λν
h
pν ,µν

h
)‖

)
→ (πh, µh) 6= 0. πh ≥ 0

and µh ≥ 0, since λν
hp

ν � 0 and µν
h ≥ 0 for each ν ∈ N. By F h.1(ξν , χν , eν) = 0

for each ν ∈ N, we get λν
hp

ν = Dxh
uh(x

ν
h, x

ν
−h)+µν

hDxh
χν

h(x
ν
h, x

ν
−h). Now, divide

both sides by ‖(λν
hp

ν , µν
h)‖ and take the limits. From point 1 of Assumption 1

and Remark 27, we get

πh = µhDxh
χ∗h(x

∗
h, x

∗
−h)

Then, µh > 0. Otherwise we get (πh, µh) = 0. From point 4 of Assumption 2,
we have that Dxh

χ∗h(x
∗
h, x

∗
−h) 6= 0. Then, πh 6= 0. From Kuhn-Tucker necessary

and sufficient conditions, we have that

πh · x∗h = min
xh∈RC

++

πh · xh

subject to χ∗h(xh, x
∗
−h) ≥ 0

(18)

By F h.2(ξν , χν , eν) = 0, we get λν
hp

ν ·xν
h = λν

hp
ν ·eν

h for each ν ∈ N. Now, divide
both sides by ‖(λν

hp
ν , µν

h)‖ and take the limits. We get πh · x∗h = πh · e∗h. By
(1), there is x̃h ∈ RC

++ such that χ∗h(x̃h, x
∗
−h) > 0 and πh · x̃h < πh · e∗h = πh ·x∗h

which contradict (18).

• (pν\)ν∈N, up to a subsequence, converges to p∗\ ∈ RC−1
++ .

Taking the limit, from Remark 27, points 1 and 2 of Assumption 1, and points
1 and 5 of Assumption 2, we get λ∗k = DxC

k
uk(x

∗
k, x

∗
−k) + µ∗kDxC

k
χ∗k(x

∗
k, x

∗
−k) >

0 for some k = h(C) ∈ H. From the previous step, (λν
kp

v\)ν∈N admits a

subsequence converging to π
∗\
k ≥ 0. Then, (pv\)ν∈N, up to a subsequence,

converges to p∗\ ≥ 0, since λ∗k > 0. Now, suppose that there is c 6= C, such
that p∗c = 0. Taking the limit, from Remark 27, points 1 and 2 of Assumption
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1, and points 1 and 5 of Assumption 2, for some k′ = h(c) ∈ H we get 0 <
Dxc

k′
uk′(x

∗
k′ , x

∗
−k′)+µ∗k′Dxc

k′
χ∗k′(x

∗
k′ , x

∗
−k′) = λ∗k′p

∗c = 0, which is a contradiction.

• λ∗ ∈ RH
++.

Otherwise, suppose that λ∗h = 0 for some h ∈ H. By F h.1(ξν , χν , eν) = 0,
we get λν

hp
ν = Dxh

uh(x
ν
h, x

ν
−h) + µν

hDxh
χν

h(x
ν
h, x

ν
−h) for each ν ∈ N. Taking

the limit, from Remark 27 and point 1 of Assumption 1, we get 0 = λ∗hp
∗ =

Dxh
uh(x

∗
h, x

∗
−h) + µ∗hDxh

χ∗h(x
∗
h, x

∗
−h). By point 2 of Assumption 1 and point 4

of Assumption 2, we get 0 < Dxc
h
uh(x

∗
h, x

∗
−h) + µ∗hDxc

h
χ∗h(x

∗
h, x

∗
−h) = λ∗hp

∗c = 0
for some good c, which is a contradiction.

Appendix B

Topology of the C0−2 uniform convergence on compacta

Let T := RC
++ × RC(H−1)

+ . We are interested on continuous functions defined
on T which are C2 in the interior of T (see point 1 of Assumption 2). Then,
first, define the following set

C0−2(T, R) := {f ∈ C0(T, R) : f|Int T ∈ C2(Int T, R)} (19)

where Int T denotes the interior of T and f|Int T denotes the restriction of f
to Int T . The topology on C0−2(T, R) of the C0−2 uniform convergence on
compacta is a “combination” of the topology on C0(T, R) of the C0 uniform
convergence on compacta and of the topology on C2(Int T, R) of the C2 uni-
form convergence on compacta.

Definition 26 The topology on C0−2(T, R) of the C0−2 uniform convergence
on compacta is the topology generated by the metric d̃ defined by

∀ (f, g) ∈ C0−2(T, R), d̃(f, g) := d0(f, g) + d2(f|Int T , g|Int T )

where d2 is the metric d given in Allen (1981), p. 281, and d0 is defined in
an analogous way: let {Tn} be a sequence of compact subsets of T such that⋃∞

n=1 Tn = T , d0(f, g) :=
∑∞

n=1
1
2n min{‖f −g‖0,Tn , 1} for f and g in C0(T, R),

where ‖ · ‖0,Tn is defined by ‖w‖0,Tn := sup
x∈Tn

|w(x)| for w ∈ C0(Tn, R).

Remark 27 Observe that, by definition fn
d̃→ f̄ in C0−2(T, R) if and only if

fn
d0→ f̄ in C0(T, R) and fn|Int T

d2→ f̄|Int T in C2(Int T, R)

That is, fn
d̃→ f̄ in C0−2(T, R) if and only if (fn)n∈N converges uniformly

to f̄ on any compact set included in T , and (fn|Int T )n∈N, (Dfn|Int T )n∈N and
(D2fn|Int T )n∈N converge uniformly to f̄|Int T , Df̄|Int T and D2f̄|Int T respectively,
on any compact set included in Int T .
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Consequentially, the mapping (f, x) → f(x) is continuous on C0−2(T, R)× T
if and only if

(1) the mapping (f, x) → f(x) is continuous on C0(T, R)× T , and
(2) the mappings (f|Int T , x) → f|Int T (x), (Df|Int T , x) → Df|Int T (x), and

(D2f|Int T , x) → D2f|Int T (x) are continuous on C2(Int T, R)× Int T .

Since (1) holds true by definition of topology of the C0 uniform convergence
on compacta and (2) holds true by definition of topology of the C2 uniform
convergence on compacta, then the mapping (f, x) → f(x) is continuous on
C0−2(T, R)× T .

Remark 28 One easily checks that the mapping (f, a) → f + a is continuous
on C0−2(T, R)× R.

Finally, we remark that the topology of the C0 uniform convergence on any
compact set included in T is uniquely used to show Proposition 25 which plays
a fundamental role in the proof of Lemma 24.

Regular values and transversality

The theory of general economic equilibrium from a differentiable prospective
is based on results from differential topology. Following are the ones used in
our analysis. These results, as well as generalizations on these issues, can be
found for instance in Guillemin and Pollack (1974), Hirsch (1976), Mas-Colell
(1985) and Villanacci et al. (2002).

Theorem 29 (Regular Value Theorem) Let M , N be Cr manifolds of di-
mensions m and n, respectively. Let f : M → N be a Cr function. Assume
r > max{m− n, 0}. If y ∈ N is a regular value for f , then

(1) if m < n, f−1(y) = ∅,
(2) if m ≥ n, either f−1(y) = ∅, or f−1(y) is an (m − n)-dimensional sub-

manifold of M .

Corollary 30 Let M , N be Cr manifolds of the same dimension. Let f :
M → N be a Cr function. Assume r ≥ 1. Let y ∈ N a regular value for f
such that f−1(y) is non-empty and compact. Then, f−1(y) is a finite subset of
M .

The following results is a consequence of Sard’s Theorem for manifolds.

Theorem 31 (Transversality Theorem) Let M , Ω and N be Cr manifolds of
dimensions m, p and n, respectively. Let f : M × Ω → N be a Cr function.
Assume r > max{m−n, 0}. If y ∈ N is a regular value for f , then there exists
a full measure subset Ω∗ of Ω such that for any ω ∈ Ω∗, y ∈ N is a regular
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value for fω, where

fω : ξ ∈ M → fω(ξ) := f(ξ, ω) ∈ N

Definition 32 Let (X, d) and (Y, d′) be two metric spaces. A function π :
X → Y is proper if it is continuous and one among the following conditions
holds true.

(1) π is closed and π−1(y) is compact for each y ∈ Y ,
(2) if K is a compact subset of Y , then π−1(K) is a compact subset of X,
(3) if (xn)n∈N is a sequence in X such that (π(xn))n∈N converges in Y , then

(xn)n∈N has a converging subsequence in X.

The above conditions are equivalent.

Theorem 33 (Implicit Function Theorem) Let M , N be Cr manifolds of the
same dimension. Assume r ≥ 1. Let (X, τ) be a topological space, and f :
M × X → N be a continuous function such that Dξf(ξ, x) exists and it is
continuous on M ×X. If f(ξ, x) = 0 and Dξf(ξ, x) is onto, then there exist
an open neighborhood I of x in X, an open neighborhood U of ξ in M and a
continuous function g : I → U such that g(x) = ξ and f(ξ′, x′) = 0 holds for
(ξ′, x′) ∈ U × I if and only if ξ′ = g(x′).
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