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Abstract

We analyze a symmetric Bayesian game in which two players individually contribute to fund a dis-
crete public good; contributions are refunded if they do not meet a threshold set by the seller of the
good. We provide a general characterization of symmetric equilibrium strategies that are continuous and
nonconstant over the set of values for which the good has a positive chance of provision. Piecewise-linear
strategies are our special focus. We characterize the distributions of players’ private values that can
support a continuous piecewise-linear symmetric equilibrium, and we calculate such equilibria for these
distributions. Allowing the seller to charge a nonrefundable entry fee before players make their private
contributions, we show these piecewise-linear equilibria can maximize the seller’s expected utility over
all incentive compatible selling mechanisms.
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1 Introduction

A discrete public good is either provided or not–quantity is not otherwise variable. The subscription game

is a voluntary provision mechanism for such goods: Individuals privately contribute money; if contributions

suffice to fund the good provision occurs, otherwise contributions are refunded. An example is a homeowners’

association collecting pledges to fund a new swimming pool. If enough money is pledged, it will then be

collected and the pool built; otherwise, no pool is built and no money is paid.

This game, along with the closely related contribution game, that is, the game without refunds, has been

widely analyzed in the literature in a variety of different economic environments. For example, the complete-

information case is well-understood, both for static and for dynamic problems (e.g. Admati and Perry, 1991;

and Marx and Matthews, 2000). In the more realistic case where valuations for the public good are private

information, however, many questions remain unanswered, even restricting attention to static, two-player

subscription games (cf. Alboth et al., 2001; Barbieri and Malueg, forthcoming (b); Laussel and Palfrey, 2003;

and Menezes et al., 2001). From a positive point of view, the common message of these private-information

papers is that a profusion of equilibria exists and analytical characterizations are very difficult. Therefore,

these papers mostly focus on a uniform distribution of agents’ valuations. From a normative point of view,

the main focus of the previous analyses is efficiency. Menezes et al. (2001) show that the subscription game

is classically inefficient. Laussel and Palfrey (2003) and Barbieri and Malueg (forthcoming (b)) use the less

demanding notion of interim incentive efficiency.1 Even for valuations uniformly distributed on [0,1], results

are mixed. Indeed, Laussel and Palfrey (2003) show interim incentive efficiency of the subscription game

when the cost of provision is sufficiently high. On the contrary, Barbieri and Malueg (forthcoming (b)) show

interim incentive inefficiency of the subscription game equilibria when the cost of provision is sufficiently low.

Menezes et al. (2001) show classical inefficiency of both subscription and contribution games. In addition,

Barbieri and Malueg, forthcoming (a), show interim incentive efficiency for the contribution game, albeit

only for a uniform distribution of valuations.2

Of particular interest to economists is understanding when a simple indirect mechanism such as the

subscription game can achieve some theoretical desiderata.3 Among these desiderata, efficiency occupies an

important place, but other objectives remain interesting. Indeed, in this paper we provide a justification

1Classical and interim incentive efficiency are discussed in Holmström and Myerson (1983). Interim efficiency in a public
goods economy is analyzed in detail in Ledyard and Palfrey (1999).

2In a continuous-public-goods economy, that is with variable quantity, another paper that focuses on interim incentive
efficiency is Martimort and Moreira (forthcoming (b)). They analyze a common agency game and show how interim incentive
efficiency becomes much harder to achieve in comparison to discrete public goods economies. Despite the differences between
the games Martimort and Moreira (2007) and we study, some technical similarities arise. We will analyze them in detail in
Section 2.

3Especially when many examples of real-world situations display features close to those of a subscription game, as the above
mentioned papers claim.
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for the use of the subscription game, complementary to the efficiency analysis described above, that focuses

on the incentives of the producer of the public good. As in the papers mentioned above, we consider a

static, two-player subscription game. A central role in our analysis is played by an additional agent: the

producer (variously referred as organizer, seller or collector). This is the agent that specifies a contribution

threshold, provides the public good, and retains contributions in excess of the threshold.4 We specify an

objective for the collector that is a mix of profit-maximization and altruism towards the players. We then

ask the following natural question: Would the organizer ever choose the subscription game as an optimal

provision mechanism, among all incentive compatible ones? We show the answer is Yes. We then ask the

same question about the contribution game and show the answer is No, generically.

Our positive result for the subscription game does not conflict with the classical inefficiency result in

Menezes et al. (2001), because we allow the collector to inject resources to “grease the wheels” of the

public good provision problem. Indeed, especially when the altruistic motivation is important, the collector

optimally chooses a contribution threshold lower than the full cost of provision. Such strategy may be

interpreted as a “matching” grant: As long as players’ contributions reach a certain threshold, the collector

commits to fill in any remaining financing needs to bring the project to completion.5 In other words, when

the altruistic motivation is important, our collector is interested in helping players overcome the free-rider

problem, but, at the same time, it is trading off helping players with devoting its resources towards other

uses, whose marginal utility is normalized to unity. Our optimality shows how, through the implicit matching

grant just described, the subscription game may allow the collector to share in the financing of the public

good only when players’ valuations are sufficiently large, and, at the same time, to minimize its financial

outlay.

Our results do not require the collector’s participation to the financing of the public good when the col-

lector is a pure profit-maximizer. In this case, our main contribution bridges two strands of the literature on

the profit-maximizing behavior of producers of public goods. One the one hand, Cornelli (1996) characterizes

the profit-maximizing direct mechanism for the sale of a pure public good. On the other hand, Alboth et al.

(2001) consider the problem of a profit-maximizing entrepreneur that has already chosen the subscription

game as a selling mechanism. Our analysis considerably extends the results in Alboth et al. (2001). In a

narrow sense, we relax various distributional and parametric assumptions in that paper. More importantly,

we show environments in which no other selling mechanism outperforms the subscription game.

A necessary preliminary step in our analysis is to sharpen the existing equilibrium characterization results.

4The possibility of choosing a threshold different than the cost of production distinguishes our collector from that in Laus-
sel and Palfrey (2003). Unlike in Alboth et al. (2001), our collector may choose a contribution threshold lower than the cost of
provision, therefore effectively participating to the financing of the public good (in Alboth et al. the cost of provision is zero.)

5Examples of matching grants abound in the literature; for one example among many see Andreoni (1998).
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As in literature previously mentioned, we study a two-player subscription game in which players’ values for

the public good are private information, characterized by a continuous distribution function. We provide

a general characterization of symmetric equilibrium strategies that are continuous and nonconstant over

the set of values for which the good has a positive chance of provision. Our analysis completes the results

in Menezes et al. (2001) and Laussel and Palfrey (2003), and it connects and contrasts them with those

in Martimort and Moreira (2007). Beyond our general characterization, we are particularly interested in

equilibrium strategies that are piecewise-linear and are also strictly increasing over some interval of possible

values. We show that for linear equilibria to exist, players’ values must be distributed according to an

exponential distribution that does not include zero in its support or a reverse power function distribution

(of which the uniform distribution is a special case).6 Cornelli (1996) adapted Myerson’s (1982) method

of optimal auction design to characterize an optimal incentive compatible mechanism for the sale of a

discrete public good. Within our framework, we show that, for the exponential and reverse power function

distributions, the piecewise-linear equilibria of the subscription game (possibly with the introduction of

nonrefundable entry fees) achieve the expected payoff of an optimal mechanism for the seller; and if such

piecewise-linear equilibria do not exist, then the subscription game cannot be an optimal mechanism for the

seller. When piecewise-linear equilibria exist, we completely describe the seller’s optimal choice of completion

threshold and entry fee. We conclude by showing a generic suboptimality result for the contribution game.

The rest of the paper is organized as follows. Section 2 defines “regular” equilibria and provides a general

characterization result. In Section 3 we completely describe piecewise-linear equilibria. Section 4 contains

our main result on the optimality of the subscription game and relates it to the existing literature and to

the contribution game. Section 5 concludes.

2 The subscription game

Two players, 1 and 2, simultaneously contribute any positive amount to the funding of a public good.

Player i’s value for the good is vi, i = 1, 2. Values v1 and v2 are independently distributed random variables

with cumulative distribution function (cdf) F , which has support [v, v̄], where 0 ≤ v < v̄ ≤ ∞. A player’s

realized value is known only to that player. We suppose F is absolutely continuous, with density function f .

The third actor in the model is the collector, who ex ante specifies a contribution threshold t and provides

the public good if and only if contributions total at least t. The cost of the public good is c, known to the

collector and both players.

6There are other distributions that also support such piecewise-linear equilibrium strategies, but they would differ from
the two families named only over types where (i) a player has no chance of obtaining the good or (ii) a player is sure he will
obtain the good. These alternative distributions must agree with the families named over the interval of values where the
piecewise-linear strategy is strictly increasing.

3



In the terminology of Admati and Perry (1991), we consider the subscription game: players’ contri-

butions are refunded if they are insufficient to cover t; the collector retains contributions exceeding t.

The collector and two players are risk neutral. If the good is provided, then the payoff to player i is

vi − (player i’s contribution). If the good is not provided, then the payoff to player i is 0.

The foregoing description is common knowledge among the players and the collector. We focus on

symmetric equilibrium strategies (s, s) such that completion happens with ex ante positive probability. In

this case, standard arguments show t < 2v̄ and s(v̄) = maxv∈[v,v̄] s(v) ≤ t.

At this point some additional notation is useful. Define v̂ as the lowest type who contributes s(v̄), and

define ev as the lowest type who contributes t− s(v̄);7 that is,

v̂ ≡ inf{v | s(v) = s(v̄)} (lowest type contributing the maximum)

ev ≡ inf{v | s(v) ≥ t− s(v̄)}. (lowest type with positive probability of provision of the good)

Because the interim probability of completion for type v ∈ [v, ev) is zero, little more can be said about the
shape of s on [v, ev). To avoid uninteresting complications, we set s = 0 in this range. Lemmas 1—3 in Laussel
and Palfrey (2003) establish that on [ev, v̄] a symmetric equilibrium contribution function s is non-decreasing

and almost everywhere differentiable. A first possibility is that s is a step function. If an appropriate

boundary condition, later defined in (4), is satisfied, then the following strategy constitutes the “halvesies”

equilibrium: s(v) = 0 for v ∈ [v, t/2) and s(v) = t/2 for v ∈ [t/2, v̄]. Menezes et al. (2001) point out, for

t < v̄, the “all-or-nothing” equilibrium is sure to exist: s(v) = 0 for v < v∗ and s(v) = t for v ≥ v∗, where v∗

solves vF (v) = t. As will be seen later, however, if the subscription game is to be an incentive compatible

mechanism that is optimal for the seller, then strategies must be continuous and strictly increasing in the

region where a player’s chance of obtaining the good is strictly between 0 and 1. These considerations lead

us to focus on “regular” equilibria.

Definition 1. A symmetric equilibrium (s, s) is called regular if s is continuous and nonconstant on [ev, v̄].
Note that neither the halvesies equilibrium nor the all-or-nothing equilibrium is regular. Barbieri and

Malueg (forthcoming (b)) establish that in a regular equilibrium s must be strictly increasing on [ev, v̂];
furthermore ev and v̂ are not at all arbitrary, but rather are jointly determined as part of the equilibrium.

We now characterize regular equilibria.8

7To see that v exists, note first that some type must contribute at least t− s (v̄) otherwise completion never occurs. Note as
well that not all types can contribute more than t− s (v̄) . If this were the case, then v̄ has a profitable deviation to s (v̄)− ε,
for ε small enough, because contributions in excess of t do not generate any benefit for the contributors.

8When using differential techniques, for brevity, we shall omit the qualifier “almost everywhere.”
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Proposition 1 (Characterization of a regular symmetric equilibrium). Suppose s : [v, v̄] → R+ has the

following properties, where ev and v̂ are defined above:

a. v ≤ ev < v̂ ≤ v̄;

b. s(v) = 0 for any v < ev; s is continuous and nondecreasing on [ev, v̄];
c. s(ev) + s(v̄) = t; and

d. s is strictly increasing and differentiable on (ev, v̂).
Define G : [ev, v̂] → [ev, v̂] by s(v) + s(G(v)) = t. Then (s, s) is a regular symmetric equilibrium to the

subscription game with threshold t if and only if s and G satisfy the following system of equations:

s0(v)(1− F (G(v))) + (v − s(v))f(G(v))G0(v) = 0 ∀v ∈ (ev, v̂), (1)

s0(v) + s0(G(v))G0(v) = 0 ∀v ∈ (ev, v̂), (2)

0 ≤ s(v) ≤ v ∀v ∈ [ev, v̄]; (3)

and further, if ev > v, then s(ev) = ev and (v̄ − s(v̂))(1− F (G(v̂))) ≥ v̄ − t. (4)

Conditions a—d describe a candidate strategy for a regular symmetric equilibrium. Condition a rules out

the possibility that s is constant on [ev, v̄] (the halvesies equilibrium satisfies b—d because ev = v̂ = t/2 so the

interval (ev, v̂) is empty). Since s is strictly increasing on (ev, v̂), the definition of G implies that, in equilibrium,
type v ∈ (ev, v̂) will see the threshold for completion reached if and only if the other player’s type is at least
as large as G(v). Menezes et al. (2001) showed that a continuous equilibrium to the subscription game must

satisfy (1) and (2). Laussel and Palfrey (2003), with a different approach, showed, for any equilibrium, not

just regular ones, necessary and sufficient conditions that can be shown to be equivalent to (1) and (2). Other

than demonstrating the equivalence of these two approaches, the value of Proposition 1 is that it completes

the equilibrium characterization, with the addition of the boundary conditions (3) and (4). The reader may

be curious why the inequality in (4) applies only in the case where ev > v. This condition says that a player

with the highest value, v̄, should not strictly benefit by contributing t (thereby ensuring the good is provided)

rather than the specified level s(v̂). This condition is not included when ev = v because in that case it is

automatically satisfied. To see this, observe that if ev = v, then s(v)+ s(v̂) = t, so that a player contributing

s(v̂) is assured the good will be provided–hence, there is no profitable deviation to the (possibly) larger

contribution t. To see that condition (4) must be included in the equilibrium characterization, consider

valuations distributed on [0, 1] with density f(v) = 2(1 − v) and the halvesies strategy described above.

One can straightforwardly verify that the halvesies strategy satisfies all conditions in Laussel and Palfrey’s
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Proposition 1, but (4) is not satisfied for t < 3−
√
5. Therefore, for this distribution function, the halvesies

equilibrium exists if and only if t ≥ 3−
√
5.

Martimort and Moreira (2007) point out the similarity between the equilibrium characterization of their

common agency game and the results in Menezes et al.; therefore the similarity extends to our Proposition 1.

Martimort and Moreira are interested in equilibria that, in our framework, are regular and with 0 < s0(v) <

∞. They show existence of such equilibria, with v̂ = v̄, under the additional assumption that
³
1−F (v)
f(v)

´0
≤

−1, or equivalently, that f 0(v) ≥ 0. In this case, one can show that our condition (4) is automatically

satisfied for such regular equilibria. However, there exist many regular equilibria that do not satisfy the

condition 0 < s0(v) <∞ at v = v̄, as Figure 1 in Alboth et al. (2001) shows.

Regular equilibria with a flat spot at the top, that is with v̂ < v̄, also play an important role in our

optimality result in Section 4. Indeed, in Section 3 we exhibit various examples of regular equilibria (s, s)

with v̂ < v̄ and s(v̂) < t. It is worth noting that such equilibria are not considered in any of the papers

in the literature on the subscription game, with the exception of Barbieri and Malueg (forthcoming (b))

for the specific case of a uniform distribution of valuations.9 The characterization in Proposition 1 can be

used to refine our understanding of regular equilibria, especially of those exhibiting a flat spot at the top.

A straightforward but tedious application of the contraction mapping theorem demonstrates that, if v > 0

and f ∈ C0, a regular equilibrium with a flat spot at the top is sure to exist for t sufficiently small. More

interesting is the following proposition showing that ev > v (and hence, by condition (4), s(ev) = ev) and v̂ < v̄

are incompatible.

Proposition 2 (Necessary condition for existence of flat spots). Suppose on [v, v̄) the density f is continuous

and strictly positive. If (s, s) is a regular equilibrium with v̂ < v̄, then s(ev) < ev.
Proposition 2 has important consequences for the welfare properties of the subscription game. For the

particular case in which values are uniformly distributed over [0, v̄], Barbieri and Malueg (forthcoming (b))

show that all equilibria are interim incentive inefficient, if c < v̄. Proposition 2 extends this negative result

to all continuous distributions on [0, v̄] that are strictly positive at v = 0. The reason for this is that

an incentive efficient equilibrium, for reasons discussed in Barbieri and Malueg (forthcoming (b)), must be

regular with ev = 0 and v̂ < v̄, when c < v̄. Consequently, by Proposition 2, it must be that s(ev) < 0, which
is impossible. More generally, Proposition 2 shows how the assumption v = 0 may prevent regular equilibria

of the subscription game from achieving specific theoretical bounds. This will be relevant for our analysis in

Section 4. In this sense then, the assumption v = 0 is not a harmless normalization.

9Laussel and Palfrey’s semi-regular equilibria do have a flat spot at the top for s(v̂) = t, and a flat spot at the bottom.
Barbieri and Malueg (forthcoming (b)) show this class of equilibria is empty.
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3 Piecewise-linear equilibria

The equilibrium characterization of the previous section is fairly general. Even if step-function equilibria

are excluded by requiring s to be regular, a vast multiplicity of equilibria results because the restrictions

on the initial conditions ev and s(ev) in Proposition 1 are weak.10 Indeed, ev may be larger than v and,

even when ev equals v, s(ev) is not uniquely determined except when v is zero. Moreover, in contrast to

equilibrium derivation in the contribution game11 (see Barbieri and Malueg, forthcoming (a)), to describe

all regular equilibria it is not sufficient to truncate and translate a baseline functional form. For example,

as shown by Laussel and Palfrey (2003), for a given threshold t, different initial conditions yield different

functional forms for different equilibria, even when valuations are uniformly distributed. Little progress

seems possible without further simplifications. For this reason, we next turn to a special family of regular

symmetric equilibria, those that are piecewise-linear. In particular, for v ∈ [ev, v̂] strategy s will be linear and
strictly increasing, while on [v̂, v̄] it is constant. For their eminent tractability, linear strategies have often

been sought as a first step in the analysis of complex situations, such as double auctions. More importantly,

as we shall see, with some exceptions, in our framework regular symmetric piecewise-linear equilibria have

another desirable feature: they maximize the collector’s utility.

3.1 Admissible distribution functions

When s is linear, equations (1) and (2) simplify considerably. The following lemmas characterize the class of

distribution functions for which a regular symmetric piecewise-linear equilibrium strategy s can exist. For

these distributions, the subsequent propositions show exactly when such equilibria exist, and in these cases

they specify equilibrium strategies.

Lemma 1. A regular symmetric piecewise-linear equilibrium exists only if the inverse hazard rate (1−F )/f

is linear on [ev, v̂].
Proof. If s is linear on [ev, v̂], that is, s(v) = αv + β, then the definition of G and the boundary condition

G(ev) = v̂ imply G(v) = v̂ + ev − v, so we can simplify (1) as α(1 − F (G(v))) − (v − (αv + β))f(G(v)) = 0,

which upon rearrangement becomes

1− F (G(v))

f(G(v))
=

µ
1− α

α

¶
v − β

α
.

10Such restriction become stronger when one focuses on regular equilibria with 0 < s0(v) < ∞, as Martimort and Moreira
(2007) show.
11The contribution game is identical to the subscription game except that contributions are never refunded.
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Using G(G(v)) = v, we obtain

1− F (v)

f(v)
=

µ
1− α

α

¶
(v̂ + ev − v)− β

α
, (5)

so that on [ev, v̂] the inverse hazard rate is indeed linear.
Lemma 1 restricts F only on [ev, v̂], the interval where (1) holds (cf. footnote 6). If we require linearity of

the inverse hazard rate over the whole interval [v, v̄], simple integration delivers the following lemma, whose

proof is in the Appendix.

Lemma 2. If the inverse hazard rate of F is linear on [v, v̄], then F is either

F (v) = 1− e−r(v−v), with r > 0 and v̄ = +∞ (6)

or

F (v) = 1−
µ
v̄ − v

v̄ − v

¶r
, with r > 0 and v̄ <∞. (7)

The cdf given by (6) is simply an exponential distribution with support [v,∞); the cdf given by (7) we

refer to as a “reverse power function” distribution.12

The following propositions, with proofs in the Appendix, apply Proposition 1 to characterize regular

piecewise-linear symmetric equilibria for the distributions of Lemma 2. The next proposition shows for

exponential distributions that regular piecewise-linear equilibria are particularly simple.

Proposition 3 (Equilibria for exponential distributions). Suppose F is defined on [v,∞) by F (v) = 1 −

e−r(v−v), where r > 0. A regular piecewise-linear symmetric equilibrium exists if and only if v ≥ 1/r and

t ≥ 2(v − 1/r). In this case, ev = v and the regular piecewise-linear symmetric equilibrium strategy is given

by

s(v) =

⎧⎪⎪⎨⎪⎪⎩
s(v̂) if v̂ < v ≤ v̄

v − 1
r

if v ≤ v ≤ v̂,

(8)

where v̂ = t− v + 2/r.

Note that by Proposition 3 a piecewise-linear equilibrium exists for the exponential distribution only if

v > 0, showing the frequent assumption that the support of players’ values begins at 0 is not without loss of

generality.

12To understand this terminology, consider the cdf on [0, 1] given by Φ(v) = vr , where r > 0. This is often called a power
function distribution, with density ϕ(v) = rvr−1. For the distribution F in (7) with support [0, 1], the variable 1− v has the
density function ϕ; that is, f(v) = ϕ(1− v).
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For the reverse power function distribution, the description of equilibria is slightly more involved. For

clarity, we distinguish between the high-threshold case in Proposition 4 and the low-threshold case in Propo-

sition 5.

Proposition 4 (Equilibria for reverse power function distributions, high-threshold case). Suppose F is

defined on [v, v̄] by F (v) = 1−
³
v̄−v
v̄−v

´r
, where r > 0 and 0 ≤ v < v̄ <∞, and assume

t >
(2 + r)v + rv̄

1 + r
. (9)

A regular piecewise-linear symmetric equilibrium exists if and only if t < 2v̄. The regular piecewise-linear

symmetric equilibrium strategy is given by

s(v) =

⎧⎪⎪⎨⎪⎪⎩
r

1 + r
v +

ev
1 + r

if ev ≤ v ≤ v̄

0 if v ≤ v < ev, (10)

where ev = t(1+r)−rv̄
2+r ∈ (v, v̄).

According to Proposition 4, when the threshold is high and players use piecewise-linear strategies, only

when a player’s value is sufficiently large does he have a chance of receiving the good, and even then is

not assured of enjoying it. In contrast, the next proposition shows that for a low threshold, when using

piecewise-linear strategies all players have a chance of enjoying the good, and those with sufficiently high

values are assured they will. Thus, the low-cost case is similar to that of the exponential distribution.

Proposition 5 (Equilibria for reverse power function distributions, low-threshold case). Suppose F is defined

on [v, v̄] by F (v) = 1−
³
v̄−v
v̄−v

´r
, where r > 0 and 0 ≤ v < v̄ <∞, and assume

t ≤ (2 + r)v + rv̄

1 + r
. (11)

A regular piecewise-linear symmetric equilibrium exists if and only if

t ≥ r

1 + r
(v̄ − v(2 + r)),

and

t ≥ − 2

1 + r
(v̄ − v(2 + r)).
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The regular piecewise-linear symmetric equilibrium strategy is given by

s(v) =

⎧⎪⎪⎨⎪⎪⎩
s(v̂) if v̂ < v ≤ v̄

r

1 + r
v − v̄ − v̂ − v

1 + r
if v ≤ v ≤ v̂,

(12)

where v̂ = t(1+r)+2v̄
2+r − v ∈ (v, v̄).

Though there typically exist multiple equilibria in the subscription game, we have focused on the

piecewise-linear regular equilibria as especially attractive. However, it may be that in some cases they

do not exist. Nevertheless, we next show that when they do exist they can maximize the seller’s expected

utility over all incentive compatible mechanisms. Additionally, for the exponential and reverse power func-

tion distributions, we show that when such equilibria do not exist the subscription game is not a mechanism

that can maximize the utility of the collector.

4 Optimal provision of a discrete public good: an application of

linear equilibrium strategies

We begin this section by allowing the collector the choice of any incentive compatible and individually rational

mechanism. We will then show how, when regular piecewise-linear equilibria exist, a slight modification of

the subscription game implements the allocation that maximizes the collector’s utility.

4.1 The utility-maximizing direct mechanism

The seller’s utility-maximization problem can be solved adapting Myerson’s (1982) optimal auction design.

By the Revelation Principle it suffices to consider only direct mechanisms that are feasible: both incentive

compatible and individually rational. Direct mechanisms are triples of functions (p, x1, x2) defined on [v, v̄]×

[v, v̄]. Players simultaneously report values v01 and v02; then xi (v
0
1, v

0
2) is player i’s payment to the seller and

p(v01, v
0
2) ∈ [0, 1] is the probability the good is provided. The only difference with Myerson (1982) is that p

is not indexed by players: we are dealing with a pure public good. Therefore, the collector’s problem is to

maximize

Z v̄

v

Z v̄

v

n£
x1 (v1, v2)+x2 (v1, v2)−cp (v1, v2)

¤
+ρ
£
(v1+v2)p (v1, v2)−x1 (v1, v2)+x2 (v1, v2)

¤o
dF (v1)dF (v2)

over all feasible mechanisms.
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Cornelli (1996) analyzed this problem with ρ = 0, that is, for a profit-maximizing seller. When ρ ∈ (0, 1),

the seller is at least in part altruistic: it takes into account not only his profit, but also the players’ utility

with a normalized weight ρ. A straightforward adaptation of Cornelli’s argument yields the following.

Lemma 3 (Cornelli, 1996). If w(v) ≡ v − (1 − ρ) 1−F (v)f(v) is increasing on [v, v̄], then a utility-maximizing

feasible direct mechanism (p, x1, x2) has

p(v1, v2) =

⎧⎪⎪⎨⎪⎪⎩
1 if w(v1) + w(v2) ≥ c

0 if w(v1) + w(v2) < c.

(13)

Next we connect a player’s conditional expected payment to the function p in a feasible mechanism.

Assuming truthful revelation by player 2, player 1’s expected payoff when reporting va is

U1(va|v1) = E[ v1p (va, v2)− x1(va, v2) ] = v1P1(va)−X1(va),

where

P1(va) =

Z v̄

v

p (va, v2) dF (v2) and X1(va) =

Z v̄

v

x1 (va, v2) dF (v2).

Analogous formulas apply for player 2. In the truth-telling equilibrium, conditional on vi, Pi(vi) is player i’s

perceived probability the good will be provided and Xi(vi) is his expected payment to the seller. Let

U∗i (vi) ≡ Ui(vi | vi) be player i’s payoff in the truth-telling equilibrium of a feasible direct mechanism.

Incentive compatibility requires

0 =
∂Ui(va|vi)

∂va

¯̄̄̄
va=vi

= viP
0
i (vi)−X 0

i(vi),

so

X 0
i(vi) = viP

0
i (vi). (14)

The Envelope Theorem gives dU∗i (vi)/dvi = Pi(vi), implying U∗i is nondecreasing. Therefore, an incentive

compatible mechanism is individually rational if and only if U∗i (v) ≥ 0. As Myerson (1982) and Cornelli

(1996) show, seller’s utility maximization requires this constraint to bind. The utility-maximizing conditional

expected payment can be found by integrating (14) with the boundary condition ensuring U∗i (v) = 0.

Expected cost is c times the probability the good is provided.
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4.2 Utility maximization in the subscription game

For implementation purposes, we slightly modify the standard subscription game. First, with binding com-

mitment, the collector announces the threshold t and an individual’s non-refundable entry fee ϕ. Next, after

observing the realization of their own private values, contributors independently and simultaneously decide

whether to pay ϕ. If either does not pay the entry fee, the game ends. If both pay ϕ, the game moves to the

third stage, in which contributors play the standard subscription game: players simultaneously contribute

any amount; these contributions are refunded if they total less than t but otherwise are retained by the

collector. Only in the latter case does the collector provide the good, incurring cost c.

The next propositions show that, when regular piecewise-linear regular equilibria exist, the collector

can choose t and ϕ so that his utility in the modified subscription game coincides with his utility in the

optimal direct mechanism described in Section 4.1. In turn, we will reference the necessary and sufficient

conditions in Propositions 3, 4, and 5. Given threshold t, we will take the corresponding equilibria described

in Propositions 3, 4, and 5 to be the continuation equilibria after players pay the entry fee ϕ. We first

consider the exponential distribution in (6). Because w(v) = v − (1 − ρ)/r is increasing in v, Lemma 3

applies. Straightforward calculations show that when c ≤ 2(v − (1− ρ)/r) the collector optimally provides

the public good with probability one, and charges 2v. This can be easily accomplished in our modified

subscription game by setting the entry fee ϕ = v and the threshold t = 0. For higher costs, the following

proposition shows how the collector obtains the same utility as in the optimal direct mechanism.

Proposition 6 (Utility maximization: exponential distributions). Suppose F is defined on [v,∞) by F (v) =

1− e−r(v−v), where r > 0 and v ≥ 1/r. Assume further that c > 2(v − (1− ρ)/r). The collector can obtain

the same utility as in the optimal direct mechanism in Section 4.1 by setting the contribution threshold at

t = c − 2ρ/r and the nonrefundable entry fee at ϕ = e−2(1−ρ)−cr+2vr/r. The continuation equilibrium is

described in (8).

Our proof uses Myerson’s (1982) Revenue Equivalence Theorem. For given c, if t is chosen so the provision

region in the subscription game matches that in the corresponding optimal mechanism, then the probability

a player obtains the good conditional on his value (Pi(vi) in the notation of Section 4.1) is the same in both

settings.13 By Myerson’s result, each player’s expected payments will then be the same in both regimes if

the player with value v earns the same conditional expected payoff (namely 0) in both settings. We set the

entry fee ϕ to make this so, leaving players willing to pay ϕ. Because provision regions coincide, expected

costs are identical.

13It is now clear, too, why step-function equilibria cannot be utility-maximizing. The “southwest” boundary of the region of
optimal provision is where w(v1) + w(v2) = c. If w(·) is strictly increasing, then this boundary will be strictly decreasing and
continuous in v1 × v2-space. Step-function equilibria give a boundary that is not strictly decreasing.
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Proof of Proposition 6. As noted above, w(v) = v − (1− ρ)(1− F (v))/f(v) = v − (1− ρ)/r, so the utility-

maximizing direct mechanism provides the good exactly where v1 + v2 ≥ c+ 2(1− ρ)/r.

Now consider the provision region for the regular equilibrium of Proposition 3. As given in (8), s(v) =

v − 1/r for all v ≤ v̂ = t− v + 2/r, and the good is provided if and only if v1 + v2 ≥ t+ 2/r. Therefore, to

match the two provision regions, the subscription game threshold is set at t = c− 2ρ/r. If no entry fee were

required, the payoff to the lowest type would be

(v − s(v)) Pr(v > v̂) =
1

r
e−r(v̂−v) =

1

r
e−2(1−ρ)+2rv−rc.

Therefore, to extract all surplus from the lowest-value type, the entry fee is set to e−2(1−ρ)−cr+2vr/r.

It is worth noting that Proposition 6 covers the case 2(v − (1 − ρ)/r) < c ≤ 2v, where a fully efficient

equilibrium of the subscription game exists. Indeed, because c ≤ 2v, the contributors’ asymmetric informa-

tion is irrelevant for efficiency purposes: it is common knowledge that the good should always be provided

and both contributors are willing to contribute c/2 regardless of their private information. Nonetheless, as

long as ρ < 1, the collector finds it more profitable to restrict the probability of provision as described in

Proposition 6. This behavior of the collector is completely analogous to a monopolist restricting the quantity

supplied to increase the price charged, or to the imposition of a reserve price in optimal auctions.

While for the exponential distribution piecewise-linear regular equilibria do not exist when v < 1/r, there

may well exist nonlinear equilibria continuous on [ev, v̂]. Nevertheless, no such equilibria of the (modified)
subscription game yield the same utility of the optimal mechanism. Thus, without restricting attention to

linear strategies, the following proposition provides a converse to the previous result.

Proposition 7. Suppose F is defined on [v,∞) by F (v) = 1 − e−r(v−v), where r > 0 and v < 1/r. For

any continuation equilibrium of the subscription game, the collector cannot obtain the same utility as in the

optimal direct mechanism in Section 4.1.

Proof. Applying Lemma 3, we obtain that the provision region in the optimal mechanism is v1+v2 ≥ c+2/r.

If an equilibrium of the subscription game can match this provision region it must have G0(v) = −1, so

G(v) = k1 − v for some constant k1, where G is defined in Proposition 1. Equation (1) then reduces to

s0(v) = r(v − s(v));

a solution to this differential equation must have the form

s(v) = v − 1
r
+ k2 e

−rv,
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for some constant k2. When k2 = 0 one obtains our earlier candidate for a linear-strategy equilibrium.

However, because v < 1/r, Proposition 3 implies this is not an equilibrium. When k2 6= 0, constancy of

s(v) + s(G (v)) on [ev, v̂] implies that, for some constant k3,
k1 −

2

r
+ k2(e

−rv + e−r(k1−v)) = k3;

differentiation with respect to v implies e−rv = e−r(k1−v), which cannot be satisfied for an interval of v’s.

Hence, there is no equilibrium with k2 6= 0.

Combining Propositions 6 and 7, the following corollary provides necessary and sufficient conditions for

the subscription game to maximize the collector’s utility when values have an exponential distribution.

Corollary 1. Suppose F is defined on [v,∞) by F (v) = 1 − e−r(v−v), where r > 0. Assume further that

c > 2(v − (1− ρ)/r). Through the modified subscription game the collector can obtain the same utility as in

the optimal direct mechanism if and only if v ≥ 1/r.

We now consider reverse power function distributions. Lemma 3 again applies, and straightforward

calculations show that when cr ≤ 2(((1 − ρ) + r)v − (1 − ρ)v̄) (the low-cost case), the collector optimally

provides the public good with probability one and charges 2v–there are many ways to implement this

allocation via the subscription game. For cr > 2(((1− ρ)+ r)v− (1− ρ)v̄) it is convenient to distinguish two

cases. We begin with the high-cost case. (The proofs of the remaining propositions follow the logic of those

of Propositions 6 and 7 and can be found in the Appendix.)

Proposition 8 (Utility maximization: reverse power distributions, high cost). Suppose F is defined on [v, v̄]

by F (v) = 1 −
³
v̄−v
v̄−v

´r
, where r > 0 and 0 ≤ v < v̄ < ∞. Assume further that c satisfies v((1 − ρ) + r) +

(r − (1− ρ))v̄ ≤ cr < 2v̄r. The collector can obtain the same utility as in the optimal direct mechanism in

Section 4.1 by setting the contribution threshold at

t =
cr(2 + r) + 2v̄(1− ρ(1 + r))

(1 + r)((1− ρ) + r)

and the nonrefundable entry fee at ϕ = 0. The continuation equilibrium is described in (10).

Observe that in the high-cost case, the unmodified subscription game is optimal–an entry fee need not

be charged. This is because types near v have no chance of obtaining the good and therefore earn zero

surplus. For lower costs of production the seller can be expected to set a lower threshold; once the type-v

contributor has a chance of obtaining the good, an entrance fee must be added to ensure this contributor is
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left with no surplus. Nevertheless, turning to the medium-cost case, we note that the functional form of the

optimal threshold is the same as in the high-cost case.

Proposition 9 (Utility maximization: reverse power distributions, medium cost). Suppose F is defined

on [v, v̄] by F (v) = 1 −
³
v̄−v
v̄−v

´r
, where r > 0 and 0 ≤ v < v̄ < ∞. Assume further that c satisfies

2(((1− ρ) + r)v − (1− ρ)v̄) < cr ≤ v((1− ρ) + r) + (r − (1− ρ))v̄. If either

a. v̄ − v(2 + r) ≤ 0; or

b. v̄ − v(2 + r) > 0 and cr ≥ v̄(r + ρ− 1)− vr(1 + r − ρ),

then the collector can obtain the same utility as in the optimal direct mechanism in Section 4.1 by setting

the contribution threshold at

t =
cr(2 + r) + 2v̄(1− ρ(1 + r))

(1 + r)((1− ρ) + r)

and the nonrefundable entry fee at

ϕ =
(v̄ (r − 1 + ρ) + v (1 + r − ρ)− cr)r+1

(1 + r)
r+2

(v̄ − v)
r .

The continuation equilibrium is described in (12).

Our analysis has implications for the study by Alboth et al. (2001), who consider a seller of a discrete

public good facing two contributors whose individual values are independently and uniformly distributed

over [0, 1]. The seller’s cost of production is zero. Setting a threshold t that total contributions must reach

before the good is provided, the seller expects to earn positive revenue in the Bayesian equilibrium of the

subscription game. Given t < 2, Alboth et al. derive the unique symmetric equilibrium in which a player’s

strategy is a strictly increasing, continuously differentiable function of his own value, having range [0, t].

(Thus, every equilibrium they derive has ev = 0 and v̂ = 1.) Varying threshold t they seek the corresponding
equilibrium maximizing expected revenue; revenue is so maximized at t = 1/2, achieving value 1/3; the

associated equilibrium strategy is s(v) = v/2 for all v ∈ [0, 1]. Their analysis, however, leaves unanswered

three important questions:

1. Do other subscription game equilibria yield greater revenue?

2. Do other selling mechanisms yield greater revenue?

3. If c > 0 can any of Alboth et al.’s strictly increasing equilibria be optimal for the seller?

Our analysis implies the answer to all three questions is No. Propositions 8 covers the case where values

are uniformly distributed over [0, 1] (v = 0, v̄ = 1, r = 1). If ρ = 0 and c = 0 (the case of Alboth et al.),
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then the subscription game yields the profit of the optimal mechanism when the threshold is set at t = 1/2,

the entry fee is ϕ = 0, and players use strategy s(v) = v/2. Thus, not only is the equilibrium Alboth et al.

derive profit-maximizing in the subscription game, no other mechanism yields greater profit. For t 6= 1/2

the equilibria Alboth et al. derive are highly nonlinear and apparently give provision regions without the

linear boundary found in an optimal mechanism, and therefore would appear not to maximize the seller’s

profit over all incentive compatible mechanisms.14 To see this is indeed the case, note that in the equilibria

of Alboth et al., where strategies are strictly increasing throughout, all types in (0, 1] have a strictly positive

probability of obtaining the good. However, for ρ = 0, so that the seller maximizes profits, and c ∈ (0, 2), the

optimal mechanism specifies that players with value v ∈ [0, c/2) have zero chance of obtaining the good.15

Thus, the provision regions of the optimal mechanism and the equilibria of Alboth et al. do not match,

implying by the Revenue Equivalence Theorem that the revenues are not equal.

Analogous to Proposition 7, our final proposition provides for the reverse power function distribution the

same kind of converse result to the optimality of linear strategies: if linear strategies do not exist, then the

(modified) subscription game cannot maximize the collector’s utility.

Proposition 10. Suppose F is defined on [v, v̄] by F (v) = 1 −
³
v̄−v
v̄−v

´r
, where r > 0 and 0 ≤ v < v̄ < ∞.

Assume further that 2(((1− ρ) + r)v − (1− ρ)v̄) ≤ cr ≤ v((1− ρ) + r) + (r − (1− ρ))v̄. If v̄ − v(2 + r) > 0

and cr < v̄(r + ρ− 1)− vr(1 + r − ρ), then, for any continuation equilibrium of the subscription game, the

collector cannot obtain the same utility as in the optimal direct mechanism in Section 4.1.

Combining Propositions 8—10, the following corollary provides necessary and sufficient conditions for the

subscription game to maximize the collector’s utility when values have a reverse power function distribution.

Corollary 2. Suppose F is defined on [v, v̄] by F (v) = 1 −
³
v̄−v
v̄−v

´r
, where r > 0 and 0 ≤ v < v̄ < ∞.

Assume further that 2(((1 − ρ) + r)v − (1 − ρ)v̄) ≤ cr ≤ 2rv̄. Through the modified subscription game the

collector can obtain the same utility as in the optimal direct mechanism if and only if v̄ ≤ (2 + r)v or

cr ≥ v̄(r + ρ− 1)− vr(1 + r − ρ).

The results of this section display natural comparative statics properties. One may easily verify how the

optimal threshold t is increasing in the cost c and decreasing in the altruism parameter ρ. Intuitively, the

larger the cost of the project, the more the collector will ask the players to contribute. Similarly, a collector

that cares more about the players’ utility will ask them to contribute less. The results for the optimal entry

fee ϕ have the opposite sign of those for t. They are driven by the requirement U∗i (v) = 0 in Section 4.1.

14Similarly, with a uniform distribution of values, the contribution game cannot be optimal (even when c = 0, the case of
Alboth et al.) as the continuous equilibria have a provision region bounded by a hyperbola (Barbieri and Malueg, forthcoming
(a)).
15To see this, recall that for values uniformly distributed over [0, 1] and ρ = 0, the optimal mechanism provides the good if

and only if v1 + v2 ≥ 1 + c/2.
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Indeed, a smaller threshold t implies a larger utility for type v, so that the entry fee must increase to ensure

that the utility of the lowest type remains zero. It is worth mentioning that, when ρ = 0, the collector’s

ex-post profit is positive: The optimal threshold is always larger than the cost of production c. Intuitively,

as ρ increases, the collector’s profit becomes negative for some combinations of valuations: The collector

becomes itself a contributor to the public good. Indeed, even the ex-ante expected profit becomes negative

as ρ grows large, as implied by the Myerson-Satterthwaite theorem. For valuations uniformly distributed on

[0, 1], one may show how ex-ante expected profits are positive as long as ρ ≤ 2/3.

4.3 Utility maximization in the contribution game

Our analysis so far has shown that, for the family of distribution functions characterized by a linear inverse

hazard rate, the subscription game admits equilibria that maximize the collector’s utility. Importantly, this

results holds for an interval of provision costs c’s and for all altruism parameters ρ ∈ [0, 1). A natural

question is if a similar result can be obtained for the closely related contribution game. A negative answer

would provide a meaningful comparison of the contribution and subscription games, additional to the existing

efficiency comparisons in the literature, that are not conclusive. Indeed, Menezes et al. (2001) show classical

inefficiency of both subscription and contribution games. Moreover, Laussel and Palfrey (2003) and Barbieri

and Malueg, forthcoming (a), show interim incentive efficiency for both subscription and contribution games,

respectively, albeit only for a uniform distribution of valuations and for different ranges of c.

Note first that Lemma 3 implies that we can restrict attention to continuous and symmetric equilibria of

the contribution game in our quest to match the optimal provision region, as discussed above (cf. footnote

13.) From the analysis in Barbieri and Malueg, forthcoming (a), one can then immediately see how the

choice of the contribution game cannot maximize the seller’s utility if either v = 0 or w(v) + w(v̄) < c. In

the first case, under the assumption f(v) > 0, no continuous equilibrium exists. In the second, the optimal

provision region specifies that types close to v should receive the public good with probability zero. This

condition is inconsistent with existence of a continuous equilibrium of the contribution game.

A closer inspection of the characterization result in Proposition 1 in Barbieri and Malueg, forthcoming

(a), delivers the following additional necessary condition, with proof in the Appendix, for the contribution

game to maximize the utility of a seller with altruism parameter ρ.

Proposition 11 (Utility maximization: contribution game). Suppose that there exists an equilibrium of the

contribution game such that, for all c ∈ (cm− �, cm+ �), a seller with altruism parameter ρ receives the same
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utility as in the optimal direct mechanism in Section 4.1. Then the distribution function F (v) solves

[w0(v) + w00(v)v] f(v)− w0(v)vf 0(v) = 0, (15)

for all v ∈
¡
w−1( cm−�2 ), w−1( cm+�2 )

¢
, where w is defined in Lemma 3.

The differential equation in Proposition 11 may be used to show how, for the distribution functions in

Lemma 2, the contribution game is never optimal for the seller, in contrast to the subscription game. More

importantly, equation (15) shows that the distribution function for which the contribution game may be

optimal depends on the specific value of ρ, as the following lemma, with proof in the Appendix, shows.

Lemma 4. There exists no distribution function F independent of ρ and satisfying the assumptions of

Section 4.1, namely w0(v) > 0, such that F solves (15) for an open set of ρ0s.

Therefore, as soon as one requires optimality not just for a single value of the altruism parameter, as

reasonable in judging the properties of mechanisms like the contribution or subscription games, Proposi-

tion 11 implies that the contribution game cannot be optimal. This is a sharp contrast with the subscription

game, as demonstrated in the previous section. The difference stems from the different treatment of insuf-

ficient contributions. The full-refund feature of the subscription game generates a much greater latitude

for the collector. Indeed, through the careful choice of the threshold t described in the previous section,

different optimal provision regions induced by changes in the cost c and by different values of ρ may be

jointly accommodated in the subscription game. On the contrary, because insufficient contribution are not

refunded, equilibria are more tightly determined in the contribution game, especially if continuity of equilib-

rium strategies is required. Therefore, the contribution game is a far less flexible mechanism for the collector

than the contribution game. To understand how the no-refund feature limits the flexibility of the collector,

it is enough to consider the result, established in Barbieri and Malueg, forthcoming (a), that all continuous

equilibria of the contribution game must have ev = v. If that were not the case, it would imply that the

contributions of v and v̄ total less than the threshold t. By continuity of the equilibrium strategy then, there

exists at least a player with value v0 ∈ (v, ev) that contributes a strictly positive amount with no expectation
of the project being completed. Therefore we obtain a contradiction to equilibrium, since type v0 has a

profitable deviation to a contribution of zero because insufficient contributions are not refunded. Similar

restrictions can be derived for the slope of the contribution function, as Barbieri and Malueg, forthcoming

(a), and Menezes et al. show. Such restrictions are the key step in the proof Proposition 11.
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5 Conclusion

In the symmetric subscription game, piecewise-linear regular equilibria exist for the exponential and reverse

power distributions of players’ values. Moreover, if a regular symmetric equilibrium strategy is piecewise

linear, then the distribution of players’ types must agree with an exponential or reverse power function

distribution, at least over the interval [ev, v̂]. For the exponential and reverse power function distributions we
have characterized exactly when piecewise-linear regular equilibria exist, and we have shown such equilibria

can be utility-maximizing for the seller. Moreover, for these distributions only piecewise-linear equilibria can

maximize the seller’s utility over all incentive compatible mechanisms. It remains an open question whether,

for other distributions of players’ types, nonlinear equilibria of the subscription game (possibly with entry

fees) can be optimal for the seller.

Appendix

Proof of Proposition 1. Necessity: Note that on [ev, v̂] the pairs (v,G(v)) represent the equilibrium completion
frontier in v1 × v2-space. The payoff to a player with value v ∈ [ev, v̂] contributing s(va) ∈ [s(ev), s(v̂)]
is U(s(va)|v) = (v − s(va))(1 − F (G(va))); since s(v) is optimal it must satisfy the following first-order

optimization condition

s0(v)(1− F (G(v))) + (v − s(v))f(G(v))G0(v) = 0,

which is (1). Differentiating the defining equation for G, we obtain s0(v) + s0(G(v))G0(v) = 0, which

can be rearranged to give (2). Since contributions and payoffs in equilibrium must be positive, we need

0 ≤ s(v) ≤ v, for v ∈ [ev, v̄].
If ev > v, then two additional conditions must be satisfied. First, it is necessary that

s(ev) = ev, (16)

for if s(ev) < ev then types in [v, ev) sufficiently near ev could profitably deviate to a contribution of s(ev).
Second, it must be that

(v̄ − s(v̂))(1− F (G(v̂))) ≥ v̄ − t, (17)

so that the player with the highest possible value, v̄, cannot, by ensuring the project is provided, strictly

increase his payoff with a contribution of t rather than s(v̂).

Sufficiency: Now we show that conditions (1)—(4) suffice to characterize a regular symmetric equilibrium.

To show that the first-order condition (1) actually identifies a best response, first observe that for any
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announcement va ∈ (ev, v̂),
dU(s(va)|v)

dva
= −s0(va)(1− F (G(va)))− (v − s(va))f(G(va))G

0(va)

= (va − v)f(G(va))G
0(va),

where the second equality follows from (1) evaluated at v = va. Because G
0(va) ≤ 0, we have

dU(s(va)|v)
dva

R 0 for va Q v,

implying that U(s(va)|v) is quasiconcave in va ∈ (ev, v̂), achieving a maximum at s(va) = s(v). By continuity

of s (in v) and U (in s and v), s is also optimal for v = ev, v̂. Thus, we have shown that over the interval of
contributions [s(ev), s(v̂)], s(v) is optimal for all v ∈ [ev, v̂]. It remains to show s(v) is globally optimal for all

v ∈ [ev, v̂]. A contribution less than s(ev) implies the good will not be provided and the corresponding payoff
is 0; hence, given (3), such a contribution is not strictly better than s(v). A contribution in the interval

(s(v̂), t) does not increase the probability of provision beyond contributing s(v̂) as all types v < ev contribute
0. Therefore, the only other deviation from s(v) to consider is t, which would ensure the good is provided.

However, we see that, for any v ∈ [ev, v̂],
U(s(v)|v) ≥ U(s(v̂)|v) (s(v) is optimal in [0, s(v̂)])

= (v − s(v̂))(1− F (G(v̂)))

= (v − v̄)(1− F (G(v̂))) + (v̄ − s(v̂))(1− F (G(v̂)))

≥ (v − v̄)(1− F (G(v̂))) + (v̄ − t) (by condition (4))

= (v − t) + (v̄ − v)F (G(v̂))

≥ v − t,

showing a deviation to t is not profitable.

Turning attention to types in (v̂, v̄], we show s(v) = s(v̂) is optimal. There are two possibilities. The first

is ev = v. Here, because s(v̂)+ s(ev) = s(v̄)+s(v) = t and s is nondecreasing, a contribution s(v̂) is enough to

ensure provision of the good, so any larger contribution is dominated by s(v̂). The second possibility is ev >
v. In this case, condition (4) is sufficient to discourage a deviation to a contribution equal to t by type v̄,

and to any contribution in (s(v̂), t) because s(v) = 0 for v ∈ [v, ev). The argument of the previous paragraph
applies here, too, to show that (4) is sufficient to ensure no type v ∈ (v̂, v̄] has a strictly profitable deviation
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of t or larger.

As for types in [v, ev), they can exist only when ev > v. In this case, s(ev) = ev by condition (4) so types
in [v, ev) find it optimal to contribute any amount less than s(ev), in order to avoid triggering completion
with some positive probability and thereby realizing a strictly negative payoff. Therefore, we can set their

contributions to zero. This establishes that s(v) is optimal for all v.

Proof of Proposition 2. By contradiction assume that, for some t > 0, (s, s) is a regular equilibrium with

s(ev) = ev and v̂ < v̄. Then, it must satisfy the conditions in Proposition 1. Define G : [ev, v̂] → [ev, v̂] as in
Proposition 1. Then G is strictly decreasing and continuous, with G(ev) = v̂ and G(ev) = v̂. After algebraic

manipulations and using G(G(v)) = v, conditions (1) and (2) may be written as

s0(v) = h(v)(G(v)− s(G(v))) (18)

and

G0(v) = − h(v)

v − s(v)

G(v)− s(G(v))

h(G(v))
(19)

where h(y) ≡ f(y)/(1 − F (y)) is the hazard rate function associated with F . Define vm as the type that

contributes t/2: vm ≡ s−1(t/2); note that in a regular equilibrium vm exists and vm ∈ (ev, v̂). Fix any
v ∈ [ev, vm] and observe that G(v) ∈ [vm, v̂]. Define m as

m ≡ min
v∈[vm,v̂]

v − s(v)

h(v)
.

Note that m is well-defined because s and h are continuous and, for v ∈ [vm, v̂], h(v) is bounded away from

zero because of the assumption v̂ < v̄. Moreover, since U(s(v)|v) = U∗(v) is strictly increasing in v and

s(ev) = ev, it follows that s(v) < v for v ∈ [vm, v̂]. Therefore we see that m > 0. Because f(v) > 0 and f is

continuous on [v, v̄), there exists v0 ∈ (v, vm] and f > 0 such that f(v) ≥ f for all v ∈ [v, v0]. The bounds

m and f are used next.

On the one hand, since G is bounded, for v ∈ [ev, v0] we have
G(v)−G(vm) = G(v)− vm ≤ v̂. (20)
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On the other hand, for v ∈ (ev, v0] we have
G(v)−G(vm) =

Z v

vm

G0(y) dy

=

Z vm

v

h(y)

y − s(y)

G(y)− s(G(y))

h(G(y))
(by (19))

≥ m

Z vm

v

h(y)

y − s(y)
dy (definition of m)

≥ m

Z vm

v

f(y)

y − s(y)
dy

≥ mf

Z v0

v

1

y − s(y)
dy (v0 ≤ vm; definition of f)

≥ mf

Z v0

v

1

y − ev dy (s(ev) = ev; s increasing)
= mf log

µ
v0 − ev
v − ev

¶
→∞ as v ↓ ev,

showing (20) is violated for v close to ev. This contradiction implies (s, s) cannot be a regular equilibrium.
Proof of Lemma 2. Consider the equation for a linear inverse hazard rate

1− F (v)

f(v)
= γv + δ,

which can be restated as

−f(v)
1− F (v)

= − 1

γv + δ
. (21)

If γ = 0, then δ > 0 and integration of (21) yields

log (1− F (v)) = −1
δ
v + λ,

where λ is a constant of integration. The condition F (v) = 0 implies λ = v/δ, so

F (v) = 1− e−r(v−v),

where r = 1/δ > 0; and the condition limv→v̄ F (v) = 1 implies v̄ = +∞.
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If γ 6= 0, integration of (21), along with the boundary conditions F (v) = 0 and F (v̄) = 1, yields

F (v) = 1−
µ
v̄ − v

v̄ − v

¶r
,

for some r 6= 0. Since F must be increasing, we have r > 0.

Proof of Proposition 3. The proof applies Proposition 1. If s(v) = αv+β on [ev, v̂], then G(v) = (t−2β)/α−v
so equation (2) is satisfied. If F is given in (6), then (as in (5)) equation (1) becomes

1

r
=
1− α

α
(v̂ + ev − v)− β

α
∀v ∈ (ev, v̂), (22)

which is satisfied if and only if

α = 1 and β = −1
r
. (23)

Therefore, on [ev, v̂] a regular piecewise-linear equilibrium strategy must be s(v) = αv + β = v − 1
r ; conse-

quently, the necessary condition s(ev) = ev if ev > v can never be satisfied, implying by (4) that ev = v. Because

contributions must be non-negative, we have

v − 1
r
= ev − 1

r
≥ 0. (24)

Finally, the condition s(ev) + s(v̂) = t implicitly defines v̂ as

v̂ = t− v +
2

r
.

The requirement that v̂ ≥ v yields

t ≥ 2
µ
v − 1

r

¶
. (25)

Conditions (24) and (25) are the necessary conditions stated in the proposition. If these conditions are

satisfied, then s given in (8) satisfies a—d and (1)—(3) of Proposition 1; and with ev = v, it follows that (s, s)

is a symmetric equilibrium.

Proof of Proposition 4. The proof applies Proposition 1. If s(v) = αv+β on [ev, v̂], then G(v) = (t−2β)/α−v
so equation (2) is satisfied. If F is given by (7), then (as in (5)) equation (1) becomes

1

r
(v̄ − v) = (v̂ + ev − v)

1− α

α
− β

α
∀v ∈ (ev, v̂), (26)
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which is satisfied if and only if

α =
r

1 + r
and β = − v̄ − (v̂ + ev)

1 + r
. (27)

Therefore, on [ev, v̂] a regular piecewise-linear equilibrium strategy must be

s(v) =
r

1 + r
v − v̄ − (v̂ + ev)

1 + r
. (28)

By the definition of G, we must have

s(ev) + s(v̂) = t,

or, using (28),

t =

µ
2 + r

1 + r

¶
(ev + v̂)− 2v̄

1 + r
, (29)

which can be rewritten as

ev + v̂ =

µ
1 + r

2 + r

¶
t+

2v̄

2 + r

>
(2 + r)v + rv̄

2 + r
+

2v̄

2 + r
(by (9))

= v̄ + v;

and, since v̂ ≤ v̄ we must have ev > v. When ev > v, the necessary condition s(ev) = ev applies, and using (28)
we obtain v̂ = v̄. Therefore, ev is implicitly determined by s(ev) + s(v̄) = t, yielding

ev = t(1 + r)− rv̄

2 + r
.

In order for the last expression to belong to (v, v̄) it must be that

rv̄ + v(2 + r)

1 + r
< t < 2v̄,

thus completing the proof of necessity of the Proposition.

The foregoing shows that if there exists a symmetric piecewise-linear regular equilibrium (s, s), then on

[ev, v̂] strategy s has the form in (28). Note that the strategy s in (28) satisfies conditions a—d. To show

further that it constitutes an equilibrium we consider the case ev > v, which is possible because t ≥ rv̄+v(2+r)
1+r .

Using (28), the necessary condition that s(ev) = ev now implies v̂ = v̄, so the candidate equilibrium strategy is

given by (10). This strategy has properties a—d of Proposition 1 and satisfies the sufficient conditions (1)—(3).

To complete the proof, it only remains to show that (4) is also satisfied. Because t = s(v̄) + s(ev) = s(v̄) + ev,
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the remaining condition in (4) can be rewritten as

(v̄ − (t− ev))(1− F (ev)) ≥ v̄ − t,

which, after substituting for F and rearranging terms, becomes

v̄ − (t− ev)
v̄ − t

µ
v̄ − ev
v̄ − v

¶r
≥ 1. (30)

It now suffices to show (30) is satisfied. From the condition t = ev + s(v̄), we obtain

ev = t(1 + r)− rv̄

2 + r
.

Consequently, we have

v̄ − (t− ev) = (2 + r)(v̄ − t) + t(1 + r)− rv̄

2 + r
=
2v̄ − t

2 + r
(31)

and

v̄ − ev = (2 + r)v̄ − t(1 + r) + rv̄

2 + r
=
2v̄ − t

2 + r
(1 + r); (32)

so, to show that (30) is satisfied when ev > v, we need to show

(2v̄ − t)
r+1

(v̄ − t)

1

2 + r

µ
1

v̄ − v
× 1 + r

2 + r

¶r
≥ 1 ∀t > (2 + r)v + rv̄

1 + r
. (33)

Consider the function

(2v̄ − t)
r+1

v̄ − t
(34)

on the left-hand side of (33). Its derivative with respect to t is

− (r + 1) (2v̄ − t)r (v̄ − t) + (2v̄ − t)r+1

(v̄ − t)
2 =

(2v̄ − t)r

(v̄ − t)
2 (− (r + 1) (v̄ − t) + 2v̄ − t)

=
(2v̄ − t)r

(v̄ − t)2
(rt+ (1− r) v̄)

R 0 ⇐⇒ t R r − 1
r

v̄.
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Because

(2 + r)v + rv̄

1 + r
>

r

1 + r
v̄ >

r − 1
r

v̄,

it follows that (34) is strictly increasing in t for t > (2+r)v+rv̄
1+r . Therefore, for any t > (2+r)v+rv̄

1+r we have

(2v̄ − t)r+1

v̄ − t
>
(2v̄ − t)r+1

v̄ − t

¯̄̄̄
¯
t= (2+r)v+rv̄

1+r

= (2 + r)

µ
v̄ − v

v̄ − (2 + r)v

¶µ
2 + r

1 + r

¶r
(v̄ − v)r . (35)

Using (35) we have

lhs of (33) ≥
∙
(2 + r)

µ
v̄ − v

v̄ − (2 + r)v

¶µ
2 + r

1 + r

¶r
(v̄ − v)r

¸
1

(2 + r)

µ
1

v̄ − v
× 1 + r

2 + r

¶r
=

v̄ − v

v̄ − (2 + r)v

≥ v̄ − v

v̄ − v
= 1,

establishing (33), thereby completing the proof.

Proof of Proposition 5. We proceed exactly as in the proof of Proposition 4 to derive that ev > v implies

t >
rv̄ + v(2 + r)

1 + r
,

contradicting the definition of the low-threshold case. Therefore, in the low-threshold case, regular piecewise-

linear symmetric equilibria must have ev = v. In this case v̂ is implicitly determined by s(v)+s(v̂) = t, which,

using (28), yields after rearrangement

v̂ =
t(1 + r) + 2v̄

2 + r
− v.

Substituting this value into (28) yields

s(v) =
r

1 + r
v − v̄r − t(1 + r)

(2 + r) (1 + r)
;

but the necessary condition s(v) ≥ 0 thus implies

t ≥ r

1 + r
(v̄ − v (2 + r)).
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At the same time, we must have

v ≤ v̂ =
t(1 + r) + 2v̄

2 + r
− v;

thus implying

t ≥ − 2

(1 + r)
(v̄ − v (2 + r)),

and completing the proof of necessity of the Proposition.

The foregoing shows as well that the strategy (12) has properties a—d of Proposition 1 and satisfies the

sufficient conditions (1)—(3). Since ev = v, condition (4) is automatically satisfied. This establishes the

sufficiency of Proposition 5.

Proof of Proposition 8. Because

v − ρ
1− F (v)

f(v)
=

µ
1− ρ+ r

r

¶
v − (1− ρ)

v̄

r
,

Lemma 3 shows the optimal mechanism provides the good if and only if

c ≤
µ
(1− ρ) + r

r

¶
(v1 + v2)−

2(1− ρ)v̄

r
,

which is equivalent to

v1 + v2 ≥
2(1− ρ)v̄ + cr

(1− ρ) + r
. (36)

Note how

t =
cr(2 + r) + 2v̄(1− ρ(1 + r))

(1 + r)((1− ρ) + r

and cr ≥ v((1− ρ) + r) + (r − (1− ρ))v̄ imply

t ≥ v(2 + r) + v̄r

(1 + r)
,

the definition of high-threshold case in (9). Therefore, the strategy in (10) is part of a symmetric equilibrium

where completion happens if and only if s(v1) + s(v2) ≥ t, or

v1 + v2 ≥
2v̄ + t(1 + r)

2 + r

=
2(1− ρ)v̄ + cr

(1− ρ) + r
,

using (10) and the choice of t in the Proposition, showing the provision region in this subscription-game
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equilibrium coincides with that in the optimal mechanism (see (36)). To conclude, note that in (10) we have

ev > v, so that U∗i (v) = 0. Therefore, ϕ = 0 is optimal.

Proof of Proposition 9. Note how the choice of t in the Proposition and cr ≤ v((1− ρ) + r) + (r− (1− ρ))v̄

imply

t ≤ v(2 + r) + v̄r

(1 + r)
,

the definition of low-threshold case in (11). Therefore, if the strategy in (12) is part of a symmetric equi-

librium, proceeding as for the proof of Proposition 8, one may show that the completion region induced by

(12) is the same specified in Lemma 3. The choice of the entry fee ϕ delivers

0 = U∗i (v) = (v − s(v))(1− F (v̂))− ϕ,

using (12). Therefore, we just need to verify the additional conditions specified in Proposition 5. When

v̄ − v(2 + r) > 0 we need

t ≥ r

1 + r
(v̄ − v(2 + r)),

which, after substitution, reduces to

cr > v̄(r + ρ− 1)− vr(1 + r − ρ),

and this condition is required by the statement of this Proposition. When v̄ − v(2 + r) < 0 we need

t ≥ − 2

1 + r
(v̄ − v(2 + r)),

which, after substitution, yields

cr > 2v (1 + r − ρ)− 2(1− ρ)v̄,

and this condition is equivalent to the assumption that the collector does not produce the good with proba-

bility one in the optimal mechanism: cr > 2((1− ρ) + r)v − 2(1− ρ)v̄.

Proof of Proposition 10. The proof proceeds with the same steps of the proof of Proposition 7, so G(v) =

k1 − v for some constant k1. Equation (1) now reduces to

s0(v) =
r(v − s(v))

v̄ − k1 + v
;
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a nonconstant solution to this differential equation must have the form

s(v) =
k1 − v̄ + rv

1 + r
+ k2(k1 − v̄ − v)−r,

for some constant k2. With the same steps as in the proof of Proposition 7, one can establish that s cannot be

an equilibrium when k2 6= 0, while the conditions in this Proposition imply that s cannot be an equilibrium

when k2 = 0, because s(v) is not a valid linear equilibrium.

Proof of Proposition 11. Consider a symmetric equilibrium of the contribution game. Exactly as in Propo-

sition 1, define the boundary that separates the region of the type space where completion occurs from the

no-completion region as (v,G(v)). From Proposition 1 in Barbieri and Malueg, forthcoming (a), we have

G0(v) = −f(v)
v

G(v)

f(G(v))
.

If the equilibrium maximizes the sellers utility when the cost of the public good is cm, we have from Lemma 3

that w(v) +w(G(v)) = cm; hence, after differentiation and substitution in the previous equation, we obtain

ψ(v) ≡ w0(v)v

f(v)
=

w0(G(v))G(v)

f(G(v))
= ψ(G(v)).

Consider now the type vm that solves w(vm) +w(vm) = cm. By definition of G we must have G(vm) = vm.

Moreover, for all types smaller than vm, the corresponding G(vm) will be larger than vm. A necessary

condition for equilibrium is then ψ0(vm) = 0: if ψ did not have either a maximum or a minimum at vm,

it would be impossible to find two types, one on each side of vm, such that ψ assumes the same value,

for a sufficiently small neighborhood of vm. Repeating the same reasoning for all values of the cost in

(cm − �, cm + �) we obtain that ψ0 = 0 on an interval around vm. Equation (15) is a simple rearrangement

of the condition ψ0 = 0, using the definition of ψ above.

Proof of Lemma 4. By contradiction, assume such F exists. Equation (15) may be rewritten as

w00(v)

w0(v)
=

f 0(v)

f(v)
− 1

v
, (37)

where the right-hand side does not depend on ρ. The left-hand side depends on ρ through the definition of

w in Lemma 3:

w(v) = v − (1− ρ)
1− F (v)

f(v)
,
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that delivers

w0(v) = 1 + (1− ρ)

µ
f 0(v)

f(v)
× 1− F (v)

f(v)
+ 1

¶
.

Therefore, indicating with z(v) ≡ f 0(v)
f(v) ×

1−F (v)
f(v) +1, which is independent of ρ by the contradiction hypothesis,

the left-hand side of (37) is

(1− ρ)z0(v)

1 + (1− ρ)z(v)
.

Fix now a v for which (15) must hold for a value of ρ denoted ρ1. Consider a different value ρ2 that is

sufficiently close to ρ1 so that v is inside that open set of players’ valuations for which (15) holds for ρ = ρ2

as well. For both values of ρ, equation (37) holds. Therefore, we obtain

(1− ρ1)z
0(v)

1 + (1− ρ1)z(v)
=

(1− ρ2)z
0(v)

1 + (1− ρ2)z(v)
,

implying z0(v) = 0. Since we fixed an arbitrary v, the condition z0(v) = 0 must hold not just for a specific

valuation, but it is a true differential equation. Therefore, equation (37) simplifies to

f 0(v)

f(v)
=
1

v
,

which, upon integration, yields f(v) = κ1v, for some κ1 > 0. Further integration yields F (v) = κ1
2 v

2 + κ2,

where κ2 is another constant of integration. Note that κ2 must be strictly smaller than 1, for F to represent

a meaningful probability distribution. Substituting these values into the definition of z we obtain:

z(v) =
1

2
+
1− κ2
κ1v2

,

therefore

z0(v) = −2(1− κ2)

κ1v3
,

which satisfies the differential equation z0(v) = 0 only if κ2 = 1. As shown above, this value is not admissible

if F is to represent a probability distribution, and we obtain a contradiction.
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