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Abstract

In this paper we show that, for an appropriately chosen strategy space,
the equilibrium outcome of a Tullock contest with a symmetric success
function is characterized by a single player winning with probability one.
This equilibrium outcome fits the stylized fact that there are many un-
contested elections and undefended court actions.
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1 Introduction

Tullock’s (1980) theory of contests has provided insights into a wide range

of strategic behavior including elections, litigation, rent-seeking and internal

labour market tournaments. The central idea is to represent strategic inter-

actions in which different agents spend effort or resources to win a particular

contest or competition. A wide range of variations of the model has been con-

sidered, with a central focus on the way on which strategic choices and rent

dissipation are affected by changes in the success function relating effort to the

probability of succeeding in the contest.1 In the original Tullock model, players’

probability of winning is proportional to their share of total expenditure.

One fairly robust finding is that, given a symmetric success function, there

always exist symmetric Nash equilibria.2 However, as we explain below, asym-

metric equilibria do not exist in these settings. In particular, there do not exist

equilibria in which only one player contributes, winning with probability 1.

In reality, though, uncontested elections and undefended court actions are

common.3 A candidate with a sufficiently clear and credible determination to

win may discourage others from entering the race at all. In this note, we show

that, for an appropriate (asymmetric) strategy space, the unique equilibrium

outcome is one in which a single player wins with probability one.

The suggested strategy space arises naturally from the analysis of Cornes and

Hartley (2003). Cornes and Hartley show that best-response choices in a wide

range of contests may be analyzed by focusing on shares of total expenditure

rather than on contribution levels. Since shares must add to 1, the share of

total expenditure cannot be used as the strategic variable for a symmetric game.

However, it is natural, when thinking about asymmetric contests to suppose that

at least one player might have a strategy space consisting of possible shares of

1See, for example, the recent survey by Konrad (2007).
2 See, for example, Baye, Kovenock and de Vries (1994).
3 See, for example, Squire (2000), who reports percentage rates of uncontested seats as

single and double digits, respectively, for U.S. House of Representatives and State Legislatures.
This phenomenon is common across many countries — see, for example, Sharman (2003) for a
discussion of uncontested seats in the context of Australian elections — and a topic of intense
research in political science. See also Wrighton and Squire (1997) and Squire (1989).
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expenditure.

In this note, therefore, we proceed as follows. We first demonstrate that there

are no Nash equilibria of the standard Tullock contest in which only one player

contributes, winning with probability 1. Next, we demonstrate the existence of

a unique equilibrium with an uncontested winner for an asymmetric contest in

which the winner’s strategy space consists of expenditure shares. Finally, we

discuss examples of contests where such asymmetric equilibria might naturally

arise.

2 Symmetric Contests and their Symmetric Equi-
librium

Consider a Tullock contest, for example an election or an all-pay auction, in

which each player i, i = 1, ..., n, makes a contribution pi with probability of

winning a unit prize given by the contest success function:

πi =
piX
j

pj
. (1)

The payoff to player i is ui(pi, p−i) = πi−pi as the value of the prize is normalized
to 1.

A standard approach to this problem is to model the contest as a game in

which the strategy space for player i consists of contribution levels pi, then to

consider possible Nash equilibria of the game. Commonly, the specification of

the strategy space is read directly from the contest description given above, with

no further discussion of players’ beliefs, institutional structures and so on.

The proposition below presents a strong prediction of this model.

Proposition 1 There are no Nash equilibria of the standard Tullock contest

in which only one player contributes, winning with probability 1.

P roof. Consider a candidate equilibrium in which p1 > 0, pj = 0 for j̇ 6= 1.

Then player 1 can benefit by reducing her contribution. Also, if p1 is small

enough, other players can benefit by contributing. More formally, ∂u1
∂p1

= −1 at
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p2 = p3 = ... = pn = 0. Similarly, Player 2’s best response when p1 > 0 and

p3 = ... = pn = 0 is such that ∂u2
∂p2

= 1
p1
− 1 > 0 at p2 = 0. Thus, Player 2’s best

reply to p1 > 0 and p3 = ... = pn = 0 involves a positive effort or contribution.

It is not difficult to see that the finding that no single candidate wins an elec-

tion with probability one in any Nash equilibrium also holds under alternative

specifications of the contest success function. One example is the asymmet-

ric case where the probability of winning is given by πi =
λipiX
j

λjpj

, where λi

is an effectiveness variable. Another is the power function πi =
pγiX
j

pγj

. The

proof follows the same reasoning above as it is still the case that ∂u1
∂p1

= −1 at
p2 = p3 = ... = pn = 0.

In the standard Tullock contest, the unique (symmetric) Nash equilibrium

is such that

pi =
n− 1
n2

= p for i = 1, ..., n. (2)

To see this, note that n−1
n2 is the solution to ∂u1

∂p1
|p2=p3=...=pn= 1

p1+(n−1)p −
p1

(p1+(n−1)p)2
− 1 = 0. That is, under a strategy space where players choose a

contribution level pi, the prediction is that all players will make positive and

identical contributions.

3 Strategically Asymmetric Contests

We show next that by considering a natural modification of the standard sym-

metric contest, where one of the participants can commit to a probability of

winning, we derive an equilibrium where this participant emerges as an uncon-

tested winner. We refer to this class of contests as ‘strategically asymmetric’

to distinguish it from contests where the success function or the payoffs are

asymmetric.

We model this strategically asymmetric game by assuming that player 1’s

strategy space is given by a number s∗1, 0 ≤ s∗1 ≤ 1, interpreted as a share of
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total expenditure, while for j̇ 6= 1, the strategy spaces consist of contribution
levels pj as in the standard Tullock contest. That is, having chosen s∗1, and

conditional on the strategies pj of the other players, player 1 is required to

contribute p∗1 such that

s∗1 =
p∗1X
j

pj
, (3)

provided pj > 0 for some j > 1.

To complete the game description it is necessary to specify the outcome for

cases where equation (3) is ambiguous or incomplete. First, if pj = 0, for all

j > 1, then player one contributes zero and receives the prize with probability

s∗1, while the remaining players each contribute zero and receive the prize with

probability (1− s∗1) / (n− 1) . Second, if player 1 chooses s∗1 = 1 and pj > 0, for
some j > 1, the contribution of player 1 is M > 1, with suitably large values of

M ensuring that p1 is near 1. The condition M > 1 implies that the net return

for players 1 and j is negative in this case.

The following proposition characterizes the unique Nash equilibrium of this

game.

Proposition 2 The asymmetric game described above has a unique pure-strategy

Nash equilibrium in which player 1 chooses s∗1 = 1, and all players j > 1

choose pj = 0. In this equilibrium player 1 contributes zero and receives

the prize with probability 1.

P roof. First we check that (s∗1 = 1, p2 = p3 = ... = pn = 0) is a Nash

equilibrium. To see this, note that when player 1 chooses s∗1 = 1 and players

3 to n choose p3 = ... = pn = 0, Player 2’s best reply is to set p2 = 0, since

otherwise player 1 will contribute M > 1. This argument of course applies

equally to all players j > 1. It is also clear that when p2 = p3 = ... = pn = 0,

Player 1’s (weakly) best reply is to set s∗1 = 1.

Second, to show uniqueness it suffices to show that s1 < 1 cannot be part

of equilibrium play. Consider a candidate equilibrium (s̃1 < 1, p2, p3, ..., pn).

Players 2 to n now play a symmetric contest where the number of players is

5



n− 1 and the value of the prize is equal to (1− s̃1).Hence, the best reply is that

given by modifying equation 2 appropriately to yield the contributions:

pj =
n− 2
(n− 1)2

(1− s̃1) . (4)

Now, to test the candidate equilibrium, it is necessary to derive the best-

reply choice s∗1 for player 1. We have

u1(s
∗
1, pj,j≥2) = s∗1 − p∗1.

We can rewrite (3) as:

p∗1 = s∗1[p
∗
1 + (n− 1)pj ].

Replacing (4) into the equation above and solving for p∗1 yields:

p∗1 =
(1− s̃1)

(1− s∗1)

n− 2
n− 1 .

Therefore

u1(s
∗
1, pj,j≥2) = s∗1 −

(1− s̃1)

(1− s∗1)

n− 2
n− 1 .

The first-order condition on s∗1 is:

∂u1
∂s∗1

= 1− (1− s̃1)

(1− s∗1)

n− 2
n− 1 = 0

so

∂u1
∂s∗1 |s∗1=s̃1

= 1− n− 2
n− 1

=
1

n− 1 > 0.

Therefore, Player 1 is better off by increasing the probability of winning. Iter-

ating the best reply relationship yields,

s∗1 =
1

n− 1 +
n− 2
n− 1 s̃1,

which satisfies s∗1 = s̃1 if and only if s∗1 = s̃1 = 1.
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As with proposition 1, it is easy to see that (s∗1 = 1, p2 = p3 = ... = pn =

0) is a Nash equilibrium for alternative specifications of the success function.

As regards uniqueness, the approach of Proposition 2 may be extended to the

general case where the aggregate equilibrium contribution of players j 6= 1 may
be written as θ (1− s̃1) for some θ < 1, and the required contribution for player

1 to achieve given π∗1 is p
∗
1 (s
∗
1, θ (1− s̃1)) . Provided that, for all s̃1 < 1,

∂s∗1
∂p∗1 |s∗1=s̃1

= p∗1 (s
∗
1, θ (1− s̃1)) < 1,

the given equilibrium is unique.

The uniqueness result obtained in Proposition 2 can be compared with

the uniqueness result obtained for the standard Tullock contest. For exam-

ple, Szidarovszky and Okuguchi (1997) show uniqueness of equilibrium for a

general success function given by fi(xi)
n

j=1
fj(xj)

, where fi is twice differentiable and

f 0i(xi) > 0, f
00
i (xi) < 0, and fi(0) = 0. In contrast, Baye, Kovenock and de Vries

(1994, 1999) have proved the existence of a mixed strategy Nash equilibrium

when fi(xi) = xri and r > 2.

4 Discussion

As noted above, uncontested elections and undefended court actions are com-

mon, suggesting that contests may often take the strategic form described in

this note. It is of interest to consider how such a strategy space might work in

practice. That is, how can player 1 ensure that opponents treat his expenditure

share s∗1 (and thus his probability of winning π
∗
1 = s∗1) as given, rather than, as

in the Nash equilibrium of the standard game, treating his absolute contribution

p1 as given.

In many contests, effort is associated with specific resources, such as legal

services in the case of litigation or campaign advertising in the case of elections.

In the case of litigation, suppose that player 1 retains the services of an expen-

sive law firm, with instructions to defend any action taken by another player.

Then any other player considering expending resources knows that player 1 will
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spend more than they will, and that increasing outlays, for example, by fighting

longer court actions, will not change shares of total expenditures. Similarly, a

participant in an election may retain campaign consultants, and signal a will-

ingness to match expenditures on advertising. Provided this signal is credible,

opponents will accept that they cannot reduce player 1’s expenditure share or

winning probability by increasing their own expenditure.

An equally important question relates to the identity of player 1. In the

standard Tullock problem, as modified above, the players are symmetric in

all respects except that player 1 has a different strategy space, and therefore

obtains a more favorable outcome. This asymmetry raises the question of how

it is determined that player 1, and not some other player, has this advantage.

This question could be addressed in several different ways.

In some cases, such as that of incumbency in political contests, there is

a natural reason for regarding one outcome, the incumbent’s re-election, as

salient, and for specifying the strategy space accordingly. In many systems, it

seems reasonable for potential candidates to treat the incumbent as being able

to determine the probability of her own re-election.

Alternatively, if the contest success function is asymmetric, or if some players

value the prize more highly than others it seems reasonable to treat players

with an advantage as leaders, determining their own probability of winning,

and other players as followers. For example, a liberal candidate will normally

be at a disadvantage in a conservative district, and may therefore choose to put

in a substantial effort only if it appears that, for some reason, the conservative

candidate has acted to reduce their own probability of winning. Through the

determination of the strategy space, small asymmetries in the contest success

function may have a large impact on the equilibrium outcome.4

Although the issue of incumbency advantage has been discussed in the con-

test literature, this paper makes a distinct point; namely that the determination

4The issue of incumbency advantage has been discussed in the contest literature. For
example, Konrad (2002) considers a two-player contest where an incumbent fights with an
entrant. The advantage is modelled by a sucess functions that allows the incumbent to spend
less than the entrant and still win the contest.
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of the strategy space may be treated as the first stage in a two-stage game.5

Success in establishing an expenditure share strategy may reflect a mixture of

inherent advantages, strategic choices and stochastic factors.

5 Concluding comments

Menezes and Quiggin (2007) argue that the determination of the strategy space

has received insufficient attention in the literature on contests. By showing how

the commonly observed outcome of uncontested victory may be derived as an

equilibrium solution for a Tullock contest with an appropriately chosen strategy

space, this paper supports that claim.
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