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Abstract

The methodology used by theories to explain the size distribution

of cities takes an empirical fact and works backward to �rst obtain a

reduced form of a model, then pushes this reduced form back to assump-

tions on primitives. The induced assumptions on consumer behavior,

particularly about their inability to insure against the city-level produc-

tivity shocks in the model, are untenable. With either self insurance

or insurance markets, and either an arbitrarily small cost of moving or

the assumption that consumers do not perfectly observe the shocks to

�rms� technologies, the agents will never move. Even without these

frictions, our analysis yields another equilibrium with insurance where

consumers never move. Thus, insurance is a substitute for movement.

Even aggregate shocks are insu¢ cent to generate consumer movement,

since consumers can borrow and save. We propose an alternative class

of models, involving extreme risk against which consumers will not in-

sure. Instead, they will move. JEL number: R12 Keywords: Zipf�s

Law, Gibrat�s Law, Size Distribution of Cities, Extreme Value Theory
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1 Introduction

1.1 Motivation

A small industry has developed that seeks to provide a theory to explain a

singular but robust stylized fact in urban growth: the size distribution of

cities. Zipf�s law or the rank-size rule, as applied to the size distribution of

cities, states that for any country, the rank of a city according to population

(for example, New York is ranked number one in the US) multiplied by its

population is constant. Thus, Los Angeles has half the population of New

York, whereas Chicago has one third the population of New York. This

stylized fact or factoid holds across many countries and time periods, but it

is only one fact. In general, it is connected to Gibrat�s law, stating that

stochastic proportional growth tends to a lognormal distribution. The most

compelling empirical work in this area shows that the size distribution of cities

is lognormal (Eeckhout, 2004) when the data is not cut o¤ at an arbitrary

rank or population.1 For those unfamiliar with the empirics associated with

this literature, we display in Figure 1 a graph of Eeckhout�s data, consisting

of more than 25,000 places from U.S. Census 2000. Since population on the

horizontal axis and rank on the vertical axis are both plotted in log scales, the

rank-size rule, taken literally, would say that the plot should be linear with

slope �1. Deviations from the rule or law at the top and bottom of the size

distribution are documented and discussed in the literature. See Gabaix and

Ioannides (2004) for a �ne survey of the entire area of research.

1It is well known that the lognormal distribution applies not only to the size distribution

of cities, but to many phenomena in the physical sciences as well; see the survey by Limpert

et al (2001) with applications as broad as the length of sentences in the writings of George

Bernard Shaw to geology and plant physiology. Of particular interest is the literature

showing that rainfall (see Meneghini et al, 2001), soil moisture (see Janowicz et al, 2003),

and crop abundance (see Halloy, 1999) are distributed according to lognormal distributions.

In fact, Halloy (1999) displays graphs (see for example his �gure 4) for crop abundance in

New Zealand from 1842 to 1990 that look very much like the graphs used to explain the size

distribution of cities. He also explains dynamics as in Duranton (2007).
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Figure 1: The rank-size rule. Data Source: Census 2000.

Explanation of this stylized fact or factoid by a theory has long been an

objective of urban economists; it is quite robust, but also very di¢ cult to

theorize about. Three recent articles, Eeckhout (2004), Duranton (2007), and

Rossi-Hansberg and Wright (2007), have made valiant attempts to tackle this

issue head on.

The models seeking to explain this factoid are developed working back-

wards from empirics. That is, they take the empirical fact and attempt �rst

to explain it using a reduced form, generally stochastic in nature, and then

push this reduced form back to assumptions on primitives. As we shall see,

these assumptions on primitives generally do not look natural, in the sense

that if one were formulating a model of cities from scratch, it would not be

obvious that one would want to begin with these assumptions. In fact, the

literature of urban economics prior to the introduction of these models did not.

Moreover, since these models are constructed for a single purpose, namely to

explain an empirical factoid, they seem incapable of explaining other empiri-

cal regularities, though they seem to be judged exclusively on the basis of how

well they explain the one empirical factoid. Finally, it is worthwhile to note
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that there is likely an in�nite number of models capable of explaining the size

distribution of cities, and some of these might not even be stochastic; see, for

example, Fujita and Mori (1997).

We shall focus primarily on the behavior of consumers, in particular the

degree to which they can hedge against risk. Our �ndings are as follows.

First, the type of risk featured in the literature is city-level risk in the form

of a shock each period to the city-wide production function. The shock is

known to all before they make their decisions, in particular consumer decisions

about location and consumption bundle. There is no aggregate risk, since

the number of cities are large and shocks are i.i.d., and this is often stated

explicitly in the papers. In this context, insurance is a perfect substitute for

consumer movement. We consider either self insurance, where a consumer

insures over time by borrowing or saving to smooth consumption, or insurance

markets, where a consumer insures using the fact that shocks are independent

over space at a given time. With either type of insurance (or a combination),

we �nd an equilibrium that yields the same period by period utility for each

consumer as the one presented in the literature, where consumers move and

generate Zipf�s law or Gibrat�s law. Our equilibrium features no consumer

movement. Moreover, with even arbitrarily small moving costs or arbitrarily

small uncertainty about shocks on the part of consumers, only our equilibrium

survives. The existing literature �nds that initial conditions don�t matter, in

that the size distribution of cities eventually tends toward lognormal. For our

equilibrium, initial conditions matter in that consumers never move.

Second, even aggregate risk is insu¢ cient to generate consumer movement.

For example, if there were a single aggregate shock common to all cities at each

time, consumers could still insure by smoothing consumption through saving

and borrowing over time and never moving.

Third, our proposed alternative model has aggregate risk of a speci�c kind.

In the context of perfect competition, each city receives shocks to its produc-

tivity at each time. Only the city with the best technology in an industry

produces at that time, driving out others. Our equilibrium has consumers

moving to the cities producing with the best technology for some industry at

that time. Insurance against shocks is too costly, as it is almost the total wage

in a productive city. Our framework leads not to the central limit theorem or

Gibrat�s law, but rather to extreme value theory (the analog of the central

limit theorem for maximal values instead of averages) and the Fisher-Tippett

(1928) theorem. The implied functional form for the size distribution of cities
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is di¤erent from the predictions in the literature. Independence of shocks

across time was a requirement of the original Fisher-Tippett theorem, but is

not required for modern versions.

The paper is organized as follows. First, in the balance of this section,

we shall discuss the literature that attempts to re�ne the stylized fact, namely

the rank-size rule, and explain it. Then in section 2 we shall raise speci�c

objections, involving insurance against city-level risk, to these models. In

section 3 we introduce Eeckhout�s model and modify it to make the objections

formal. In section 4, we propose an alternative type of model to explain the

size distribution of cities, and implement it empirically. Finally, in section 5,

we shall discuss our conclusions and directions for future work.

1.2 The Older Literature

The innovative work of Gabaix (1999a, 1999b) is the source from which the

modern literature on the size distribution of cities �ows. This work uses an

overlapping generations structure where consumers live for two periods. It is

assumed that moving costs are so high that consumers can only choose their

location (city) when they are young. This location decision is made after

shocks to production and amenities are realized for that period, and known to

all. The consumer/workers cannot move again when old. The wages or income

for the old in a city are never even speci�ed, and it is simply assumed that the

young make their decisions in a myopic manner. Moreover, the availability of

insurance or capital markets is never discussed, so it is unknown whether the

young can hedge against uncertainty about their wage when they are old in

the city they choose.

If the old people are immobile, why is this important? It is important be-

cause when the young make their decisions, they can anticipate what happens

when they are old, and might change their mind about their location decision

when young. In other words, they won�t behave myopically. Without myopia,

insurance becomes important.

1.3 Recent Literature

Chief among recent work are Rossi-Hansberg and Wright (2007), Duranton

(2006), Eeckhout (2004) and Duranton (2007). We focus on the latter two.

Eeckhout�s model has consumers who are in�nitely lived with foresight

and who can move each period. There are technological shocks to production
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in each city in each time period. It is movement of the consumer/worker

population in response to these shocks that generates Gibrat�s law. The shocks

generate changes in equilibrium wages, rents, and congestion across time and

space that correspond to the consumer movements that equalize utility levels

across space at each time. On p. 1445, the following statement is made:

�Moreover, because there is no aggregate uncertainty over di¤erent locations,

and because capital markets are perfect, the location decision in each period

depends only on the current period utility. The problem is therefore a static

problem of maximizing current utility for a given population distribution, and

the population distribution must be such that in all cities, the population Si;t
equates utilities across cities.�

Here we wish to make an important distinction between transfers of con-

sumption across time, namely perfect capital markets, and across states, namely

complete and perfect futures markets.

The actual consumer optimization problem does not involve state-dependent

assets nor does it allow state-contingent transfers of income. If it were to allow

this, as in a standard model of complete futures or insurance markets, then

agents would never move. They would simply buy assets at the start of time

that would pay them under a bad state in their city at a particular time, and

such that they would pay under a good realization in their city. In other

words, they would insure against the state of nature in their city.2

The basic model of Duranton (2007) has consumers maximizing an in-

tertemporal utility function subject to an intertemporal budget constraint,

without facing uncertainty. However, once the detailed urban features are

added (in Section V and Duranton, 2006), the model looks similar to Eeck-

hout�s at least in terms of the urban features. One simply needs some depen-

dence of local prices (land rents or wages) on the state of nature. Then utility

equalization implies that people will move depending on the state realization,

but this movement disappears if one allows insurance.

There isn�t enough detail about the urban market in Duranton (2006, 2007)

to make speci�c statements about how insurance would work, but the con-

sumers in a city face uncertainty about employment due to the uncertainty

about innovations in various industries, so similar insurance arguments should

2It is important to recognize that in this model there are two factors determining a

worker/consumer�s productivity, namely the city-speci�c shock, and the externality in pro-

duction induced by total population in the city. Even if capital markets are perfect, the

production externality is not internalized (even with a land market), so the equilibrium

allocation is not necessarily �rst best.
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work if the details of the model are �lled in.

The bottom line here is not that complete and perfect futures markets are

needed to upset the purpose of these rather fragile models. Rather, it is that

any insurance at all will do the trick. Then the question becomes whether

moving or buying insurance is cheaper for the consumers. If insurance is

incomplete, it can still hinder mobility. Typically in these models and the

real world, if moving costs are positive, it makes sense for consumers to stay

put.

2 The Issue

2.1 How Insurance Reduces Population Movement

So how might this insurance occur in practice? Let�s assume either that

consumers cannot perfectly observe the technology shocks to cities, or moving

has a small cost, or both.

� Self insurance. Since consumers can transfer consumption across time,

and they know that shocks are i.i.d., then they can borrow or use their

savings in bad times and save (or pay o¤ their loans) in good, staying

in the same city. In the literature, the intertemporal uncertainty faced

by consumers does not show up in their objective function, whereas the

possibility of self insurance does not show up in the budget constraint.

The earlier quote from Eeckhout seems to imply that this is allowed, but

the formal statement of the consumer budget constraint makes it clear

that this is not allowed. This type of insurance exploits the fact that

for any given city, the shocks are i.i.d. over time. Empirically, the place

to look for self insurance is in the savings response to local employment

shocks.

� Insurance markets. In all of these models, at each time the state of

nature (the random shock to each production function for each city) is

known to all and veri�able before consumers make their decisions about

consumption bundles and location. So this is a perfect setting for a

viable insurance market. An insurance �rm can step in or the continuum

of consumers can simply pool resources in each period, smoothing their

consumption without changing location so it is independent of the state
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in their city.3 This type of insurance exploits the fact that at any given

time, the shocks are i.i.d. across cities. Empirically, one place to look

for insurance is a cross-country comparison of how varying bene�ts of

unemployment insurance a¤ect mobility in response to local employment

shocks.

� Futures markets. Consumers formulate plans to sell labor and buy

consumption commodity and housing contingent on every possible state

in every time period. There is no empirical complement. We mention

this for completeness.

For our criticism to apply, insurance via either of the vehicles mentioned

above need not be perfect. It only need be enough so that it throws o¤ the

mobility result, which requires that the response to shocks is only in consumer

movement, rents and congestion.

Given that for Gibrat�s law to hold, the shocks to each city in each period

must be �small�(see Eeckhout, 2004, p. 1447), it seems reasonable to think

that insurance would yield higher consumer utility than movement, if moving

costs are at all signi�cant or if consumers cannot observe shocks to �rms per-

fectly, and thus face even a small amount of uncertainty in their optimization

problems.

We will show below that in general, for models in the literature, consumers

will choose to insure instead of move when insurance is available. A new

model in which people will choose not to insure but move even when insurance

is available is proposed below. A common feature of both the models in

the literature and the model presented below is the prediction that people

will move and not insure. Thus, if we were to look for empirical evidence

to distinguish among the models, evidence of substitution between movement

and insurance is insu¢ cient.4

3Although landlords (and the destination of land or housing rent) are not made explicit

in these models, they might wish to participate in the insurance market as well, since their

incomes �uctuate with the state of nature in their city. Of course, risk aversion on the part

of landlords simply requires that their utility as a function of rental income be concave.
4The empirical investigation of the use of insurance as a substitute for migration, espe-

cially when consumer heterogeneity is taken into account, seems quite interesting as a topic

for future research.
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2.2 Possible Objections to the Criticism

We emphasize that the criticism we make is a purely theoretical point con-

cerning models in the literature. Whether or not agents in the real world

actually insure against city-wide risk is not relevant to the question at hand.

Our point is that in the theoretical worlds of these models, insurance of the

sort discussed in the previous subsection is implicitly excluded. The reasons

are not given or, more importantly, included in the model. If these factors,

such as asymmetric information, are included in the model to explain insur-

ance market breakdown, other competing forces driving agglomeration can be

important; see for example Berliant and Kung (2008).5 In other words, this

criticism of the internal structure of the models, for example when there is a

non-zero moving cost, is that the consumers are not behaving rationally if they

don�t insure.

Next we present a discussion of why insurance market breakdown is not

natural in the context of the models. Again, this is not meant to be a statement

about the real world, but rather about whether the exclusion of an insurance

option for consumers in the models makes sense.

The usual cause of a breakdown of insurance markets is adverse selection,

represented for example by cream-skimming on the part of insurance compa-

nies. In the models discussed here, the state is assumed realized and observable

to all before decisions are made in a given time period. So there is no issue of

adverse selection. But one can easily imagine variations of these models that

incorporate some form of information asymmetry. It would not be natural for,

say, only consumers to know the shock to the local economy, since the technol-

ogy shock really a¤ects �rms. If only �rms knew the realization of the shock

before making their decisions, then consumers could draw inferences from �rm

behavior, or the consumers could self insure or insure. It is not clear what

hidden information or hidden action on the part of consumers would cause an

insurance market breakdown in this context. It is natural to assume that

amenities are observable.

One can imagine moral hazard at the city level with insurance markets,

in that a city might try to claim a productivity level lower than the actual

one so the residents can collect more insurance money. However, there are

no local governments in the models in the literature to coordinate this, and

the assumption is that local productivity is observable to all, including non-

residents of the city, when they make their location decisions.

5This work shows that adverse selection alone can generate agglomeration.
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Another objection that could be raised is the commitment required on the

part of consumers. In fact, commitment to a plan or contract is a requirement

of models that feature self insurance, insurance or futures markets generally.

For example, a consumer might experience regret over the purchase of a long-

term health insurance contract after the state of the world that tells them

that they are healthy is realized. Or the insurance company might experience

regret if the consumer turns out to be unhealthy. But they are committed to

their contracts. In the models of the size distribution of cities, for example,

one could begin the random process of technological change and at any point

in time, allow insurance and commitment to begin. Then the population

distribution will not change from that point on.

One might easily object to even small moving costs or even a small amount

of noise in consumer observations of shocks. Then what we present is an-

other equilibrium, that yields exactly the same period by period utility as the

equilibrium studied in this literature. This alternative equilibrium features a

uniform distribution of consumers, and does not generate Zipf�s law.

Finally, there are costs associated with insurance contracts that, from the

point of view of consumers, must be balanced against the cost of moving. Such

costs involve lawyers and potentially complex transactions. Moreover, unem-

ployment insurance might ful�ll the role of explicit contracts. Self insurance

does not su¤er from these problems. But credit constraints could limit self

insurance. In any case, insurance does not need to be perfect. If there is

substitution between insurance and mobility, the type of mobility needed to

generate the various empirical distributions of city size can be upset.

But we emphasize again that although these various insurance market im-

perfections can cause insurance market breakdown, their inclusion in a formal

model is necessary to ensure that consumers behave rationally when they don�t

insure, and the consequences of their inclusion are far from obvious.

3 A Model from the Literature Modi�ed to

Include Insurance

3.1 Notation

We use the model of Eeckhout (2004) as the basis for the analysis because it is

explicit about consumer behavior, in the form of an optimization problem, as

well as endogenous urban variables, namely local wages and land rents. We
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conjecture that the other models in the literature can be modi�ed in a similar

fashion.

The original model is speci�ed as follows. For complete detail, see Eeck-

hout (2004, pp. 1445-1446).

Time is discrete and indexed by t. The set of cities is indexed by i; j 2 I.
Production is constant returns to scale. The measure of population in city

i at time t is Si;t, and let Ai;t be the technological productivity parameter of

city i at time t. This parameter follows the law of motion:

Ai;t = Ai;t�1(1 + �i;t) (1)

where �i;t is the exogenous technological shock to city i at time t. It is

assumed that �i;t is i.i.d. with mean 0, symmetric, and satis�es 1 + �i;t > 0.

The positive local externality (spillover) function is given by a+(Si;t) > 0,

where a0+(Si;t) > 0. The marginal product of a worker in city i at time t is

given by

yi;t = Ai;ta+(Si;t)

Consumers are in�nitely lived and identical. In city i at time t, consump-

tion good is ci;t, housing or land consumption is hi;t whereas leisure is 1� li;t
for labor supply li;t 2 [0; 1]. Utility for a consumer in city i at time t is

Cobb-Douglas:

u(ci;t; hi;t; li;t) = c
�
i;th

�
i;t(1� li;t)1����

with �; �; � + � 2 (0; 1). For prices, let the consumption good be numéraire,
the price of housing or land in city i at time t be pi;t, and let the wage in city

i at time t be wi;t. The local negative externality or congestion function is

given by a�(Si;t) 2 [0; 1], where a0�(Si;t) < 0. The optimization problem of a

consumer in city i at time t is:

max
fci;t;hi;t;li;tg

c�i;th
�
i;t(1� li;t)1����

subject to

ci;t + pi;thi;t � wi;tLi;t

where wi;t = Ai;ta+(Si;t) and Li;t = a�(Si;t)li;t. Total land or housing in a city

is H. Using the �rst order conditions from this optimization problem and

market clearance, equilibrium (denoted by asterisks) in city i at time t as a
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function of population Si;t can be found:

p�i;t =
�Ai;ta+(Si;t)a�(Si;t)Si;t

H
w�i;t = Ai;ta+(Si;t)

c�i;t = �Ai;ta+(Si;t)a�(Si;t)

h�i;t =
H

Si;t
l�i;t = �+ �

The last equation in particular, indicating that labor supply is independent

of population, is an artifact of the Cobb-Douglas speci�cation.

Substituting back into the utility function, indirect equilibrium utility as a

function of population u�(Si;t) can be written as

u�(Si;t) = [�Ai;t � a+(Si;t)a�(Si;t)]�S��i;t H�[1� �� �]1���� (2)

Under free mobility of consumers, indirect utility is equated across cities in

each time period, determining their populations as a function of their produc-

tivity and their realized history of shocks, summarized by Ai;t. Instantaneous

utility is constant over both time and location in equilibrium. Again using

Eeckhout�s notation, call this instantaneous utility level U . Denote the local

size e¤ect as

�(S) = a+(S) � a�(S) � S��=�

3.2 Insurance

Let the discount factor be denoted by � 2 (0; 1]. In correspondence with the
assumption of complete capital markets, it is assumed that all consumers can

borrow or lend at rate 1
�
� 1. The consumer optimization problem (at time 0)

becomes:

max
fci;t;hi;t;li;tg

1X
t=1

�t � c�i;th
�
i;t(1� li;t)1����

subject to
1X
t=1

�t � (ci;t + pi;thi;t) �
1X
t=1

�t � wi;tLi;t

As stated by Eeckhout, the problem reduces to the one period optimization

problem if there is no insurance or futures markets. Formally, there should
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be an expectation in the objective function and a requirement that the budget

constraint hold for every state of nature. However, this is omitted in the

literature since the problem is reduced to a static optimization problem where

the state of nature is observed before consumers make their choices.

There are several important points to be made at this juncture. First, it is

useful to imagine the consumers stepping back at t = 0 and making decisions

about their cities of residence and their consumption bundles for the entire

time stream of their in�nite lives, contingent on state realizations at each

time. Second, and more important, it does not matter which interpretation

of the model one employs. Speci�cally, resources can be transferred across

states of the world (at any given time) in one or more of several ways. In the

end, what a consumer is choosing is their residence and consumption bundle

for every time and for every possible state of the world, optimizing utility

subject to the budget constraint. The state of the world at time t a¤ects the

optimization problem through the prices, pi;t and wi;t, and income (through

a�(Si;t) and Li;t) only. These variables depend on Ai;t both directly and

indirectly, the latter because Si;t depends on Ai;t in equilibrium. The state

of the world at time t does not enter into the consumer optimization problem

otherwise. For example, it does not enter into the utility function. We could

index these prices and incomes by the state of the world, but that would only

serve to complicate notation.

As already mentioned, what will matter are only the lifetime choices of

residence and consumption bundles, contingent on the state of the world in

each period. The method used to actually implement them, via transfers

across states in a time period as opposed to across time periods, does not

matter; there are many possibilities. With complete futures markets, at time

t = 0 the consumers can sell their labor in every future time period and state,

buying consumption good and housing in every future time period and state.

With insurance markets, at t = 0 the consumers can buy actuarially fair

insurance against price and income changes. With self insurance, they can

commit to a plan of borrowing and saving under all possible scenarios, namely

realizations of states in each time period.

To get the basic idea across, in the next subsection we show how insur-

ance would work from the beginning when all cities have the same initial

state (productivity) and population. This yields no movement at any time

in equilibrium. In the next subsection, we discuss how to extend this so that

insurance can begin from equilibrium of the model at any time t. From that
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time on, there is no consumer movement unless the insurance is switched o¤.

3.2.1 Insurance when the initial state is the same for all cities

To illustrate the ideas behind insurance, we begin with an example where all

cities begin with the same state at time 0 and consumer insure from then on.

For notational purposes, let S be the mean population of cities, that is

S =
P
i2I Si;t
jIj , where j I j is the cardinality of the set I.6 Let A0 = Ai;0

denote the common initial technology level for all the identical cities before

the process begins. Let Si;0 = S for all cities i, so they all have the same

initial population. We assume that

U = u�(S) = [�A0 � a+(S)a�(S)]�S
��
H�[1� �� �]1����

Thus, we assume for illustrative purposes that the initial con�guration of shock

A0 and uniform population distribution S generate the instantaneous equilib-

rium utility. This is to get the idea across; in the next section, we will show

how to start insurance from equilibrium at an arbitrary given time. In either

case, no consumer movement will occur once insurance begins.

With insurance, self insurance, or a futures market (or some combination

of all 3), we propose the following equilibrium solution for all cities i and times

t:

pi;t =
�A0a+(S)a�(S)S

H
wi;t = A0a+(S)

ci;t = �A0a+(S)a�(S)

hi;t =
H

S
li;t = �+ �

In other words, this is the allocation generated by a constant, over both

time and state, allocation with a uniform distribution of consumers. By con-

struction, it generates the same instantaneous utility stream for all consumers

in all cities and in all times as both the initial distribution and the equilibrium

studied by Eeckhout.

But how does this work in a pragmatic sense? Regarding futures markets,

each consumer works the same hours, independent of state. If the state real-

ization is good, i.e. if the consumer is in city i at time 0 and Ai;t > A0, income

6There are technical issues concerning the cardinality of I, but we shall ignore them here.
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in excess of A0a+(S) � (� + �) is paid to the market. If the state realization

is bad, then the consumer receives income from the market, smoothing con-

sumption. Under self-insurance, the consumer commits to a plan of saving

income in a good state, and withdrawing from savings or borrowing in a bad

state, thus smoothing consumption. The banks know that E(Ai;t) = A0, so

they are willing to lend. Under mutual insurance, the same type of idea,

with commitment, has consumers who are in cities with good states at time t

contributing to an insurance pool, and those in cities with bad states receiving

payments from an insurance pool. If the number of cities is large, the law of

large numbers implies that the mutual insurance pool is solvent.

It is interesting to note that the phenomenon we describe is something like

another manifestation of Starrett�s spatial impossibility theorem (see Starrett,

1978; Fujita, 1986; and Fujita and Thisse, 2002 chapter 2.3), though here

markets are incomplete due to the presence of unpriced local externalities,

both positive and negative.

In summary, the equilibrium time path of utility for every consumer is the

same, and constant, under insurance and under the equilibrium that generates

movement and eventually becomes lognormal. At the very least, a discussion

of why the latter equilibrium is selected should be o¤ered in the literature.

With any moving cost, the insurance or futures market equilibrium (the

one denoted with bars) clearly dominates the path with asterisks, the one put

forth in the literature. Given a choice between moving along the equilibrium

path or insuring at t = 0, each consumer will individually choose to insure.

A second, and perhaps more reasonable possibility, is that consumers ob-

serve Ait imperfectly when they make their location decisions each period.

In that case as well, the consumers will insure rather than move, since they

are risk averse. This can be seen in equation (2). When consumers cannot

perfectly observe Ai;t, equilibrium expected utility will vary in proportion to

E(Ai;t)
�.

3.2.2 Insurance starting when the state is an equilibrium at a given
time

The preceding subsection was provided to give intuition. However, it has

drawbacks in terms of commitment on the part of consumers if they use mutual

insurance at each given time, and on the part of banks and consumers at time

0 if the consumers use self-insurance. Moreover, there is a strong assumption

that at time 0, A0 is the same across cities, each city has the same population
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S, and this combination produces the instantaneous equilibrium utility level.

Here we discuss how to dispense with some of these assumptions.

Suppose that we start running the model without insurance, so that con-

sumers are generally moving around, and stop it at some arbitrary time t. At

this time, the instantaneous utility level of each consumer is, of course, U .

Consider a consumer in city i and the possibility of self insurance. At that

point, the productivity parameter in the city is Ai;t, and everyone knows from

equation (1) that for t0 > t, E(Ai;t0) = Ai;t. So if the consumers in that city

freeze their consumption bundle at whatever it is at that time, and commit to

staying in that city and consuming that consumption bundle forever through

a plan of borrowing and saving, they will obtain utility level U in each period.

This exploits the law of large numbers over time.

Mutual insurance, exploiting the law of large numbers over space at a given

time, is more interesting. Pick an arbitrary time t and freeze all the consumers

in their locations as well as their consumption bundles. All consumers obtain

utility U in this situation at time t. Now consider what would happen if they

maintain the same location and consumption bundle in time t + 1. Given

equation (1), the surplus or de�cit in total wage payments for city i is

�i;t+1 � Ai;t � a+(Si;t) � (�+ �) � Si;t

Thus, to ensure that this system of mutual insurance across cities is solvent at

time t+ 1, it is necessary thatX
i2I

1

j I j � �i;t+1 � Ai;t � a+(Si;t) � (�+ �) � Si;t = 0

Although this cannot be assured for �nite j I j, we can see that as the number
of cities j I j tends to in�nity, the limiting result is a consequence of a law of
large numbers with weights given by 1

jIj � Ai;t � a+(Si;t) � (� + �) � Si;t. In fact,
Eeckhout (or a little algebra) shows that there is a constant K such that

Ai;t � �(Si;t) = K

so the weight attached to �i;t+1 can be written as

1

j I j �
K

�(Si;t)
� a+(Si;t) � (�+ �) � Si;t =

1

j I j �K � a�(Si;t) � (�+ �) � S1+�=�i;t

The size of Si;t can be bounded by constraining the support of the random

variable �, since Ai;t and Si;t are positively related. There is an extensive

16



literature on law of large numbers for sums of weighted random variables. Our

framework would �t, for example, in Cabrera and Volodin (2005, Corollary 1).

Notice that there is no commitment required under mutual insurance be-

yond the next period. So it can be switched on and o¤ as desired, with no

consumer movement when it is on, and movement when it is o¤.

4 Modeling the Size Distribution of Cities

4.1 A Model

This model is loosely based on Duranton (2007), but in the context of perfect

competition7 instead of monopolistic competition. In contrast with the other

models in the literature, there is economy-wide risk in addition to city-level

risk. But this in itself is not su¢ cient to generate consumer movement. For

example, if all cities faced the same shock at each time, namely Ajt is inde-

pendent of j, consumers could still insure against this risk by smoothing their

consumption through borrowing and saving. Thus, we employ a more extreme

form of aggregate risk.

Time is discrete and all consumers are in�nitely lived. Assume that there

are many cities (indexed by j = 1; :::;m) and many industries, each producing

one consumption commodity (indexed by i = 1; :::; n). All commodities are

freely mobile. The production function for commodity i in city j at time t is

given by

yijt = Aijt � lijt

where yijt is the output of commodity i in city j at time t, and lijt is labor

input. The random variable Aijt 2 R++ will be discussed in detail shortly.
Suppose that each consumer supplies 1 unit of labor inelastically and that the

total number of consumers as well as total labor supply is given by N .8

In each time period t, each city j receives a random draw for its productivity

in producing commodity i, namely Aijt. Since we will be using the Fisher-

Tippet limit theorem from extreme value theory rather than the central limit

theorem, there is no requirement that these random variables be independent.

It is assumed that with probability 1, the random draws for 2 industries at time

t for city i are not both maximal among all cities for these given industries.

7Since there is no market failure built into our model, equilibrium allocations will be

Pareto optimal.
8The assumption of Starrett�s spatial impossibility theorem that is violated by this model

is the assumption of location-independent production sets.
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In equilibrium, only the cities with the highest draw of the random variable

for some industry will have employees and population. (Alternatively, we

could simply classify cities exogenously by industry, and assume that a city in

an industry receives only a draw for that industry.) Extensions that imply

several cities produce in equilibrium will be discussed shortly, but �rst we must

explain the basic model.

The wage rate for the (freely mobile) population of consumers is given by

w(t). In equilibrium, it will be the same across industries.

As is standard in this literature, the utility function of a consumer at time

t is given by

u(t) =

nX
i=1

1

n
ci(t)



where ci(t) is the consumption of commodity i by a consumer at time t and

 2 (0; 1). Let pi(t) be the price of commodity i at time t. Then a consumer�s
budget constraint is

nX
i=1

pi(t) � ci(t) = w(t)

Let �(t) be the Lagrange multiplier associated with the budget constraint in

the consumer optimization problem. Standard calculations yield demand for

commodity i at time t for a single consumer di(t):

di(t) =

�


��(t)n � pi(t)

� 1
1�

Aggregate demand is given by

N � di(t) = N
�



��(t)n � pi(t)

� 1
1�

Pro�t optimization yields, for each t:

For i = 1; :::; n, for j� with Aij�t = max
1�j�m, 0�t0�t

Aijt0

pi(t) � Aij�t = w(t)

Here we are assuming total recall, in that the best technology from the past is

remembered, so new technologies are not used unless they are better than all

the old ones. Also, only the best technology in industry i survives, where the

best is across all cities and previous time periods. This assumption is made

for convenience. We discuss it more below.
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Hence

For i = 1; :::; n, for j� with Aij�t = max
1�j�m, 0�t0�t

Aijt0

pi(t) =
w(t)

Aij�t
(3)

In other words, even though wage is constant across occupied cities, output

price varies inversely with the production shock. Consumption commodity

market clearance requires, for each t:

For i = 1; :::; n, for j� with Aij�t = max
1�j�m, 0�t0�t

Aijt0

lij�t � Aij�t = N � di(t) = N
�



��(t)n � pi(t)

� 1
1�

(4)

This is the key equation for our analysis.9

Setting the constant �(t) to be

�(t) = N

�


��(t) � n � w(t)

� 1
1�

and using (3) and (4), we obtain

For i = 1; :::; n, for j� with Aij�t = max
1�j�m, 0�t0�t

Aijt0

lij�t � (Aij�t)


�1 = �(t)

Hence

For i = 1; :::; n, for j� with Aij�t = max
1�j�m, 0�t0�t

Aijt0 (5)

lij�t = �(t) � (Aij�t)


1�

Since  < 1, labor usage lij�t and the shock Aij�t are positively correlated.

Notice that cities that do not have an industry with the largest shock in that

industry at time t are empty.10

9Labor market clearance requires, for each t:

nX
i=1

X
f j� with Aij�t=max1�j�m, 0�t0�t Aijt0g

lij�t = N

10Existence of an equilibrium is not an issue here, since the equilibrium prices and quanti-

ties can be solved analytically. For example, at t = 1, setting p1(1) = 1, then w(1) = A1j�1,

pi(1) = A1j�t=Aij�t, �(1) = � 
nA1j�1

(
Pn

i=1A


1�
ij�1)

1� , lij�1 = N(


��(1)nA1j�1
)

1
1�A


1�
ij�1 , and

so forth. Thus, equilibrium is also unique.
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The original work on the asymptotic distribution of maxima drawn from

a distribution is due to Fisher and Tippett (1928). Modern, more general

treatments are given in Coles (2001) and Embrechts et al (1997). We shall

return to a discussion of extreme value theory momentarily, but �rst we will

draw the implications for our analysis.

The bottom line from this literature is that Aij�t has an asymptotic distri-

bution of the following form, known as the generalized extreme value (GEV)

distribution:

FGEV (x) =

(
expf�[1 + �b(x� u)]�

1
� g when � 6= 0

expf� exp(�b(x� u))g when � = 0

Notice that there are 3 free parameters to be estimated here, namely b,

u, and �. Also notice that to use rank as the left hand side variable in the

regression, one simply computes 1�FGEV (x). But from a pragmatic point of
view, it is easier to simply use ln(FGEV (x)) as the left hand side variable.

If there are no upper or lower bounds on the distribution, then � = 0 and

the distribution is Gumbel. If there is an upper bound on the distribution,

then � < 0 and the distribution is reverse Weibull. If there is a lower bound

on the distribution, for example 0 in our case, then � > 0 and the distribution

is Fréchet.

Substituting (5),

ln(F (l)) =

(
�[1 + �b(( l

�(t)
)
1�
 � u)]�

1
� when � 6= 0

� exp(�b(( l
�(t)
)
1�
 � u)) when � = 0

(6)

Notice that if we use cross section data, then t and hence �(t) is constant.

Thus, in addition to the 3 parameters for the distribution of Aij�t (namely b, u

and �), for the distribution of lij�t there are two additional parameters, namely

� and .

In conclusion, we note that consumers will not want to insure against this

risk. If only a small percentage of cities produce at any time, then insurance

would cost only slightly less than the wage, so they might as well move and

receive the wage in each period. For example, to keep things simple suppose

that there are 100 industries (or consumption commodities) and 100 cities in

each industry (that is, each city is capable of producing only one commodity).

Then there is only one city producing in each industry at each given time, and

100 cities out of 10,000 producing in each given time. As time plays out, as

long as some consumers are willing to move, each of the cities producing at

a given time will be replaced by another in the industry. The city using old
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technology has zero wage and no production. So if some workers don�t move,

their average wage tends to one percent of the expected new wage with time.

Under symmetry of cities in an industry, actuarially fair insurance would cost

99% of the expected new wage. In other words, if workers move they will

receive the wage next period, but if they insure they will receive 1% of the

wage next period. The only way workers won�t move is if they all agree to use

old, frozen technology in each industry, and collude so that none will move for

a higher wage. In contrast, we assume competitive behavior.

The consumers still might want to insure against aggregate wage volatility

(namely movement in w(t) over time) by saving and borrowing to smooth

consumption, but their spatial distribution is still as we have laid out.

Returning now to our assumptions and extreme value theory, the original

theory of Fisher and Tippett presumed that, �xing i, the random variables,

Aijt in our case, were i.i.d. across j and t. Of course, in our context this makes

little sense. In general, the city with the best technology for some good i at

a particular time t is more likely to innovate and produce a better technology

for the next period than an arbitrary city. Moreover, it is possible that cities

nearby are more likely to innovate than an arbitrary city. Fortunately, much

progress has been made in extreme value theory since 1928. The modern

versions of the Fisher-Tippett theorem, as given by Coles (2001, Theorem 5.1)

and Embrechts et al (1997, Theorem 4.4.1) allow some dependence. Speci�-

cally, what is required is that the sequence of random variables be stationary

and that a form of asymptotic independence (as blocks of random variables

become farther apart in time) hold.11 It is also important to note that the

model and results can be extended to the case where more than one city in an

industry produces. This could happen, for example, if there is transportation

cost for consumption goods between cities, so a city with a high realization of

productivity for a commodity, but not the highest, might serve a local market.

It turns out that extreme value theory applies not only to the maximum of a

sequence of random variables, but also to the upper order statistics. A de-

tailed discussion of the results can be found in Embrechts et al (1997, Section

4.2).

A few more remarks are in order. First, the role of having di¤erent indus-

tries i, as in the other models in the literature, is to generate a full distribution

of limiting populations rather than just one realization of the asymptotic dis-

11An easy way to �t our structure into the theory is to �x an industry i and imagine that

at each time t, there are m subperiods. A city j draws its random variable Aijt in subperiod

j of time t.
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tribution of city populations. Second, in contrast with other models in the

literature, the cities without the best technology for some industry at a given

time have zero population, so they don�t show up in the data because they are

rural. Third, the derivations above work �ne if there is not complete recall of

previous technologies. For instance, if there were no recall, then the realiza-

tions of random variables for all cities at one time are independent of those at

another time, so we have a form of block independence that is commonly used

in extreme value theory.

4.2 Empirical Implementation

Notice that we are not overly concerned with identi�cation of the 5 parameters

in equation (6). As in the balance of the literature on the size distribution of

cities, these are just the parameters of a reduced form equilibrium distribution

implied by a theory. In essence, the parameters are identi�ed by the functional

form itself.

We use the Census 2000 data set also used by Eeckhout.

As noted in the sources we cite for extreme value theory, the most common

method of estimating extreme value distributions is to use maximum likeli-

hood. The maximum likelihood estimator (MLE) does not yield the smallest

Kolmogorov-Smirnov (KS) statistic in our data set. The KS statistic mea-

sures the maximum distance between a sample distribution and its estimate.

As noted by Goldstein et al (2004) in the context of social networks and later

by Eeckhout (2007) in the context of the size distribution of cities, using a

simple log-log regression can lead to serious statistical problems. The use of

MLE and the KS statistic is preferred. It is interesting to note that both the

literature on estimation of the GEV distribution and the literature on Zipf�s

law seem to be (independently) converging on MLE as the preferred method

of estimation.

For purposes of comparison with Eeckhout (2004), we produce estimates

using each of the lognormal (his) distribution and the generalized extreme value

(our) distribution using equation (6), for both maximum likelihood estimation

and minimization of the KS statistic.12 The tables below summarize the

estimation results. The results of maximum likelihood estimation for the

lognormal distribution are identical to Eeckhout�s.

12As usual, with any numerical maximum likelihood estimate, one can never be sure that

one has found a global maximum. The analog applies to minimization of the KS statistic.
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Table 1: Maximum Likelihood Estimation
Distribution Parameter Estimates KS statistic

Lognormal b� = 7:2775, b� = 1:7540 :018913

GEV bb = 1:624, bu = 1:5959, b� = 102:00, b = :80990, b� = :13726 :006985

Table 2: Estimation by Minimizing Kolmogorov-Smirnov Statistic
Distribution Parameter Estimates KS statistic

Lognormal b� = 7:2496, b� = 1:7375 :013378

GEV bb = 1:6274, bu = 1:5959, b� = 102:00, b = :80990, b� = :1373 :006967

Notice that since b� > 0, we indeed obtain a Fréchet distribution.
Of course, the comparison between lognormal and GEV is not quite fair,

since there are only two parameters in the lognormal distribution whereas there

are �ve parameters in the generalized extreme value distribution, and these

parameters do not contain the parameters used for the lognormal distribution.

Graphically (in color), the estimates and data plots follow.
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Figure 2: Maximum likelihood estimation of the lognormal distribution
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Figure 3: Maximum likelihood estimation of the generalized extreme value

distribution
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Figure 4: Estimation of the lognormal distribution by minimizing the

Kolmogorov-Smirnov statistic

24



100 102 104 106 108
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population in log scale

Em
pi

ric
al

 a
nd

 e
st

im
at

ed
 C

D
F

Estimation with Frechet

Empirical CDF
Estimated CDF
Residual

Figure 5: Estimation of the generalized extreme value distribution by

minimizing the Kolmogorov-Smirnov statistic

In summary, estimates using the generalized extreme value distribution are

quite competitive.

5 Conclusions

So what�s the point? Well, actually, there are several related points.

� First, when a model, markedly di¤erent from those found previously

in the literature, is constructed to explain a speci�c empirical phenom-

enon, the microeconomic, structural assumptions about individual be-

havior and markets must make sense. Here, there is a rather obvious

problem that self-insurance and insurance markets are assumed not to

be functional. Models in the literature feature city-level risk, and it

is generally possible to insure against such risk through many vehicles,

barring asymmetric information. The latter does not arise naturally in

these models, since consumers are assumed to know the state of nature

before making their location and consumption decisions.

� With time in the model, it is even possible to insure against aggregate
risk through borrowing and saving.
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� However, it is much more di¢ cult to insure against extreme aggregate
risk, so we propose such a model. Our model begins with microfounda-

tions and delivers a di¤erent functional form for the size distribution of

cities than has been used in the literature.

� When one tests a model of the size distribution of cities, the real test is
not whether it can explain the phenomenon it was speci�cally designed

to explain, but rather whether it is also consistent with regularities that

it was not explicitly designed to explain.

Regarding the last item, it is convenient to use an analogy with the agglom-

eration literature. Cities happen. But that does not provide evidence that

any particular model of agglomeration and city formation is correct; there is

now a large variety of such models. Further testable hypotheses and evidence,

such as predictions about trade, land rent, and wages, are necessary to tease

out the contributions of various forces and models. The literature on the size

distributions of cities could learn from this example.

In summary, we began with a criticism of the literature based on the fact

that a primitive assumption in previous work, that consumers cannot insure

(either by borrowing and saving or by pooling resources) against the random

productivity variable for each city that is observable to all. Taking Eeckhout�s

(2004) model as an example, we showed that if insurance is allowed, there is

another equilibrium of the model with a uniform distribution of consumers

where there is never any migration. Instead, consumers insure against the

risk, and the utility stream they obtain in this manner is the same as that in

the equilibrium used in the literature. If there is any moving cost or residual

uncertainty, the equilibrium used in the literature disappears. Finally, we

propose an alternative model based on primitive assumptions, not designed to

match any particular empirical factoid. Insurance is allowed, but consumers

will never use it, as it is very costly. Instead, they move. The new model

is based on extreme value theory and yields a functional form for the size

distribution of cities di¤erent from the other models, and this prediction is

empirically competitive with the ones in the literature.

Future work includes testing further predictions of the model, for exam-

ple the wage and rent distributions when transport costs for consumption

commodities are introduced, and applying the model in new (but appropriate)

contexts, such as �nance (see Gabaix et al., 2003, for an application of Gibrat�s

law to �nance).
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