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Abstract

A class of sequential elimination voting eliminating candidates one-at-a-

time based on repeated ballots is shown to always induce an outcome in the

‘top cycle’ and is thus Condrocet consistent, when voters behave strategi-

cally. It is also well-known that multi-stage binary agenda procedures with

voters always voting over only two choices, but each choice involving one or

more candidates, yield outcomes in the top cycle. Thus, multi-stage elections

with one-by-one elimination and without the binary choice restriction during

stage games offer new ways of inducing the Condorcet winner as the unique

voting outcome, when the Condorcet winner exists. This class is important

as several sequential elimination voting are essentially non-binary in nature.

We also show that in the class of voting games involving one or more stages

and voters typically having more than two choices, Condorcet consistency

often fails. This is true of all well-known one-shot voting (plurality rule, neg-

ative voting, Borda rule, instant runoff voting) as well as some multi-stage
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voting rules (plurality runoffs, exhaustive ballot method). JEL Classification
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1 Introduction

Any voting rule as a means of reaching collective decisions can be assessed by several

alternative criteria. One such criterion is whether the voting rule can give rise to an

outcome that is majority-preferred to any other candidate on binary comparisons –

popularly known as the Condorcet winner (henceforth, CW ). This property, called

Condorcet consistency, is “widely regarded as a compelling democratic principle”

(Moulin, 1988; sect. 9.4).

In this paper, we will argue that a large class of voting procedures based on

repeated ballots and sequential elimination will lead uniquely to the CW being

elected, if it exists, when voters behave strategically. Moreover, if there is no CW,

the equilibrium in this class of voting will elect a candidate in the ‘top cycle,’

that is, on majority comparison the winning candidate would dominate any other

candidate either directly or indirectly.

The dominant sequential (elimination) voting format that attracted researchers’

attention up until now are the binary voting and its variants (McKelvey and Neimi,

1978; Moulin, 1980; Banks, 1985; Dutta and Pattanaik, 1985; Moulin, 1988; Dutta

and Sen, 1993; Dutta, Jackson and Le Breton, 2002; Bernheim and Nataraj, 2004;

Berneheim et al., 2006; etc.).1,2 While it is well-known that binary procedures yield

outcomes in the top cycle (and thus are CC ), such result is not directly helpful

for many sequential procedures as those are not binary. However, some careful

elimination logic can still rescue the top-cycle property and extend the binary voting

result to a large class of sequential voting.

The broad principles underlying sequential voting can be understood by con-

sidering one specific sequential voting that we call the weakest link voting : Voting

occurs in rounds with all the voters simultaneously casting their votes in each suc-

cessive round. In any round the candidate with minimal votes is eliminated, with

any ties broken by a deterministic tie-breaking rule. Continue with this process

1In binary voting voters vote in each round over only two choices and a choice may include one
or more than one candidate. The voting proceeds by elimination of choices through the voting
rounds using majority rule. With voter choice in each round restricted to only two candidates is
the well-known sequential binary voting.

2Sequential (elimination) voting in this paper differs from sequential voting that mostly con-
cerns with the important issue of information aggregation, as in Dekel and Piccione (2000),
Strumpf (2002), Battaglini (2005) etc.
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to pick a winner.3 The weakest link voting can be interpreted as a natural se-

quential extension of plurality voting, with elimination of the worst plurality loser

in each round.4 By carrying out similar eliminations in each round based on an

appropriately defined elimination rule, one can extend any single-round voting to

its sequential equivalent.

For sequential elimination voting to be CC, or yield a top-cycle outcome, it

is sufficient (and may even be almost necessary) that any (group of) majority

voters have some minimal collective influence: the voting rule must be such that

by coordinating their votes in any round a majority can always ensure that any

particular candidate who survived up to that round is not eliminated in that round;

further, such vote coordinations by the majority must be “stable” in the sense

that should the majority fail to choose some appropriate coordination of votes

that may lead to the particular candidate’s elimination, there will be at least one

member of the majority group who will have an incentive – if his aim were to

protect that candidate – to further deviate by changing his vote. We call these

twin requirements, the majority non-elimination property .

We show that the majority non-elimination property will be satisfied by sequen-

tial versions of most familiar single-round voting procedures (the unique exception

is the sequential analogue of negative voting). To understand how majority influ-

ence works, consider for instance sequential scoring rules (which eliminate, at any

round, only one candidate with the lowest total score). Clearly, for any candidate

and any majority, placing the candidate at the top by every member of a majority

is stable; furthermore the candidate will have a total score that is strictly higher

than the average score of the remaining candidates, even if every voter outside the

majority places that candidate at the bottom, if the following property holds: the

3The Conservative Party in Great Britain roughly follows this procedure to choose its leader:
the party’s parliamentary members vote in successive rounds to reduce first a small number of
candidates to only two candidates, and eventually the party members vote to elect the final winner.
See http : //politics.guardian.co.uk/Print/0, 3858, 4196604, 00.html.

Also, the last contest in 2005 to select the host city for the 2012 olympic games had the
characteristics of weakest link voting (London emerged the winner after Moscow, New York,
Madrid and Paris were eliminated in that order in successive votes held over four rounds). See
http : //news.bbc.co.uk/sport1/hi/front page/4655555.stm.

4The weakest link voting is similar to sequential runoff election where alternatives are elim-
inated one-at-a-time based on voters submitting a full strict-order ranking, eliminating in each
round the alternative with the least number of first place votes.
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scores in any round for various ranks be such that the average of the two scores

corresponding to the top and the bottom ranks weakly exceeds the average score

for all the intermediate ranks combined (this property clearly holds for the weakest

link and the sequential analogue of Borda). Thus, if this property holds the major-

ity is able to protect the candidate from being eliminated and hence satisfies the

majority non-elimination property.

The significance of our exercise could be seen in relation to the much-studied

binary agenda voting. In contrast to only two choices from which to pick at each

round in binary voting (where each choice involves one or more candidates), in our

sequential elimination schemes there is virtually no exogenous restriction on how

many choices might be considered but each choice consists of exactly one candidate.

Thus, our sequential voting games are complementary to the binary agenda pro-

cedures (sequential binary voting being the only common element). In sequential

voting, the sets of candidates (i.e., choices) available at later rounds evolve en-

dogenously (rather than determined by an exogenous ordering of agendas in binary

voting) through equilibrium behavior at earlier rounds; neither do the voting rules

need remain the same in every round. Also, with the simple binary comparison

lacking, general sequential elimination voting poses a far greater challenge as the

backwards induction arguments involving iterated deletion of dominated strategies

(to insure equilibrium existence and uniqueness) are no longer applicable.

In fact, applying our equilibrium solution, it can be shown that a more general

one-by-one elimination based on a sequence of nested partitions of the candidates

always yields an outcome in the top-cycle: first carry out one-by-one elimination

of the elements in the coarsest partition, then partition the surviving element (if it

consists of at least two candidates) applying the second-coarsest partition for refine-

ment and carry out one-by-one elimination on the refined partition, and so on until

a single winner gets elected having run through all the nested partitions. The nested

partition approach includes both one-by-one sequential elimination voting and the

binary agenda voting as special cases, and is the most general voting method, to

our knowledge, with the top-cycle property when voters vote strategically.

Finally, we will also argue why one-by-one elimination and repeated ballots, both

characteristics of our sequential voting, are important for Condorcet consistency –

especially in the class of voting where voters must vote over more than two choices

in some voting round. All one-shot voting rules and several semi-sequential voting

lack one or both these characteristics and will fail to be CC.
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Before going into the formal analysis, it might relevant to ask why do we care

about the properties of voting rules in environments with full information and

where we know what should be selected (perhaps, a CW )? There are two obvious

defenses to such a critique: (1) the voting rules are used in practice; (2) we need to

understand the basic structure of rules even if that requires studying full information

environments. Our analysis should offer a useful normative guide as to how to design

voting games, or modify some of the existing vote methods, to achieve the majority

objective.

The next section presents the voting rules and related equilibrium solution con-

cepts. Section 3 contains results on sequential elimination and semi-sequential

voting. Finally, in section 4, we analyze single-round voting. Positive results and

general statements over broad classes of voting rules appear in theorems and results

on particular voting rules appear in propositions. Some proofs are relegated to an

Appendix, but other proofs not included here can be found in a working paper

version (Bag, Sabourian and Winter, 2008). The Appendix also contains a glossary

of voting rules.

2 The Voting Rules and Equilibrium Solutions

Voting Games

First we describe the class of voting games considered in this paper. This class

is quite general.

The set of candidates is denoted as K with cardinality k, and the voter set is

denoted as N with cardinality n, both k and n at least three. Throughout we

assume n to be an odd number, but this can be relaxed (see footnote 8). Also

for simplicity of exposition, K ∩ N = ∅. Each voter i ∈ N has a strict, ordinal

preference ordering over the candidates given by �i. The voters have complete

information about preferences.

The class of voting games we consider are as follows. Each voting rule consists

of the voters/players voting in at most J rounds/stages, J < k. At each stage

the voters simultaneously vote (i.e., take an action) and at least one candidate is

removed. At the end of a maximum of J rounds voting one candidate survives

who is the winner. If C is the set of candidates left at any stage j ≤ J with

|C| ≥ 2 (|.| denoting cardinality) then a choice for voter i at that stage consists
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of choosing an element from an arbitrary choice set Ai(C, j). Moreover, if each

i chooses ai ∈ Ai(C, j) at this stage then we shall denote the set of eliminated

candidate(s) by e(aj, C) ⊂ C where aj = (a1, ..., an) is the profile of votes at stage

j. So if the voting finishes in some J ≤ J rounds and voters choose the sequence

of votes {aj}Jj=1, then the winning candidate is w 6∈ ∪Jj=1e(a
j, C).

For any j ≤ J let hj = (a1, ..., aj−1) be a complete history (description) of the

actual voting decisions up to stage j. Define Hj to be the set of histories at round

j and H =
⋃
jHj be the set of all histories, with the convention that H0 refers to

the initial null history. Also, let C(h) be the set of remaining candidates at h ∈ H.

Now a (pure) strategy for voter i is a function si : H →
⋃
j,C Ai(C, j) such that

si(h) ∈ Ai(C(h), j) if h ∈ Hj. Also, denote the set of (pure) strategies of voter i by

Si and let S = ×iSi.

The above set of games clearly includes the weakest link voting, and more

generally any sequential (elimination) voting, and any single-round voting such as

plurality rule, approval voting, Borda voting and negative voting. In the case of the

weakest link, the number of voting rounds J is k−1, the set of choices Ai(C, j) = C

and at each stage one candidate is eliminated so that |e(aj, C)| = 1.

In general, sequential elimination voting rules are such that at each stage only

one candidate is eliminated.

In the case of single-round voting, J = 1, all voters submit their strategies at

the first stage and all the candidates except one are eliminated simultaneously.

Also, included in our voting games will be three other categories: one with J > 1

but if (and only if) at any round a candidate gets majority votes he is immediately

declared the winner ending any further ballot (exhaustive ballot, for example); a

second one that eliminates candidates in one or more attempts following a single

ballot (so that J = 1, as in the case of instant runoff voting); finally, voting involving

repeated ballots (1 < J < k− 1) and more than one candidate being eliminated in

some round (such as plurality runoff voting with J = 2).

The equilibrium

Since the voting games we consider may have a dynamic structure, we require

our equilibrium concept to be subgame-perfect. In addition, as is common in the

literature on voting, we need to eliminate choices that are weakly dominated, oth-

erwise there are a large number of trivial equilibria in which each voter’s choice

is immaterial. Therefore, an equilibrium in our set-up is a strategy profile for the
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voters that is a subgame perfect equilibrium and is such that at each stage the

votes of each player is not weakly dominated given the equilibrium continuation

strategies of others in future stages.

In other words, any equilibrium strategy profile s∗ ∈ S in a voting game must

have the following properties. In any final stage subgame (i.e., at stage J), s∗

must be a weakly undominated Nash equilibrium in the subgame. In any subgame

starting with stage J−1, the voters’ strategies must be an undominated Nash equi-

librium in the subgame given that the voters play the game according to s∗ in the

continuation game (thus the permissible strategies of the other voters with respect

to which the weak-domination check is carried out are consistent with the equilib-

rium strategy in the next stage). This backward elimination procedure continues

all the way to stage 1.

Formally, for any history h ∈ H, let Γ(h) be the subgame at h and w(s, h) be

the candidate elected in the subgame Γ(h) if the voters follow strategy profile s in

this subgame. Also, for any strategy profile s ∈ S and any history h ∈ H, define

the set of strategies for all players other than i that are consistent with s in every

subgame after h by

S̃−i(h, s) = {s′−i ∈ S−i | s′−i(h, h′) = s−i(h, h
′) for all non-empty h′ s.t. (h, h′) ∈ H}.

Definition 1. A strategy profile s∗ is an equilibrium if for any history h ∈ H it

satisfies the following properties in the subgame Γ(h):

(Nash) For any i, w(s∗, h) �i w(si, s
∗
−i, h) ∀si ∈ Si,

where �i means either �i or =;

(Weak non-domination) For any i, 6 ∃si ∈ Si s.t.

w(si, s−i, h) �i w(s∗i , s−i, h) ∀s−i ∈ S̃−i(h, s∗)
and w(si, s−i, h) �i w(s∗i , s−i, h) for some s−i ∈ S̃−i(h, s∗).

 (1)

Notice that for any s ∈ S, at any h ∈ Hj we can define a one-shot reduced

form voting game Γ̂(h, s) in which voter i’s strategy set is Ai(C(h), j) and, given

any profile aj ∈ A(C(h), j) (=
∏

iAi(C(h), j)) of votes, the outcome of the game

is given by w(s, (h, aj)) elected. Clearly, our definition of equilibrium strategy in

Definition 1 is equivalent to showing that the choices that the equilibrium strategies

prescribe at any history h constitute an undominated Nash equilibrium of the one-

shot reduced voting game at h. Thus, s∗ is an equilibrium if and only if s∗(h) is

an undominated Nash equilibrium of Γ̂(h, s∗), for all h.
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Remark 1. Our equilibrium concept is effectively a backward elimination proce-

dure. However, note that it differs from the more familiar procedure of iterative

elimination of (weakly) dominated strategies; while in the latter approach the weak-

domination check is carried out in relation to the entire game, ours is only along

the subgames.5,6 It is well-known that iterative elimination can have very little elim-

ination power.7

Remark 2. Note also that any trembling hand perfect equilibrium in extensive form

satisfies our definition of equilibrium. This is because any trembling hand perfect

equilibrium in extensive form is a subgame perfect equilibrium and excludes weakly

dominated choices at different information sets. We could have alternatively started

with trembling hand perfect equilibrium in extensive form as our equilibrium concept

(see also our remark at the end of subsection 4.1). However, for ease of exposition

we adopt the above definition of equilibrium.

Remark 3. In the case of single-round voting the standard equilibrium concept is

undominated Nash. Note that our twin requirements of subgame perfection and

non-domination boil down to this standard equilibrium definition for single-round

voting rules.

Next we define Markov equilibrium.

Definition 2. An equilibrium s∗ is said to be Markov if for any i and any j,

s∗i (h) = s∗i (h
′) ∀h, h′ ∈ Hj such that C(h) = C(h′).

Markov equilibrium strategies are such that at any stage onwards the strategies

depend only on the candidates who have survived up to that stage and not on the

specific history leading up to it. The justification of the Markov assumption for our

sequential elimination voting can be found in Bag, Sabourian and Winter (2008).

5Moulin (1979) formally analyzed the iterative elimination procedure and applied it to a sig-
nificant class of voting – voting by veto, kingmaker and voting by binary choices.

6In our setup the two definitions may differ because at each stage our voters vote simultaneously
(the game is not one of perfect information) over more than two alternatives.

7For example, for plurality rule Dhillon and Lockwood (2004) show that anything other than
one’s lowest-ranked candidate will survive iterative eliminations of weakly dominated strategies.
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3 Multi-Stage Elections

3.1 Condorcet consistency of the weakest link

Much of our insight about sequential elimination voting can be gained by studying

the weakest link voting, so we start with this particular voting rule and then broaden

our analysis to a very general class of sequential elimination voting.

First, some notations. Given the voters’ strict preference ordering over candi-

dates, a binary comparison operator T defines a candidate x to be majority-preferred

over another candidate y, written as xTy, if the number of voters preferring x over

y exceeds the number of voters preferring y over x.8

Next, the CW, if it exists, is defined as a candidate z ∈ K such that zTz′, for all z′ ∈
K. Similarly, for any set of remaining candidates C ⊆ K the CW with respect to

C, if it exists, is a candidate z ∈ C such that zTz′ for all z′ ∈ C.

We say that an equilibrium s∗ of a voting rule is CC at every subgame if for every

h ∈ H such that the set of remaining candidates C(h) has a CW winner z(h), the

equilibrium strategy induces the CW with respect to C(h) in the subgame defined

by h (i.e. w(s∗, h) = z(h) if z(h) is defined for h).

Our first result is an equilibrium characterization of the weakest link game:

Theorem 1. Any Markov equilibrium of the weakest link voting is CC at every

subgame.

Proof. We demonstrate this by (backward) induction on the number of remaining

candidates in any subgame.

First, consider any subgame at stage k − 1 with only two candidates, z and z′.

Because sincere voting is the only Nash equilibrium that is also undominated in

this final stage subgame, the CW must be the winner.

Now suppose the following induction hypothesis is true:

For every history h ∈ H such that the set of remaining candidates C(h) consists

of j candidates, the following holds : if C(h) has a CW, z, then z will become the

ultimate winner in the subgame defined by h (i.e., w(s∗, h) = z).

We then prove that the same holds at any history/subgame with j + 1 remaining

candidates.

8To relax the assumption of odd number of voters, extend the definition of majority preference,
whenever there is a tie, by applying a tie-breaker.
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Suppose not; then there exists a subgame defined by some history h̃ such that

the set of the remaining candidates C(h̃) has j + 1 candidates, C(h̃) has a CW,

z, and some other candidate z′ 6= z becomes the ultimate winner in this subgame.

Now since z is the CW with respect to C(h̃), it follows by the induction hypothesis

that z is eliminated immediately at h̃ at stage k − j (since at h̃ there are j + 1

candidates, the subgame defined by h̃ begins in round k − j). Otherwise, since z

is also the CW with respect to the set of candidates in the next round, by the

hypothesis he will become the ultimate winner.

Next, consider those voters who prefer z over z′ and their immediate vote at h̃

in stage k − j. By definition of z, these voters will form a majority. Therefore, it

must be that at least one such voter, say voter i, who voted for some candidate z′′

other than z. But we show that for i voting for z weakly dominates voting for z′′

at this stage, given the equilibrium continuation strategies in the future stages.

To show this, first notice that if voter i chooses z′′ there are two possible out-

comes depending on the choices of others at this stage: either (i) z survives at this

stage and, by the induction hypothesis, all the subsequent stages and becomes the

ultimate winner; or (ii) z is eliminated and, by the Markov property of the equi-

librium strategies, z′ becomes the ultimate winner. Now if (i) is the case then if i

switches his vote from z′′ to z the outcome will be the same with z surviving all

stages and becoming the winner. If (ii) is the case then if i switches his vote from

z′′ to z, either z is eliminated and the outcome will be the same with z′ becoming

the ultimate winner or z survives this stage, and by the induction hypothesis, all

the subsequent stages and becomes the ultimate winner.

Finally, we need to show that there is a vote profile for all voters other than i

such that if voter i votes for z′′ then z would be eliminated and z′ goes on to win

whereas if he votes for z then z is not eliminated and z wins. To show this let

Z ⊂ C(h̃) be the set of remaining candidates other than z′′ that are lower in the

tie-breaker than z and let m be the cardinality of this set. Then, since voting at

h̃ eliminated candidate z, it must be that n − 1 ≥ m. Otherwise, it must be that

some x ∈ Z receives zero vote at h̃ and therefore is eliminated (contradiction). Now

consider a vote profile for all voters other than i such that every x ∈ Z receives at

least one vote and no other candidate receive any vote; since n − 1 ≥ m, this is

feasible. Now, if i votes for z, he is not eliminated (z′′ receives zero vote). On the

other hand, if i votes for z′′, candidate z is eliminated; this is because in this case

z receives zero vote and any other candidate(s) with zero vote belong to the set
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C(h̃)\{Z ∪ z′′} and hence must be higher up in the tie-breaker than z in the case

of a tie.

Since voter i prefers z to z′, the choice of z thus weakly dominates z′′ for i. This

implies a majority of voters would vote for z, contradicting the supposition that z

is eliminated at this stage.

Since we already proved our hypothesis for subgames with two candidates, it

follows by the induction step above that if there is a CW for the set C, he will be

elected in any subgame with C. Q.E.D.

The above result is a characterization result for Markov equilibria of the weakest

link voting when the set of (remaining) candidates has a CW. However, in order to

ensure that the result is not vacuous one has to show that the weakest link game

has a (Markov) equilibrium. This is particularly important because even if a set of

candidates has a CW, there could be subgames off-the-equilibrium path without a

CW among the remaining candidates and it is by no means clear that there is an

equilibrium in such subgames. Thus, Theorem 1 should be viewed in combination

with Theorem 2 below.9

Theorem 2. Assume n ≥ 2k − 1. Then in the weakest link game there exists a

Markov equilibrium.

The proof of this result can be found in Bag, Sabourian and Winter (2008).

Some further remarks concerning Theorem 1. First, notice that the arguments

in the proof does not make any reference to the tie-breaking rule; thus the weakest

link voting is CC for any arbitrary deterministic tie-breaking rule. Also, if the

preferences of the voters can be represented using expected utility framework then

by an analogous argument one can show that Theorem 1 holds for random tie-

breaking rules.

Second, limiting the result to equilibria that are Markov could be considered

a limitation of Theorem 1. However, there are two points that we like to make

9Since we wrote an earlier version of this paper (available under a different title: Bag, Sabourian
and Winter, 2002), we came across Peress (2004) who also examines the issue of Condorcet
consistency using the weakest link (that he calls multistage runoff) but under a very restrictive
assumption that every subset of candidates has a CW (all candidates can be majority ranked).
In particular, he does not need to consider the possibility that off-equilibrium subgames may not
have a CW. This makes the required analysis in Peress (2004) much simpler. Also, his equilibrium
concept seems to have similarity with ours but is not clearly defined.
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with respect to the Markov restriction. First, a weaker version of the Markov

property would suffice for the proof of Theorem 1. All we require to obtain the

result is that the equilibrium strategies do not depend on the history through the

specific configuration of votes that lead to the particular candidates’ eliminations.

However, the strategies can still depend on the order in which the candidates are

eliminated. In fact, if we assume that the votes are not revealed between stages but

only the identity of the eliminated candidate at each stage is announced, then we

do not need the Markov property. Second, it could be shown that if, in choosing the

strategies, players have, at least at the margin (lexicographically), a preference for

simplicity (aversion to complexity) then all equilibria are Markov.10 Basic reason is

that in our sequential voting games, for any equilibrium strategy profile every set of

remaining candidates occur on the equilibrium path at most once. If any player i’s

strategy is non-Markov, then i makes a different choice at two different subgames

with the same set of remaining candidates C; but then since C occurs at most once

on the equilibrium path, player i could economize on complexity by always making

the same choice at every subgame with C without sacrificing payoffs.

Finally, as discussed after the equilibrium definition, since every trembling hand

perfect equilibrium in extensive form satisfies our equilibrium concept, it follows

that every Markov trembling hand perfect equilibrium in extensive form of the

weakest link voting is CC at every subgame.

3.2 Top cycle consistency and a general sequential elimina-

tion procedure

Next we extend the Condorcet consistency result in Theorem 1 by introducing the

broader concept of ‘top cycle’ (which always exists and is same as the CW when

the latter exists) and by considering a general sequential elimination procedure.

Arbitrary voter preferences including no CW

For any set of candidates C ⊆ K, the top cycle with respect to C is defined as

T C(C) = {x ∈ C : ∀y ∈ C, y 6= x, either xTy

or there exist x1, x2, . . . , xτ ∈ C candidates such that xTx1T . . . TxτTy}
10Properties of Markov equilibrium in general dynamic games have been studied by Chatterjee

and Sabourian (2000), Sabourian (2004), and Gale and Sabourian (2005).
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where, as before, T is the binary operator representing majority preference. We

also refer to T C(K) simply by the top cycle.

Sequential elimination with majority property

A general sequential process of elimination is one where in each round only one

candidate is eliminated. In these games, as mentioned before, players vote in k− 1

rounds, the set of votes for voter i at round j < k when C is the set of remaining

candidates is Ai(C, j), and one candidate e(aj, C) is eliminated at each round j.

An important aspect of this procedure would be the decisive role that any group

of majority voters can play: at any round a majority of voters can ensure that any

particular candidate is not eliminated. We now specify this important property for

the set of sequential (elimination) voting games as follows.

Majority non-elimination (MNE) property : For any stage j < k, any set of

remaining candidates C, any c ∈ C, and any set of majority voters φ ⊆ N , there

exists a set of strategy profiles Dcφ(C, j) ⊆ Πi∈φAi(C, j) for the majority φ such that

the following two conditions hold:

[i] (Majority protection) If all members of φ choose some profile aφ ∈
Dcφ(C, j) then c is not eliminated, i.e.,

e(aφ, a−φ, C) 6= c, ∀a−φ ∈ Π`6∈φA`(C, j).

[ii] (Protection stability) For any profile aφ 6∈ Dcφ(C, j) such that e(aφ, a−φ, C) =

c for some a−φ ∈ Π 6̀∈φA`(C, j), there exists some member of the majority i ∈ φ and

an action aci ∈ Ai(C, j) such that

∀a′−i ∈ A−i(C, j) if e(ai, a
′
−i, C) 6= c then e(aci , a

′
−i, C) 6= c (2)

and ∃a′−i ∈ A−i(C, j) s.t. e(ai, a
′
−i, C) = c and e(aci , a

′
−i, C) 6= c. (3)

That is, ai is “inferior” to aci in protecting c.

All sequential voting rules satisfying these two non-elimination conditions constitute

the family F . ||

Note that {Dcφ(C, j)} are sets of actions/votes for non-elimination of any candi-

date c. For instance, if each stage of the sequential voting involves voters ranking

the candidates, one can think of {Dcφ(C, j)} as all actions by the majority that

place c at the top of their ranking; then the two conditions in the MNE-property
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require that [i] if a majority of voters place c at the top then c cannot be elim-

inated, and [ii] if a majority fails to place c at the top and c is eliminated then

there is some voter from that majority who will have an action that is (weakly)

better than his particular action in the ‘failed majority action profile’ in protecting

c. Later we will verify that sequential extensions of approval voting and a class

of scoring voting rules (that includes plurality and Borda rules as special cases)

plus Copeland and Simpson rules (see Moulin, 1988, ch. 9 for the last three voting

rules) fall under the family F . Further, it can be checked that the important class

of sequential binary voting comes under F .11

Theorem 3. In all Markov equilibria of any sequential voting rule in the family

F , candidate w is the winner in any subgame with remaining candidates C only if

w ∈ T C(C).

For binary voting trees (footnote 1), McKelvey and Niemi (1978) also obtain

outcomes in the top cycle. McKelvey and Niemi’s equilibrium, that they call mul-

tistage sophisticated solution, is as follows: presenting the voting game as a tree of

binary choices and treating each decision node with its specific binary choices as

a constituent game, McKelvey and Niemi solve recursively the various constituent

stage games backwards using elimination of weakly dominated strategies. Our se-

quential, one-by-one elimination voting family is inherently different from the class

of binary voting games of McKelvey and Niemi (with the exception of sequential

binary voting). In particular, in our framework with more than two remaining can-

didates voters usually have more than two choices, making the backwards induction

type reasoning of binary voting (based on iterative deletion of dominated strategies)

problematic.12 Furthermore, binary voting may involve multiple candidates being

11Note that our sequential voting is quite general – voters can submit a (weak or strict) ranking,
or the preference submission may even be more abstract than a simple ranking of candidates.

12In binary voting, every decision node involves two choices. As a result working backwards each
voter has a unique dominant choice at each stage and the game can be solved uniquely through
iterative deletion of dominated strategies: At the final decision nodes, with only two choices sincere
voting is the unique dominant choice and thus one can associate each final decision node with its
“sophisticated equivalent” (Shepsle and Weingast, 1984) – the candidate that wins conditional
on reaching that particular subgame; iterating back up the tree, by the same reasoning, voters
again have two choices over two sophisticated equivalents and voting sincerely over these choices
is dominant. Under our general sequential elimination scheme, working backwards and iteratively
deleting dominated strategies does not typically yield a unique choice at each stage because the

13



eliminated in a single stage, including selecting a winner even in the first stage.13

Finally, two technical remarks. First, the top-cycle result in Theorem 3 does

not require strategies to be Nash as part of the equilibrium definition; we impose

the Nash requirement mainly to make the equilibrium definition consistent with the

non-sequential voting games of section 5 and a related negative result in Theorem

4. Second, as in Theorem 1, any Markov trembling hand perfect equilibrium in

extensive form will be in the top cycle and is CC when a CW exists.

The scope of F . To fully appreciate Theorem 3, it is important that we elaborate

the scope of the voting family F . First consider scoring rules.

Definition 3. (Scoring voting rules [Moulin, 1988, ch.9]) Fix a nonde-

creasing sequence of real numbers ς1 ≤ ς2 ≤ . . . ≤ ςk with ς1 < ςk. Voters rank the

candidates, thus giving ς1 score to the one ranked last, ς2 to the one ranked next to

last, and so on. A candidate with a maximal total score is elected.

Definition 4. (Sequential scoring rule) A sequential scoring rule is the sequen-

tial, one-by-one elimination analogue of scoring rules:

• At any stage and for any set of remaining J ≤ k candidates, fix a non-

decreasing sequence of real numbers ς1 ≤ ς2 ≤ · · · ≤ ςJ with ς1 < ςJ .

• At the particular stage, voters rank the candidates according to the above

sequence, and the candidate receiving the lowest total score is eliminated.

Proposition 1. Any sequential scoring rule belongs to the family F , if at each

stage the scores associated with different ranks are such that

1

2
(ς1 + ςJ) ≥ 1

(J − 2)

J−1∑
j=2

ςj. (4)

choice is not necessarily between two alternatives (sophisticated equivalents). In the case of the
weakest link voting with three candidates, for instance, there are three final decision nodes, each
involving a pairwise vote, so identifying the sophisticated equivalents is not a problem; but then
in the previous (first) stage there is a three-way choice over the sophisticated equivalents and an
individual voter’s best vote choice at this stage depends on the choices of others.

13McKelvey and Niemi do not require the Markov assumption because of the binary nature of
choices at every decision node. The equilibrium in any continuation game of their binary voting
following elimination of the CW is essentially unique. For more than two choices possible (as in
our case), the uniqueness can be guaranteed only by assuming the Markov property.
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Condition (4) implies that if any majority voters place a candidate c at the

top and the remaining voters place c at the bottom then the resulting total score

of c can never be the lowest (exceeds the average score of the other candidates).

Therefore, this condition ensures that c is not eliminated, irrespective of what

others do, and thus the set of actions by a majority that place a candidate at the

top satisfies majority protection and hence the MNE-property (protection stability

is also satisfied by any strategy that does not place c at the top because it is then

always possible to protect c better by improving its ranking). In fact, the MNE-

property cannot be guaranteed with sequential scoring if condition (4) fails.

Both plurality and Borda rules satisfy (4), so the corresponding sequential ex-

tensions – the weakest link and sequential Borda rules – satisfy the MNE-property.

However, the negative voting with ς1 = 0 and ςj = 1 for all j > 1 would fail (4).

Moreover, one can show that its sequential extension – sequential veto rule (in each

stage each voter vetoes one candidate and the one receiving the maximum number

of vetoes is eliminated) – fails the MNE-property. This is because a majority of

voters may not always be able to guarantee non-elimination of a candidate c by

giving it the maximum point, 1. The only way to ensure non-elimination of c is

for the majority to coordinate to veto some other candidate(s) other than c; but

this may violate protection stability because strategies that do not coordinate on

vetoing some other candidate(s) need not be inferior in protecting the particular c.

Three other one-shot rules (not part of scoring rules) – approval voting, Copeland

rule and Simpson rule – have similar sequential extensions with the Condorcet con-

sistency property, as summarized below.14

14In approval voting, a voter is allowed to approve or disapprove any number of candidates
(point 1 to indicate approval of a candidate and point 0 to denote disapproval) except that the
voter cannot approve all or disapprove all the candidates. The candidate with maximal votes wins
(Brams and Fishburn, 1978; Myerson, 2002).

Copeland and Simpson rules (Moulin 1988, ch. 9) are based on voters submitting only strict
order rankings (so that J = k). For Copeland rule, candidate a, compared with another candidate
b, is assigned a score +1 if a majority prefers a to b, −1 if a majority prefers b to a, and 0 if it is
a tie. Summing up the scores over all b, b 6= a, yields the Copeland score of a. A candidate with
the highest such score, called a Copeland winner, is elected. For Simpson rule, for candidate a

denote by N(a, b) the number of voters preferring a to another candidate b. The Simpson score
of a is the minimum of N(a, b) over all b, b 6= a. A candidate with the highest such score, called
a Simpson winner, is elected.

Sequential extensions of the above voting rules would eliminate, at any round, the candidate
that receives the lowest score, applying a tie-breaker wherever necessary.
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Proposition 2. The sequential extensions of approval, Copeland and Simpson vot-

ing rules belong to the family F .

The proof of Proposition 1 appears in the Appendix. Proposition 2 proof is very

similar and omitted (see also footnote 19).

3.3 Generalizing binary voting and the family F

The binary voting procedure of McKelvey and Niemi (1978) and our sequential one-

by-one elimination voting raise the possibility of constructing an even more general

sequential one-by-one elimination voting. Below we present one such method.

Nested partition voting: Let υ be any voting rule in the family F defined

in section 3.2. Consider any sequence of nested partitions B1, B2, ..., Bk of the set

of candidates K, where Bi+1 is a refinement of the partition Bi and where Bk is

the singleton partition. The voting goes through k stages at most. The first stage

involves voting over the partition B1. Suppose B1 is partitioned into sets S1, ..., Sr.

In stage 1 voters vote on S1, ..., Sr, treating the sets as candidates and using the rule

υ. Now, suppose S ∈ B1 wins in the first stage and let T1, ..., Tm be the partition

of S induced by B2. In the second stage, voters use the rule υ on T1, ..., Tm (as

candidates). Continue in this manner until at some stage the partition consists of

singleton sets. The rule υ will now determine the winner in the standard sense.

If B1 is the singleton partition, the nested partition voting is same as the rule υ.

If Bj+1 partitions the elements of Bj into two sets only (for all j), then the above

voting is same as the binary voting of McKelvey and Niemi (1978).

For the Markov equilibrium defined in section 2, using arguments similar to

Theorem 3 proof it can be shown that the equilibrium of the nested partition

voting game would always belong to the top cycle.

3.4 Semi-sequential voting

Next we consider three specific voting rules with certain traits of sequential voting

that fail some of its other characteristics. With the help of these, we like to demon-

strate why one-by-one elimination and repeated ballots – two defining characteristics

of sequential voting – are both important for Condorcet consistency.

Proposition 3. The plurality runoff rule and the exhaustive ballot method are not

CC.
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Proposition 4. The one-shot weakest link voting (with voters submitting their

entire weakest link strategies once-for-all in a single round followed by one-by-one

eliminations) is not CC.

The proofs, based on counter-examples, appear in Bag, Sabourian and Winter

(2008).

Note that the plurality runoff rule and the exhaustive ballot method, used in

various political appointments, share features of weakest link voting in that both

use multiple ballots but fail one-by-one elimination. On the other hand, the one-

shot version of the weakest link voting eliminates candidates one-by-one but fails

repeated ballots (and likewise for the instant runoff voting without the majority

top-rank trigger, to be mentioned in Proposition 5).

An intuition on why elimination of more than one candidate in some round

may lead to a non-Condorcet outcome would be instructive. The basic idea is that

with one-by-one elimination, when the CW is eliminated in some voting round the

(off-equilibrium) outcome is unique in the induction argument. When more than

one candidate are eliminated, following the CW ’s elimination the outcome is not

necessarily unique – it depends on who else is being eliminated along with the CW ;

as a result, in this case, the voters may not vote for the CW in order to influence

the final outcome in the case when the CW is eliminated.

4 Single-round voting mechanisms

Given our observations in Propositions 3 and 4, it might be expected that one-shot

voting would also fail Condorcet consistency under strategic voting. In this section,

we formally address this question.

First define a class of single-round voting rules.

For any set of candidates K with cardinality k (as defined in section 3), the

set of strategies for a voter is to rank the k candidates in J different categories for

some J such that 1 < J ≤ k subject to some bounds on the number of candidates

in each category. Denote the minimum and the maximum number of candidates

in each category j ≤ J by m(j) and M(j), respectively. Let Λ be the set of all

such J rankings over K. Thus, the strategy for voter i, denoted by Ri ∈ Λ, is

a profile (X1, ..., XJ) with J components such that it partitions the set K into

J non-empty cells X1, ..., XJ and m(j) ≤ |Xj| ≤ M(j). Since it is a partition
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it must be the case that
∑

jm(j) ≤ k. From Ri we can also specify for each

x, y ∈ K whether x is ranked strictly above y, denoted by xPi y, or y is ranked

strictly above x, denoted by y Pi x, or x is ranked the same as y (in the same

category), denoted by x Ii y. For any set of n voters, the one-shot voting game

also specifies the winning candidate as a function of the submitted strategies of

the n voters given by an outcome function fn : Λn → K. A voting rule with k

candidates is then defined by the number of categories, the bounds on the size of

each category and the outcome function. We refer to such a one-shot voting rule

by v(k) = (J, {m(j)}j≤J , {M(j)}j≤J , {fn}n∈N), where N is the set of odd numbers

(as elsewhere, this restriction is made for simplicity).

Rankings Λ can accommodate strict order submissions (Borda, Copeland and

Simpson rules), or standard voting rules that ask for submission of candidates of

a particular rank (plurality rule, negative voting). Further, it can accommodate

approval voting, which asks voters to partition candidates into 1’s and 0’s. Thus,

our one-shot voting game is the most comprehensive (one-shot) generalization of

Moulin’s (1988) scoring rules.15

We shall see that, for any fixed number of candidates k, all single-round voting

games satisfying two intuitive properties, called scale invariance and responsiveness,

are not CC in strategic voting. This will be a strong assertion because the lack of

Condorcet consistency is demonstrated for any fixed k. (The number of voters can

of course vary). The meaning of scale invariance is rather straightforward.

Definition 5. A voting rule v(k) with k candidates is scale invariant if replicating

the set of voters with their submitted strategies by any multiple will not alter the

winner.

Responsiveness is about voter pivotalness. Roughly it requires that for each

voter and any pair of candidates, there is a scenario at which the voter is pivotal in

determining the winner between the two candidates. Before defining responsiveness,

we need to define sincere behavior and Condorcet consistency (in sincere voting) in

the above class of voting games.

We say that a strategy Ri = (X1, ..., XJ) ∈ Λ submitted by voter i is sincere

if X1 = {c1, ..., cm(1)}, X2 = {cm(1)+1, ..., cm(1)+m(2)},...,XJ = {c
∑

j<J m(j)+1, ..., ck},
when the true preference ranking of voter i is c1 �i . . . �i ck.16

15Copeland and Simpson rules and approval voting are not part of scoring rules.
16This definition is a generalization of the standard definition of sincere behavior when J = k.
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Finally, for any k, a voting rule v(k) is said to be CC under sincere voting if for

any number of voters and any preference profile over k candidates that admits a

CW, the voting rule v(k) selects the CW whenever the voters’ strategies are sincere.

Definition 6. A voting rule v(k) with k candidates is responsive if it satisfies the

following two conditions for each voter i:

1. For any pair of candidates x and y and any two strategies Ri and R′i such that

xPi y and y P ′i x there exists a profile of strategies R−i by the remaining voters

such that (Ri, R−i) elects x as the winner, and (R′i, R−i) elects y as the winner.

2. If the voting rule is CC under sincere voting, then (i) the submissions are strict

(J = k);17 and (ii) for any three candidates X = {x, y, z}, there exists a

candidate z in X such that the following holds: for any pair of strategies Ri =

(X1, X2, X3, ..., Xk) and R′i = (X2, X1, X3, ..., Xk) such that (X1, X2, X3) =

(x, y, z) , there exists a profile of strategies R−i by the remaining voters such

that (Ri, R−i) elects x as the winner, and (R′i, R−i) elects z as the winner.

Condition 2 is required only for Copeland and Simpson rules. For all other

one-shot voting, only condition 1 is needed.

Theorem 4. For any single-round voting rule v(k) with k candidates, if v(k) sat-

isfies responsiveness and scale invariance then v(k) is not CC.

Proposition 5. Suppose n ≥ k − 1. Then standard one-shot voting rules, in

particular, all scoring rules (including plurality rule, negative voting, Borda rule),

approval voting, the two variants of Instant runoff voting (with and without the

majority top-rank trigger), Copeland rule and Simpson rule will all satisfy respon-

siveness and scale invariance conditions of Theorem 4. Hence none of these voting

rules will be CC.

For Theorem 4 proof, see the Appendix. Proposition 5 proof can be found in

Bag, Sabourian and Winter (2008).

While Condorcet consistency failing for specific one-shot voting rule(s) is not

surprising (Dhillon and Lockwood, 2004; De Sinopoli et. al., 2006), to our knowl-

edge there is nothing to suggest that Condorcet consistency (under strategic voting)

17All voting rules that are CC under sincere voting are based on strict rankings (Moulin, 1988).
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should fail for the entire class of one-shot voting. On the contrary, significant posi-

tive results in the implementation literature would have led one to believe otherwise.

In this respect, failure of Condorcet consistency for one-shot voting rules should be

formally noted.18

Theorem 4 and Proposition 5 are at the opposite spectrum of the sequential

one-by-one elimination voting methods. Single-round voting fails both one-by-one

elimination and repeated ballot tests (required for Condorcet consistency). The

wasted vote phenomenon, due to miscoordination of voter strategies, may thus lead

to an outcome that is inferior to some other alternative for a majority of voters,

with little bite from the refinement due to weakly non-dominated strategies.

Appendix

Proof of Proposition 1 : Fix a stage with the set of remaining candidates C

having the cardinality J . Also, fix a candidate c ∈ C and a majority φ.

For any voter i, let Dci (C, j) be the set of all strategies that place c at the

top (with no other restriction on the positions of other candidates).19 Also, let

Dcφ(C, j) = Πi∈φDci (C, j).
First we verify condition [i]. Fix any a ∈ A(C, j) such that aφ ∈ Dcφ(C, j). We

need to show that e(a, C) 6= c.

For any x ∈ C and any a′ ∈ A(C, j), denote the total score of candidate x at

this stage when action profile a′ is chosen by TS(x, a′).

Next, define θtop to be the total score of a candidate if he receives the highest

score, ςJ , from a majority of (n+ 1)/2 voters and gets the lowest score, ς1, from the

remaining n− (n+ 1)/2 voters:

θtop =
(n+ 1)

2
ςJ + [n− (n+ 1)

2
]ς1.

18Note that the Condorcet map is Maskin monotonic (1999) on the restricted domain of prefer-
ences where Condorcet winner exists (and will be Maskin monotonic even in unrestricted domains
if one defines social choice rule to select all outcomes when Condorcet winner fails to exist).
Since the Condorcet map also satisfies ‘no veto power,’ it is Nash implementable if one considers
arbitrary, rather than just one-shot voting, mechanisms.

19Proposition 2 proof, omitted, will follow a similar argument as in the rest of Proposition 1
proof. For sequential extension of approval voting, Dc

i (C, j) will consist of the unique strategy of
voter i approving only candidate c and disapproving all the remaining candidates. For sequential
extensions of Copeland and Simpson rules – given that these rules are based on strict order
submissions – Dc

i (C, j) will place only candidate c at the top.
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Since a is such that the majority φ place c at the top, it follows that TS(c, a) ≥ θtop.

Therefore, the average score that the other candidates receive when a is chosen

cannot exceed

θmin =
n[ςJ + . . .+ ς1]− θtop

J − 1
.

But then there must exist a candidate d ∈ C such that TS(d, a) ≤ θmin. Now to

complete verification of condition [i], it suffices to show that θtop−θmin > 0. Note

that

(J − 1)(θtop − θmin) = J · θtop − n
J∑
`=1

ς`

=
(J − 2)n+ J

2
ςJ +

(J − 2)n− J
2

ς1 − n
J−1∑
`=2

ς`.

Therefore, θtop − θmin > 0⇔ 1

2
(ςJ + ς1) +

J

2n(J − 2)
(ςJ − ς1) >

1

(J − 2)

J−1∑
`=2

ς`.

But since, by assumption, 1
2
(ςJ +ς1) ≥ 1

(J−2)

∑J−1
`=2 ς` and ςJ > ς1, condition [i] must

hold. ||

Next, we verify condition [ii]. Fix a ∈ A(C, j) such that aφ 6∈ Dcφ(C, j) and

e(a, C) = c. For any i, let mi be a candidate to whom i attaches the highest score

ςJ : ai(m
i) = ςJ .

Without loss of generality denote the set of voters in the φ-majority by {1, 2, . . . , |φ|}.
Next, consider the sequence of vote profiles, a(0), a(1), . . . , a(|φ|), defined as follows:

a(0) = a and for any i and ` such that 1 ≤ i, ` ≤ |φ|,

a
(i)
` (x) =


ςJ if x = c and ` ≤ i

a`(c) if x = m` and ` ≤ i

a`(x) otherwise.

Note that a(|φ|) is such that a
(|φ|)
i (c) = ςJ for all i ∈ φ. Therefore, a

(|φ|)
φ ∈ Dcφ(C, j)

and hence, by condition [i], e(a(|φ|), C) 6= c. Moreover, by assumption e(a(0), C) =

c. Therefore, there exists some i, 1 ≤ i ≤ |φ|, such that e(a(i−1), C) = c and

e(a(i), C) 6= c. Furthermore, by the definition of the sequence a(0), a(1), . . . , a(|φ|) we

have that a
(i−1)
i = ai and a

(i−1)
−i = a

(i)
−i. Therefore, we have e(ai, a

(i−1)
−i , C) = c and

e(a
(i)
i , a

(i−1)
−i , C) 6= c verifying (3) in condition [ii].

To verify (2), for ai(= a
(i−1)
i ) and a

(i)
i note that a

(i)
i (c) = ςJ , a

(i)
i (mi) = ai(c) and

a
(i)
i (x) = ai(x) for all x 6= c. Thus, for any a−i ∈ A−i(C, j) we have TS(c, a

(i)
i , a−i) ≥
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TS(c, ai, a−i), TS(mi, a
(i)
i , a−i) ≤ TS(mi, ai, a−i) and TS(x, a

(i)
i , a−i) = TS(c, ai, a−i)

for all x 6= c. But this implies that if e(ai, a−i, C) 6= c then e(a
(i)
i , a−i, C) 6= c for all

a−i ∈ A−i(C, j), hence verifying (2). Q.E.D.

Proof of Theorem 3 : We use induction on the number of remaining candidates.

Assume the following hypothesis: Theorem 3 is true for any subgame with j

candidates.

We want to show that the result is also true for any subgame with j+1 remaining

candidates. Suppose not. Then there is a subgame Γ at stage k− j with remaining

candidates C of cardinality j+1 such that w is the ultimate winner and w 6∈ T C(C).

This implies there exists some y ∈ C such that

y T w and it is not the case that w T x1 T x2 T . . . T x` T y, (5)

for some x1, x2, ..., x` ∈ C.

Next we establish two intermediate claims.

Claim 1: y must be the first eliminated candidate in the subgame Γ.

If not, let y′ 6= y be the candidate eliminated at this stage. Then in this subgame

the remaining candidate set is C \ y′ and w wins, which implies by hypothesis

w ∈ T C(C \ y′). But then there will be a (direct or an indirect) chain such that

w T x1 T x2 T . . . T x` T y, contradicting (5). ||

Claim 2: y is the ultimate winner in any subgame at stage k − j with remaining

candidates C if y is not the first eliminated candidate in this subgame.

Let a 6= y be the candidate that is eliminated first. Denote the winner after (a

is eliminated) by ŵ.

First note that, y ∈ C \ a implies w 6∈ T C(C \ a), hence by hypothesis ŵ 6= w.

Now suppose Claim 2 is false; then ŵ 6= y. Since ŵ ∈ T C(C \a), it must be that

ŵ is majority-preferred over y directly or indirectly. Also, since by Claim 1 and

hypothesis w ∈ T C(C \ y), and ŵ 6= w (established above), therefore w is majority-

preferred over ŵ directly or indirectly. These together imply that w is majority-

preferred over y indirectly, contradicting (5). So Claim 2 must be true. ||
Now in the subgame Γ with remaining candidates C, consider any voter i such

that y �i w; there will be a majority of such voters because y T w. Denote these

majority voters by φ. By condition [i] of the MNE-property, there exist vote

profiles aφ ∈ Dyφ(C, k − j) such that e(aφ, a−φ, C) 6= y, ∀a−φ ∈ Π` 6∈φA`(C, k − j).

22



Then since by Claim 1 y must be the first eliminated candidate in the subgame

Γ, it must be that the majority φ chose some vote profile ãφ 6∈ Dyφ(C, k − j). But

then by condition [ii] of the MNE-property, there is some voter i ∈ φ whose vote

choice ãi (corresponding to the profile ãφ) is “inferior” to some other vote choice ayi

(as defined in condition [ii] of the MNE-property in section 4.2) in protecting y.

But then we have a contradiction because for such i voting for ayi weakly dominates

voting for ãi at this stage k− j, given the equilibrium continuation strategies in the

future stages.

To show the last claim, first note that if i votes for ãi, there are two possible

outcomes depending on the choices of others at this stage: [1] y survives and

becomes the ultimate winner, by Claim 2; [2] y is immediately eliminated in which

case by Claim 1 and the Markov property of the equilibrium strategies, w becomes

the ultimate winner.

Now if [1] is the case and i switches his vote from ãi to ãyi then y would still

survive this stage (by (2) in condition [ii] of the MNE-property) and, by Claim 2,

become the ultimate winner.

If [2] is the case and i switches from ãi to ãyi then either y is immediately

eliminated that ensures, by Claim 1 and the Markov property of the equilibrium

strategies, that w is the winner, or y survives and becomes the ultimate winner (by

Claim 2).

Finally, the switch from ãi to ãyi will ensure y surviving stage k−j and becoming

the ultimate winner in some situation (whereas with ãi the winner would have

been w) because, by (3) in condition [ii] of the MNE-property, there is some

a′−i ∈ A−i(C, k − j) such that e(ãi, a
′
−i, C) = y (and w wins by Claim 1 and the

Markov property of the equilibrium strategies), and yet e(ãyi , a
′
−i, C) 6= y that would

result in y winning (by Claim 2).

Thus, w 6∈ T C(C) cannot be the winner, establishing the hypothesis for any

subgame with j + 1 candidates.

By a similar argument as above, it is easy to check that the hypothesis is true

for j = 2, hence by induction Theorem 3 proof is now complete. Q.E.D.

Proof of Theorem 4: Given any voting rule satisfying the two assumptions of

responsiveness and invariance, we need to show that for some preference profile ad-

mitting a CW, there exists a Nash equilibrium with weakly undominated strategies

such that a non-Condorcet winner is elected.
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First we show that sincere submission of one’s ranking is never a weakly dom-

inated strategy. Without any loss of generality assume that voter i has the pref-

erence relation c1 �i c2 �i ... �i ck. Suppose Ri = (X1, ..., XJ) is sincere and

Ri is dominated by R′i = (X ′1, ..., X
′
J). Note that for any τ ≤ J , |Xτ | = m(τ) and

|X ′τ | ≥ m(τ). Let j be the first cell such that X ′j 6= Xj. If |Xj| < |X ′j| then for some

r > j it must be that |Xr| > |X ′r|, but this is not possible. So |Xj| = |X ′j|, hence

there exist some x ∈ Xj and y ∈ X ′j such that x ∈ X ′` for some ` > j and y ∈ Xr

for some r > j. Hence xPi y and y P ′i x. But then by condition 1 in Definition 6

there exists R−i such that (Ri, R−i) results in x winning, and (R′i, R−i) results in y

winning, thus contradicting that Ri is dominated by R′i.

Now consider two separate cases.

Case A: The voting rule is not CC with respect to sincere voting.

Consider any specific preference profile (�1, ...,�n) and the sincere strategy pro-

file RN ≡ (Ri)i∈N for which Condorcet consistency is violated in sincere voting. By

the above argument, each i submitting Ri is weakly undominated. Replicate this

voting game sufficiently large with every voter with preference ordering �i submit-

ting Ri (so that the scale invariance of Definition 6 applies) such that unilateral

deviation does not alter the non-Condorcet outcome and hence constitute a Nash

equilibrium in undominated strategies.

Case B: The voting rule is CC in sincere voting.

Consider the first three candidates c1, c2 and c3. Without any loss of generality

assume that c3 is the candidate among the first three candidates that satisfies the

property in condition 2 in Definition 6 (i.e. c3 is in the role of candidate z in

condition 2). Next, let κ = max{κ′ | 3κ′ ≤ n}, where n is the number of voters.

Suppose that the true preference profile of the voters is such that the set of voters

can be partitioned into three sets S1,S2 and S3 as follows: The set S1 consists of

n − 2κ voters and each i ∈ S1 has preferences given by c1 �i c2 �i c3 �i ... �i ck;
the set S2 consists of κ voters and each i ∈ S2 has preferences given by c2 �i c1 �i
c3 �i c4 �i ... �i ck; the set S3 consists of κ voters and each i ∈ S3 has preferences

given by c3 �i c1 �i c2 �i c4 �i ... �i ck. Then note that c1 is the CW and c2 is

the CW among all candidates other than c1. Also, denote the set of voters that

prefer c2 to c3 by S = S1 ∪ S2; clearly, S forms a majority.

Now since the voting rule is CC in sincere voting, by condition 2 in Definition

6, J = k (all rankings are strict). Next consider for any i ∈ S the strategy

Ri = (c2, c1, c3, ..., ck). First we show that for any i ∈ S, Ri is not weakly dominated.
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Suppose not; then for some i ∈ S, Ri is weakly dominated by another strategy

R′i = (X ′1, ..., X
′
k). Now since Ri is sincere if i ∈ S2 and voting sincerely is not

weakly dominated, it follows that i ∈ S1 and c1 �i c2 �i c3 �i ... �i ck. Using this,

we next establish in several steps that X ′τ = cτ for all τ ≤ k.

Step 1: We claim that X ′1 6= cτ for any τ > 2. Suppose not; then by condition

1 in Definition 6 there exists R−i such that Ri results in c2 winning, and R′i results

in cτ for some τ > 2 winning, thus contradicting that Ri is dominated by R′i.

Step 2: We claim that X ′1 = c1. Suppose not; then by the previous step X ′1 = c2.

But since Ri = (c2, c1, c3, ..., ck) and c1 �i c2 �i c3 �i ... �i ck, it must then be that

X ′2 = c1. Otherwise X ′2 = cτ for some τ > 2, and by condition 1 there exists some

R−i such that (Ri, R−i) elects c1 whereas (R′i, R−i) elects cτ , contradicting that Ri

is dominated by R′i. That is, from X ′1 = c2 follows X ′2 = c1, and continuing with a

similar reasoning using induction yields R′i = Ri. But this is a contradiction.

Step 3: We claim that for X ′j = cj for all j ≤ J . Since by the previous step

the claim is true for j = 1, by induction, it suffices to show that for any j ≤ J , if

X ′j′ = cj
′

for all j′ < j, then X ′j = cj. To show this suppose contrary to the claim

that X ′j′ = cj
′

for all j′ < j and X ′j 6= cj. Then X ′j = cτ for some τ > j. This

implies, by condition 1 in Definition 6, that there exists R−i such that Ri results

in either c1 (if j = 2) or cj (if j > 2) winning, and R′i results in cτ . Since i prefers

both c1 and cj to cτ (τ > j), this contradicts Ri being dominated by R′i.

Now since Ri = (c2, c1, c3, ..., ck) and R′i = (c1, c2, c3, ..., ck), by condition 2 in

Definition 6, there exists a strategy profile R−i such that (R′i, R−i) elects c3 whereas

(Ri, R−i) elects c2. Since c3 is worse than c2 in i’s true ranking, R′i cannot weakly

dominate Ri. But this is a contradiction. Hence Ri is not weakly dominated.

Now consider any strategy combination RN in which every i ∈ S submits the

strategy Ri, and the rest of the voters submit any undominated strategies (e.g. they

vote sincerely by submitting (c3, c1, c2, c4, ..., ck)). We next show that such a profile

results in c2 being elected. Consider any preference profile �′= (�′1, ...,�′n) such

that c2 �′i c1 �′i c3 �′i ... �′i ck for every i ∈ S and Ri′ is sincere with respect to

�′i′ for every i′ ∈ N\S. Clearly, RN is sincere with respect to �′. Moreover, since

�′ is such that c2 is the most preferred for every i ∈ S and the set S constitutes a

majority, it follows that c2 is the CW with respect to �′. Hence, since the voting

rule is, by assumption, CC in sincere voting and RN is sincere with respect to �′,
it follows that c2 must be elected when the voters submit RN .

Now assume that n > 5 and RN is chosen. Then no individual voter can affect
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the outcome because for any single deviation there are at least n − 2κ + κ − 1 =

n − κ − 1 ≥ 2κ − 1 voters (the numbers of S1 and S2 minus 1) who put c2 first.

Since 2κ − 1 forms a majority if n > 5 and the voting rule is CC with respect to

sincere voting, it follows that c2 is still elected if any single voter deviates. Thus

the strategy profile RN is a Nash equilibrium with undominated strategies, yielding

the candidate c2. But c1 is the CW with respect to the true preferences. Q.E.D.
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