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Abstract

Duverger’s law predicts a long-run two-candidate stable outcome under a plural-
ity voting system. Duverger (1954) explains the law using the waste vote argument,
which emphasizes voters’ tendency to abandon candidates commonly perceived to
have the least support. Palfrey (1989) formalizes Duverger’s argument by modeling
a three-candidate voting situation as a Bayesian game, and shows that there are
only two-candidate equilibrium outcomes in very large electorates. However, Pal-
frey (1989) does not examine non-generic cases where two or more weak candidates
have the same expected equilibrium vote share, so there is no unique candidate
for voters to abandon and a three-candidate equilibrium outcome is possible. We
show that the incentive of candidates to strategically withdraw from elections in
order to avoid extreme outcomes eliminates such non-Duvergerian equilibria. We
add uncertainty about the number of voters to Palfrey’s framework, and model the
election situation as a two-stage game where candidates first make strategic entry
decisions, followed by plurality voting, which is modeled as a Poisson game à la
Myerson (2000). In this framework, the two-party tendency for both generic and
non-generic cases in Palfrey (1989) are explained, as is an anomaly to Duverger’s
law, viz. in India there persists a strong central party and two weak parties with
similar strength.
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1 Introduction

Among all important propositions in political science, Duverger’s law is perhaps one of

the most intriguing to economists. The law focuses on the effect of the electoral regime

on the party system: The simple-majority, single-ballot system1 favours the two-party

system. [Duverger (1954), page 217.] Despite the increasing empirical support received

by the law2, and various theoretical models developed to seek foundations for the law, no

model has yet succeeded in fully explaining the law. A most popular explanation is the

waste vote argument, which emphasizes voters’ tendency to abandon the party commonly

perceived to have the least support. However, the waste vote argument does not apply

to situations where there is no unique party to abandon. Furthermore, previous studies

explaining the two-party tendency often do not account for the anomalies to the law, e.g.

the persistence of three parties in India under a plurality voting system3.

In this paper, we provide a more complete answer to both the forces underlying Du-

verger’s law and the anomaly in India by considering the strategic behavior of both

voters and candidates. Specifically, we study a two-stage game where three candidates

first decide whether to participate in an election, followed by plurality voting. Candidates

are distinguished by their positions on the interval [0,1]. They dislike extreme outcomes.

Voters have strict and single-peaked preferences on [0,1]. The voting situation is modeled

as a Poisson game à la Myerson (2000). That is, we assume the number of voters is a

random variable following a Poisson distribution4. We completely characterize the set of

limit voting equilibria for a sequence of Poisson voting games, which has the following

properties: (i) In the generic case when there is a unique candidate with the least ex-

pected equilibrium vote share, no one votes for him in the realized equilibrium outcome.

1This is a specific case of the plurality voting system, which elects a single winner who obtains the
most votes. The winner has a simple majority when there are two or fewer candidates, but not necessarily
so with three or more candidates.

2For a survey, see Ray (1971).
3In Canada, there have also been three parties under plurality voting since 1921. But the third party

which is the weakest at the national level is a major party at the regional level. So the Canada case is
not a true anomaly to Duverger’s law.

4Introducing voter population uncertainty has realistic flavors as in large elections a voter usually
does not know the exact number of other voters in the game. The cause of the uncertainty could be
that each voter has some positive probability of not turning out, or some votes are non-eligible or not
counted due to technical errors, see e.g. Eguia (2007), Messner and Polborn (2005).
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(ii) In the non-generic case when there are two or more weak candidates with the same

expected equilibrium vote share, voters either vote for their most preferred, or for the

strongest candidate. We also prove the non-existence of a three-candidate equilibrium

outcome under some general conditions. In particular, in the non-generic case, so long

as no candidate expects an absolute majority, and the centrist is not the strongest, then

there is no equilibrium in which all three candidates participate. The intuition is that a

left or a right candidate prefers to stay out in order to transfer his votes to the centrist to

avoid the opposite extreme policy to win. Finally, we provide a sufficient and necessary

condition for a three-candidate outcome as in India to sustain, that is, a largest central

party and two smaller parties of similar strength persist under a plurality voting system.

This paper extends the framework in Palfrey (1989), which is the first paper to for-

malize the waste vote argument, to an environment with voter population uncertainty

and strategic candidacy, and provides a theoretical explanation for the existence or non-

existence of a three-candidate equilibrium outcome in the non-generic case regarded by

Palfrey as empirical rarities. Our approach differs from most previous studies on Du-

verger’s law in that candidates’ participation decisions are considered as endogenous.

Combining strategic candidacy and the waste vote argument, we successfully explain

both generic and non-generic cases in Palfrey (1989), as well as the anomaly in India.

A common feature in Palfrey (1989) and subsequent papers using Palfrey’s framework

to explain Duverger’s law is that they show the existence of a two-party equilibrium

under plurality voting, but do not address the issue whether/when there is an equilib-

rium in which a strong party and two equally weak parties, or three parties with equal

strength coexist. Feddersen (1992) shows that in any pure strategy equilibrium of a finite

plurality voting game, votes are entirely concentrated on two candidates. Messner and

Polborn (2005) adds uncertainty about the number of actual votes to Palfrey’s model,

and uses trembling hand perfection to obtain a two-party equilibrium. Myerson (1998,

2000) introduce Poisson games to model uncertainty about the number of players, which

has a natural application to the waste vote argument. However, Myerson mainly uses it to

study how different voting rules affect the set of voting equilibria, see e.g. Myerson (2002).

In an early paper, Riker (1976) explains both Duverger’s law and the persistence of three
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parties in India by employing an argument of disillusional voting. However, Riker’s logic

again fails when it comes to the non-generic case.

In our model, we assume that candidates are averse to extreme outcomes, and use the

citizen-candidate approach developed in Osborne and Slivinski (1996), Besley and Coate

(1997) to refine away the three-candidate equilibria in Palfrey’s non-generic case. Extreme

aversion seems to be a natural assumption about politicians who care about policies. Our

work is related to Riviere (2000), which studies a three-stage game with a party formation

stage and a candidate entry stage before the voting subgame. Riviere (2000) shows that

when entry costs are shared among party members, there is a central party and a left or

a right party in the majority of cases. Some key assumptions in Riviere (2000) but absent

in our model are large entry costs, and uncertainty about the median voter’s position

which is resolved before the voting subgame. The waste vote argument is irrelevant in

Riviere’s setting since voting is sincere in equilibrium, and Palfrey’s non-generic case is

left untouched.

The remainder of the paper is structured as follows. Section 2 describes the model.

Section 3 characterizes the set of limit voting equilibria. Section 4 studies equilibria in

the full game, and the implications of strategic candidacy on Duverger’s law. Section 5

concludes. The appendix contains most of the technical proofs.

2 The Model

We model a three-candidate election situation as a two-stage game. The policy space is

the unit interval [0, 1], and a generic policy is denoted by x.

Stage 1. Entry game

We call the first stage an entry game. The players in an entry game are candidates.

The set of candidates is K = {1, 2, 3}. Each candidate k has a unique most preferred

policy, which we denote by xk. We assume that xk are three distinct points on the interval

[0, 1] with x1 < x2 < x3. We call candidates 1, 2, 3 a leftist, a centrist, and a rightist,

respectively. Note that x2 = θx1 + (1 − θ)x3, for some θ ∈ (0, 1). When we do not wish
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to distinguish candidates by their positions, we refer to them as i, j, h. Each candidate’s

preference is defined on [0,1], which has a VNM utility representation uk : [0, 1] → R,

where uk(x) is candidate k’s payoff if the policy x is implemented. We assume that uk is

strictly concave on [0,1], that is,

uk(θx+ (1− θ)y) > θuk(x) + (1− θ)uk(y), ∀x, y ∈ [0, 1] with x 6= y, ∀θ ∈ (0, 1)

The interpretation of this assumption is that candidates are averse to extreme outcomes.

The strategies available to each candidate are to participate (I) and not to participate

(O). If a candidate participates, he proposes his most preferred policy and commits

to implement the policy after being elected. That is, policy is not a choice variable of

candidates. We denote candidate k’s strategy space by Sk = {I, O}. Let S = S1×S2×S3.

An entry profile in S is denoted by s = (s1, s2, s3). s−k refers to a profile that excludes

the strategy of k.

Stage 2. Poisson voting game

Each entry profile s induces a second stage game, which we call a voting subgame,

and denote by Γs. The players in a voting subgame are voters. To model uncertainty

about the number of voters in the game, we follow Myerson (2000) and assume that

this number is a Poisson random variable with some mean n. We refer to this type of

game as a Poisson voting game. Each voter has a strict preference ordering Â on [0, 1]

which is single peaked with respect to the usual greater than (>) relation on the real

line. The single-peakedness assumption is standard in spatial voting models. The VNM

utility representation of a single peaked preference, v : [0, 1] → R, satisfies the following

condition:

There exists a policy x̂ ∈ [0, 1] such that if x̂ > z > y, or y > z > x̂, then v(z) > v(y).

We restrict voters’ preferences to the set {x1, x2, x3}. Note that restricted preferences

are also strict and single peaked. We normalize utilities for each voter such that if xi Â
xj Â xh, then v(xi) = 1, v(xh) = 0, and v(xj) ∈ (0, 1). Denote by PK the set of four

strict, single peaked preference orderings on {x1, x2, x3}. We define the type space to be

T = PK × (0, 1). That is, each voter has a type t ∈ T that specifies an ordering from

PK and a utility number for her second most preferred candidate. We assume that each
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voter’s type is independently drawn from T according to some probability distribution

λ. λ(t) is independent of n. A voter’s type is her private information, but λ is common

knowledge among all voters and candidates.

Following an entry profile s, each voter casts her vote for one participating candidate.

The common action space for all voters is A = {a1, a2, a3}, where ak refers to the action

of voting for candidate k. We assume that there is no abstention. Also, for technical

convenience, we assume that candidates do not vote. Relaxing this assumption does not

affect our results. Following Myerson (2000), we use distributional strategies to describe

voters’ strategic behavior5. This is described as follows. Let ∆(A) be the set of probability

distributions on A. σ : T → ∆(A) is a measurable function satisfying σt(ak) ≥ 0, ∀k ∈
K and

∑
k∈K σt(ak) = 1, ∀t ∈ T , where σt(ak) is the probability that a type-t voter uses

action ak. A distributional strategy π is a probability distribution on the set A× T with

the marginal distribution on T equal to λ, and the marginal distribution on A given by

πak
=

∫
T
σt(ak) dλ(t). Here, πak

is the probability that a randomly selected voter uses

action ak. For conciseness, henceforth we write πak
as πk.

The voting game uses a single ballot plurality rule. That is, each voter can vote for only

one candidate, and the candidate with the most votes wins the election. When multiple

candidates tie for the first place, each candidate wins with equal probability (we call this

a uniform tie-breaking rule). We summarize the number of votes that each candidate

gets by a vector in Z3
+, m = (m(k))k∈K , where m(k) is the number of voters using

action ak. We call m a voting profile. Note that Poisson distribution on voter population

implies that the expected voting profile induced by π is nπ = (nπk)k∈K , where nπk is

the expected number of voters who use action ak.

A voter’s payoff is given by the function V : Z3
+ ×A× T → R. V (m, ak, t) is a type-t

voter’s payoff when she uses action ak and the realized voting profile is m. We assume

that V is bounded and continuous in t on T . A type-t voter’s expected payoff in a Poisson

game with mean n when she uses action ak and all other voters follow the distributional

strategy π is given by EVt(ak,π) =
∑

m∈Z3
+
P(m | nπ)V (m, ak, t), where P(m | nπ) is

5This is to avoid measurability problems associated with defining mixed strategies when there is a
continuum of types, see Milgrom and Weber (1985).
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the probability that m is the realized voting profile given π and n. Here the expected

utility calculation uses an environmental equivalence property of Poisson games, which

basically says that if the number of voters follows a Poisson distribution with mean n,

then any voter already in the game would assess the number of other voters in the game

using the same Poisson distribution (for details, see Myerson (1998)).

A candidate’s payoff is given by the function U : S ×Z3
+ ×K → R. U(s,m, k) is can-

didate k’s payoff when the entry profile is s and the realized voting profile in the induced

subgame Γs is m. A candidate calculates his expected payoff based on his anticipation of

the voting behavior π in Γs, which is given by EUk(s,π) =
∑

m∈Z3
+
P(m | nπ)U(s,m, k).

We also assume that if a candidate expects to receive zero vote, then he prefers not to

enter, see e.g. Eguia (2007).

A voting equilibrium of a Poisson voting game with mean n is a distributional strategy

π such that each marginal distribution on A, πk =
∫

T
σt(ak) dλ(t), satisfies the following

condition:

For all t ∈ T with σt(ak) > 0, ak ∈ arg max
ai∈A

EVt(ai,π).

That is, all the probabilities of choosing ak come from types for whom ak maximizes their

expected payoffs when all other voters follow the distributional strategy π. We say ak is

a weakly dominated action for a type-t voter if there exists another action ai ∈ A such

that V (m, ak, t) ≤ V (m, ai, t), for all m ∈ Z3
+, and with strict inequality for at least one

m. We assume that no voter uses a weakly dominated action in equilibrium.

An entry profile s is an entry equilibrium if for all k ∈ K, EUk(s,π) ≥ EUk(s
′,π′),

where s′ = (s′k, s−k) with s′k 6= sk, and π′ is the anticipated voting behavior in Γs′ . That

is, no candidate obtains a higher expected payoff by unilaterally deviating, anticipating

voting outcomes with and without his presence.

An equilibrium in the full game consists of an entry equilibrium s, a voting equilibrium

in each voting subgame induced by s and (s′k, s−k), for all k ∈ K. We restrict our attention

to equilibria that are subgame perfect.
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3 Equilibria in the Poisson Voting Game

In this section, we provide a full characterization of the limit equilibria in large Poisson

voting games. A key step is to derive limit relative probabilities of pivot events. Pal-

frey (1989) proves the waste vote argument by showing that voters abandon the weakest

candidate because the probability of this candidate contending for the first place is in-

finitesimal relative to the probability of a stronger candidate doing so. Hence, conditional

on a vote being pivotal, it has almost zero probability of swinging the voting outcome in

favor of the weakest candidate. Palfrey (1989) directly computes the probabilities that a

tie for most votes occurs between: (i) the weakest candidate and a strong one; (ii) two

strong candidates, and shows that the ratio of these two probabilities goes to zero as the

size of the electorate becomes very large. Although Palfrey’s approach is straightforward,

the computations involved are rather complicated. Myerson (2000) provides an alterna-

tive, and considerably simple way of solving problems of the same nature in a Poisson

game. Instead of directly computing the probabilities of some events, Myerson calculates

the rates at which these probabilities go to zero. This is equivalent to showing whether

the relative probability of some event is zero in the limit. In particular, Myerson (2000)

shows that this calculation can be reduced to a simple maximization problem. We use

this technique here to prove the waste vote argument with voter population uncertainty.

Consider a sequence of Poisson voting games (Γn)∞n=1 following an entry profile s where

all three candidates participate (for conciseness we suppress the subscript s). We associate

each Γn with a voting equilibrium πn if an equilibrium exists6. We say that the sequence

(πn) converges to π if there is a subsequence of (πn) (still denote it by (πn)) such that

(πn
k ) converges to πk, for each k ∈ K, as n→∞. Since each (πn

k ) is a bounded sequence

of reals, it has a convergent subsequence. Thus, in the rest of the paper, we assume that

limn→∞ πn exists.

6The existence of an equilibrium in Γn can be guaranteed if the type space is compact, that is, if we
allow voters to have weak preferences, so T = PK × [0, 1]. By equipping T with a proper metric, we can
make T a compact metric space and then apply Theorem 0 in Myerson (2000). However, the existence
result is not necessary for our purpose.
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3.1 Pivot probabilities in the large Poisson game

In this subsection, we examine the magnitudes of pivot events in large Poisson games.

We first explain what we mean by an event, a pivot event, and magnitude of an event.

In our model, an event is a collection of voting profiles, which is a subset of Z3
+. For

any event M ⊂ Z3
+, we define the probability of M by P(M | nπ) =

∑
m∈M P(m | nπ).

Sometimes we abbreviate P(· | nπn) as P(·) when n,π are clear from the context. The

magnitude of M is defined as µM = limn→∞ ln(P(M | nπn))/n, provided that the limit

exists. We say that M is a pivot event if for each m ∈M , an additional vote for different

candidates yields different voting outcomes. We distinguish two types of pivot events.

• A close race between i and j is a pivot event where i and j get the top two highest

number of votes, respectively7. Notice it must be |m(i)−m(j)| ≤ 1 before a pivot

vote is cast. Denote by Λij a close race between i, j, and µij its magnitude.

• An ij-sensible event is a pivot event where a vote for i and for j yield different

outcomes. Denote by Ωij the set of all ij-sensible events, which is listed in Table 1.

We make two remarks on these pivot events before analyzing their magnitudes. First,

it is not necessary that an ij-sensible event is a close race between i and j. For example,

in Table 1, the close race is between i and h for events ii., iii., iv., viii., and ix., and

is between j and h for events ii., iv., v., viii., and x. More specifically, an ij-sensible

event concerns how an action from a pivot voter affects the voting outcome (this can be

seen clearly from Table 1), whereas a close race is about who will be the final winner.

If a close race is between i and j, then regardless of the action of a pivot voter, h is

never going to win. Second, an ij-sensible event is particularly relevant to a voter whose

strategic decision is between i and j in a three-candidate election. From this voter’s point

of view, an ij-sensible event can be regarded as generated by all other voters who follow

a distributional strategy πn, and her vote for i or for j swings the voting outcome.

The key to a voter’s expected utility calculation is probabilities of pivot events that

have the largest magnitude. This is because the probabilities of smaller-magnitude events

7A close race among three candidates can be defined in a similar way, but it suffices to look at a close
race between two candidates for our purpose.
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become infinitesimal in very large elections (for a formal statement, see Lemma 3.1),

hence the impact on expected utilities is negligible. Before going through the main result

of this subsection which identifies the pivot events with the largest magnitude in a large

Poisson voting game (Proposition 3.4), we first state three lemmas. Lemma 3.1 relates

the magnitudes of two events to the limit ratio of their probabilities. Lemma 3.2 is a

restatement of Theorem 1 in Myerson (2000), which provides a key step in computing

the magnitude of any event in a large Poisson game. Lemma 3.3 computes the magnitude

of some event generated by a sequence of voting equilibria πn.

Lemma 3.1. Let {An}, {Bn} be two sequences of events with finite magnitudes µAn , µBn.

Then limn→∞ P(An | nπn)/P(Bn | nπn) = 0 if µAn < µBn.

Proof. The rate that P(An | nπn) goes to 0 is enµAn . If µAn < µBn , and both are finite, then

limn→∞ P(An | πn)/P(Bn | πn) = limn→∞ enµAn/enµBn = limn→∞ en(µAn−µBn) = 0.

Lemma 3.2. [ Myerson (2000) ] Let M be an event in Z3
+. Then

µM = lim
n→∞

max
mn∈M

ln(P(mn | nπn))/n

= lim
n→∞

max
mn∈M

∑

k∈K

πn
kψ

(
mn(k)

nπn
k

)

where ψ : R+ → R is defined as follows.

ψ(w) = w(1− lnw)− 1, ∀w > 0, and ψ(0) = −1.

Lemma 3.3. Consider the following event generated by a sequence of voting equilibria

πn that converges to π: M = {mn : mn(i) = mn(j) + z1, m
n(i) ≥ mn(h) + z2}, where

z1, z2 are integers. Then the magnitude of M is

µM =

{
πh + 2

√
πiπj − 1 if πiπj > π2

h

3 3
√
πhπiπj − 1 if πiπj ≤ π2

h

Proof. See appendix.

Proposition 3.4. Let π be a limit voting equilibrium. If πi < min{πj, πh}, then among

all ij-sensible events, the close race between j and h

Λjh = {mn : mn(h) = mn(j) + 1 > mn(i) + 1} ∪ {mn : mn(j) = mn(h) > mn(i) + 1}

has the largest magnitude.
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Proof. See appendix.

Proposition 3.4 says that in a Poisson voting game, if a candidate is perceived to be

the weakest in the sense that his expected equilibrium vote share is the smallest, then

a close race, if occurring, is almost certain to be between the two strong candidates as

the number of voters becomes very large. Note that Proposition 3.4 incorporates more

cases as compared with Lemma 2 in Palfrey (1989), which only computes the probability

ratio of the pivot events {mn : mn(h) = mn(i) + 1 > mn(j) + 1} and {mn : mn(h) =

mn(j) + 1 > mn(i) + 1}, that is, events ix. and x. in Table 1. In other words, assuming

a uniform tie-breaking rule is more general than assuming an alphabetic tie-breaking

rule as in Palfrey (1989). Palfrey’s proof would have been considerably complicated if a

uniform tie-breaking rule is used. This indeed illustrates one advantage of using Poisson

games and computing the magnitudes of pivot events.

3.2 Equilibria in the large Poisson game

In this subsection, we study equilibria in voting subgames. If there is only one partici-

pating candidate, he gets all votes since we assume no abstention. When there are two

competing candidates, the only voting equilibrium is that each voter votes for the one

whom she prefers since voting for one’s least preferred among all participating candidates

is a weakly dominated action, which is not used by any voter in equilibrium due to our

assumption. We call voting according to one’s true preference sincere voting.

Our main result here is a complete characterization of the limit equilibria for a se-

quence of Poisson voting games with three candidates (Proposition 3.5). It is well known

that plurality rules are susceptible to strategic voting, i.e. Palfrey’s generic case. But sur-

prisingly, to our best knowledge, no theorem fully describes equilibrium voting behavior

in plurality voting games. We show that in one of Palfrey’s non-generic cases where all

candidates are expected to have the same equilibrium vote share, sincere voting is the

dominant action for each voter. In the other non-generic case where one candidate has

the largest expected equilibrium vote share, and the other two have equal share of the

remaining votes, supporters of a weak candidate either vote for her favorite or for the
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strongest, whereas supporters of the strong candidate always vote sincerely.

Denote by tk the type of voters whose most preferred candidate is k.

Proposition 3.5. Suppose that (πn) is a sequence of voting equilibria converging to some

limit π as n→∞. Then π satisfies the following properties.

1. If πi < min{πj, πh}, then πi = 0.

2. If πi = πj = πh, then σtk(ak) = 1, k = i, j, h.

3. If πi = πj < πh, then σti(aj) = 0, σth(ah) = 1.

Proof. We first show that πi < min{πj, πh} implies πi = 0. Note that voters who least

prefer i never vote for i, so it suffices to show that any voter whose least preferred

candidate is j or h never votes for i either. Without loss of generality, consider a type-t

voter whose least preferred candidate is h. We show that this voter’s expected payoff from

voting for i is strictly less than that from voting for j in equilibrium as the electorate

becomes very large. To see this, recall that Proposition 3.4 shows the largest-magnitude

event among all ij-sensible events is Λjh = {mn : mn(h) = mn(j)+1 > mn(i)+1}∪{mn :

mn(j) = mn(h) > mn(i) + 1}, that is, events v. and x. in Table 1. Notice Λjh, v., x., and

Ωij have the same magnitude, hence the limit ratio of probabilities between any pair of

these events is positive. For any ij-sensible event Mn ∈ Ωij\Λjh with smaller magnitude,

we have limn→∞ P(Mn/P(Ωij) = 0 due to Lemma 3.1. So conditional on some ij-sensible

event occurring,

lim
n→∞

EVt(ai,π
n)− EVt(aj,π

n)

= −1

2
vt(xj)× lim

n→∞
P(v. | Ωij)− 1

2
vt(xj)× lim

n→∞
P(x. | Ωij)

= −1

2
vt(xj)× lim

n→∞
P(v.) + P(x.)

P(Ωij)
= −1

2
vt(xj) < 0,

where P(v. | Ωij) is the conditional probability of event v. given Ωij, and so on. Therefore,

in the limit this voter is strictly better off voting for j if all other voters follow πn in each

Γn. By a similar argument, voters who least prefer j always vote for h. This implies πi = 0.

For the rest of the proof, the limit expected payoff calculation is always conditional on

some ij-sensible events occurring, so we will omit further mentioning this restriction.
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Next, we assume that πi = πj = πh. Due to symmetry in candidate strength, it suffices

to consider a type-t voter whose preference is i Â j Â h, and show that voting for i is

the dominant action for this voter. Note that in the current case, all ij-sensible events

have the same magnitude. In fact, the following pairs of events in Table 1 have the same

probabilities: ii. and iv., iii. and v., vi. and vii., ix., and x. A direct computation yields

lim
n→∞

EVt(ai,π
n)− EVt(aj,π

n)

= (vt(xi)− vt(xj))× lim
n→∞

P(i.) + P(ii.) + .5P(iii.) + P(vi.) + .5P(viii.) + .5P(ix.)

P(Ωij)
> 0.

Therefore the voter prefers to vote for i over j and h. This proves the second part of the

proposition.

Finally, assume that πi = πj < πh. We first show that σti(aj) = 0. Notice in this case,

the largest-magnitude events in Ωij are iii., v., ix., x. Since iii. and v., ix. and x. have the

same probabilities, we have

lim
n→∞

EVti(ai,π
n)− EVti(aj,π

n) =
1

2
(vti(xi)− vti(xj))× lim

n→∞
P(iii.) + P(ix.)

P(Ωij)
> 0.

So a type ti voter always votes for i over j, that is, σti(aj) = 0. We are left to show that

σth(ah) = 1. This is equivalent to showing that πj = πh < πi ⇒ σti(ai) = 1 (in doing so

we only need to refer to Table 1 and examine a voter’s decision between voting for i and

j). If πj = πh < πi, the largest-magnitude events in Ωij are i., iii., vi., vii., ix., that is,

events where a tie for most votes is not between j and h. So

lim
n→∞

EVti(ai,π
n)− EVti(aj,π

n)

= (vti(xi)− vti(xj))× lim
n→∞

P(i.) + .5P(vi.) + .5P(vii.)

P(Ωij)
+

1

2
vti(xi) lim

n→∞
P(iii.) + P(ix.)

P(Ωij)
> 0.

Therefore a type ti voter always votes for i over j. By symmetry, she always votes for i

over h. This proves σti(ai) = 1.

Notice the last two cases in Proposition 3.5 correspond to Palfrey’s non-generic case,

that is, when there are two or more weak candidates who have the same expected equi-

librium vote share. Palfrey (1989) mentions the possibility of such equilibria, but does

not give a formal characterization. Furthermore, such non-Duvergerian outcomes are dis-

missed as empirical rarities. We feel that a more rigorous treatment is necessary for
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Palfrey’s theory to be complete. This is our task in the next section, where we show

that these exceptions can be theoretically eliminated by considering strategic incentives

of candidates.

4 Equilibria in the Full Game

Our first main result is the non-existence of a three-candidate equilibrium under some

fairly general conditions, namely no candidate expects an absolute majority, and the

centrist is not expected to be the strongest in the limit voting equilibrium (Theorem 4.3).

Our second main result provides a sufficient and necessary condition for the persistence

of three parties in India (Theorem 4.4). The following two lemmas identify the largest

magnitude events in a two-candidate election and a three-candidate election with two

equally weak candidates, respectively.

Lemma 4.1. Suppose that only i and j participate. Let M = {mn : mn(j) ≥ mn(i)} and

M ′ = {mn : mn(i) > mn(j)} be two events in the induced subgame. If the limit voting

equilibrium π satisfies πi ≤ πj, then µM > µM ′. In particular, limn→∞ P(M | nπn) = 1,

limn→∞ P(M ′ | nπn) = 0.

Proof. See appendix.

Lemma 4.2. Suppose that s = (I, I, I). If the limit voting equilibrium π in Γs satisfies

πi = πj < πh, then the event M = {mn : mn(h) > max{mn(i),mn(j)}} has the largest

magnitude. In particular, limn→∞ P(M | nπn) = 1, and limn→∞ P(M ′ | nπn) = 0 for any

smaller magnitude event M ′.

Proof. See appendix.

Theorem 4.3. There does not exist a limit equilibrium (s,π), where s = (I, I, I), and π

satisfies the following two properties: P1. πi = πj < πh ⇒ πh ≤ 1
2
; P2. π1 = π3 ⇒ π2 ≤ 1

3
.

Proof. Suppose that π is the limit of some sequence of voting equilibria πn and satisfies

P1 and P2. We show that s = (I, I, I) cannot be an entry equilibrium given π. Without
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loss of generality, suppose that candidate 1 is (one of) the weakest under π. There are

three cases to consider: (i) π1 < min{π2, π3}; (ii) π1 = π2 < π3; (iii) π1 = π2 = π3. Notice

the case π1 = π3 < π2 is ruled out due to the assumption of P2. We show that in each of

the three cases, some candidate prefers to withdraw, thus s is not an entry equilibrium.

First, if π1 < min{π2, π3}, then Proposition 3.5 shows that π1 = 0. So candidate 1 does

not enter by assumption. Second, if π1 = π2 < π3, then σt1(a1) = σt3(a3) = 1. To see this,

note that Proposition 3.5 implies that σt3(a3) = 1, and a type-t1 voter chooses between 1

and 3, but 3 is her least preferred candidate, so σt1(a1) = 1. Furthermore, a type-t2 voter

may vote for 2 or 3, but not for 1. So we must have π1 = λ(t1), π2 ≤ λ(t2), π3 ≥ λ(t3).

This implies that λ(t1) + λ(t2) ≥ π1 + π2 ≥ π3 ≥ λ(t3), where π1 + π2 ≥ π3 is due to the

assumption of P1. Now consider candidate 1’s incentive to participate. Since π1 = π2 <

π3, Lemma 4.2 implies that the event when 3 is the winner has the largest magnitude

and the limit probability of 1. So 1’s expected payoff under (s,π) equals u1(x3) = 0. If

1 does not participate, voters vote sincerely between 2 and 3. Denote the limit voting

equilibrium by π′, then π′2 = λ(t1) + λ(t2) ≥ λ(t3) = π′3. Lemma 4.1 implies that the

event when 2 wins or ties with 3 has the largest magnitude and the limit probability of 1.

So 1’s expected payoff from ((O, s−1),π
′) is at least 1

2
u1(x2) > 0. Therefore, 1 prefers to

stay out. Finally, if π1 = π2 = π3, then voting is sincere in equilibrium. So each candidate

has a winning probability of 1
3
. If a left or a right candidate does not participate, his

supporters will vote for the centrist. Lemma 4.1 then implies that the centrist wins for

sure in a two-candidate competition. Recall that x2 = θx1 + (1 − θ)x3, θ ∈ (0, 1). If

θ ∈ [1
2
, 1), then 1’s expected payoff increase from staying out is

u1(x2)− 1

3
(1 + u1(x2)) =

1

3
(2u1(x2)− 1) >

1

3
(2θ − 1) ≥ 0

where the first inequality is due to the assumption that candidates are averse to extreme

outcomes. This shows that 1 prefers not to participate for θ ∈ [1
2
, 1). If θ ∈ (0, 1

2
), then

3’s expected payoff increase from staying out is

u3(x2)− 1

3
(1 + u3(x2)) =

1

3
(2u3(x2)− 1) >

1

3
(2(1− θ)− 1) ≥ 0

This shows that 3 prefers not to participate for θ ∈ (0, 1
2
). Therefore, in all the cases, s is

not an entry equilibrium. This proves the non-existence of a three-candidate equilibrium

in the full game.
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Theorem 4.4. There exists a limit equilibrium (s,π), where s = (I, I, I), and π1 = π3 <

π2, if and only if λ(t1) = λ(t3) < λ(t2).

Proof. We first prove the necessary part. Suppose that π is a limit voting equilibrium

satisfying π1 = π3 < π2. Then Proposition 3.5 implies that a type-t1 voter votes for either

1 or 3 as n→∞, but voting for 3 is a weakly dominated action, so she votes for 1. The

same argument applies to a type-t3 voter. A type-t2 voter always votes for 2. This shows

that πk = λ(tk),∀k, so λ(t1) = λ(t3) < λ(t2).

Next, we prove the sufficient part. Suppose that λ(t1) = λ(t3) < λ(t2). Let (πn) be

a sequence generated by the voting behavior σtk(ak) = 1,∀k, ∀n. That is, in each Γn,

voting is sincere. It is clear that πn
k = λ(tk), ∀n, so the limit πk = λ(tk), which implies

that π1 = π3 < π2. We claim that π is a limit equilibrium. To see this, simply note

that if all other voters follow πn, then a type-tk voter maximizes her expected payoff by

voting for k as n → ∞. This shows that all the probabilities of voting for k come from

types that are maximizing, so π is a limit equilibrium. To see that s = (I, I, I) is an

entry equilibrium given π, note that when all three candidates participate, the winner is

2. If either 1 or 3 does not participate, voters vote sincerely in a two-candidate election,

in which case 2 gets the extra votes from supporters of 1 or 3, and remains to be the

winner. Therefore, 1 and 3 are indifferent between participating and not participating.

2 obviously has no incentive to withdraw. This shows that s is an entry equilibrium, so

(s,π) is an equilibrium in the full game.

5 Conclusion

In this paper, we study the implication of strategic candidacy on Duverger’s law. Combin-

ing this with the waste vote argument in a framework with uncertain voter population,

we have explained both generic and non-generic cases in Palfrey (1989), as well as the

persistence of three parties in India.

For a more complete study, we would allow voters to have weak preferences, as well

as the possibility of abstention. Since indifferent voters can vote in any way they want or
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abstain, the model will naturally have multiple equilibria, which begs the question how

compelling the Duvergerian equilibrium is, and which equilibrium refinement is proper,

if necessary, to obtain Duverger’s law.

In our model, we assume that there are only three candidates. Real life elections,

however, often involve more than three candidates competing for one winning position.

A typical problem then involves multiple equilibria in the voting subgame. For example,

suppose that K = {1, 2, 3, 4}, and π1 = π2 = π4 < π3, π1 + π2 > π3. It is tempting to

think that 1 prefers to withdraw in order to let 2 win over 3. However, this is true only

if 1 expects his supporters to vote sincerely when he does not participate. If instead all

votes are concentrated on 3 and 4, which is nevertheless a voting equilibrium, then 1

is indifferent between in and out of the competition. To address this problem, we may

resort to stronger solution concepts such as coalition-proof equilibrium in the entry stage.

Thus, in the above example, we would expect 1 and 2, 3 and 4 form coalitions, instead

of standing as individual competitors, and the result is again a two-party outcome. An

interesting example to look at is three Australian federal elections in 1901, 1903 and 1906

under plurality voting, the winner of which was Protectionist party and Labor coalition.

Another natural extension is to let policies be a strategic variable for candidates. Pal-

frey (1984), Callander and Wilson (2007) study models where two incumbent candidates

first choose a policy platform, followed by plurality voting. They obtain equilibria in

which a third party entry is deterred. However, both papers assume sincere voting. It

would be interesting to examine Duverger’s law under such circumstances while voting

is strategic.
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TABLES

Pivot events {mn} Outcomes for mn + ai Outcomes for mn + aj

i. i = j ≥ h i j

ii. i = h = j + 1 i 1
3
i+ 1

3
j + 1

3
h

iii. i = h > j + 1 i 1
2
i+ 1

2
h

iv. j = h = i+ 1 1
3
i+ 1

3
j + 1

3
h j

v. j = h > i+ 1 1
2
j + 1

2
h j

vi. i = j + 1 ≥ h+ 1 i 1
2
i+ 1

2
j

vii. j = i+ 1 ≥ h+ 1 1
2
i+ 1

2
j j

viii. h = i+ 1 = j + 1 1
2
i+ 1

2
h 1

2
j + 1

2
h

ix. h = i+ 1 > j + 1 1
2
i+ 1

2
h h

x. h = j + 1 > i+ 1 h 1
2
j + 1

2
h

Note: The following examples explain the notations in the table.

1. i = j ≥ h is an abbreviation for {mn : mn(i) = mn(j) ≥ mn(h)}.
2. 1

2
i+ 1

2
j refers to the outcome that i and j each wins with probability 1

2
.

Table 1: The set of all ij-sensible events Ωij.
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6 Appendix

1. Proof of Lemma 3.3.

Proof. Lemma 3.2 implies that the magnitude of M is

µM = lim
n→∞

max
mn∈M

∑

k∈K

πn
kψ

(
mn(k)

nπn
k

)
.

So our first step is to solve

max
mn∈M

∑

k∈K

πn
kψ(αn

k),

where αn
k = mn(k)/(nπn

k ), and write αn = (αn
k)k∈K . We form the Lagrange function and

rewrite the maximization problem as

max
αn,λ1,λ2

L =
∑

k∈K πn
kψ(αn

k) + λ1g1 + λ2g2

s.t. g1 = αn
i π

n
i − αn

j π
n
j − z1

n
= 0,

g2 = αn
i π

n
i − αn

hπ
n
h − z2

n
≥ 0.

The Kuhn-Tucker conditions are

∂L

∂αn
i

= −πn
i ln(αn

i ) + (λ1 + λ2)π
n
i = 0,

∂L

∂αn
j

= −πn
j ln(αn

j )− λ1π
n
j = 0,

∂L

∂αn
h

= −πn
h ln(αn

h)− λ2π
n
h = 0,

αn
i π

n
i − αn

j π
n
j −

z1

n
= 0,

αn
i π

n
i − αn

hπ
n
h −

z2

n
≥ 0, λ2 ≥ 0, λ2

(
αn

i π
n
i − αn

hπ
n
h −

z2

n

)
= 0.

Note that the first three conditions yield

αn∗
i = eλ1+λ2 , αn∗

j = e−λ1 , αn∗
h = e−λ2 .

Substitute these optimal values into the Lagrange function to get

L(αn∗) = eλ1+λ2πn
i + e−λ1πn

j + e−λ2πn
h − 1− λ1

z1

n
− λ2

z2

n
.

For the last condition, we have two cases to consider.
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(i) g2 > 0. Then λ2 = 0. So g1 = eλ1πn
i + e−λ1πn

j − z1

n
= 0. This yields

eλ1 =

z1

n
+

√(
z1

n

)2
+ 4πn

i π
n
j

2πn
i

, eλ2 = 1.

Substitute these values into g2 > 0, we get

πn
i π

n
j − (πn

h)2 >
2z2 − z1

n
πn

h +
z2(z2 − z1)

n2
.

Since πn → π, the above inequality must hold for n sufficiently large if πiπj > (πh)
2

is satisfied. Therefore,

µM = lim
n→∞

L(αn∗, λ∗) = πh + 2
√
πiπj − 1, if πiπj > (πh)

2,

and no solution otherwise.

(ii) g2 = 0. We solve

g1 = eλ1+λ2πn
i − e−λ1πn

j −
z1

n
= 0,

g2 = eλ1+λ2πn
i − e−λ2πn

h −
z2

n
= 0,

and get

lim
n→∞

eλ1 = 3

√
(πj)2

πiπh

, lim
n→∞

eλ2 = 3

√
(πh)2

πiπj

.

λ2 ≥ 0 requires that (πh)
2 ≥ πiπj. Therefore,

µM = lim
n→∞

L(αn∗, λ∗) = 3 3
√
πhπiπj − 1, if (πh)

2 ≥ πiπj,

and no solution otherwise.

Combining the two cases completes the proof.

2. Proof of Proposition 3.4.

Proof. Table 1 lists all pivot events that are ij-sensible. We first compute the magnitude

of each event using Lemma 3.3.

1. i., vi., vii. have the same magnitude
{
πh + 2

√
πiπj − 1 if πiπj > (πh)

2

3 3
√
πiπjπh − 1 if πiπj ≤ (πh)

2
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2. ii. ∪ iii. and viii. ∪ ix. have the same magnitude

{
πj + 2

√
πiπh − 1 if πiπh > (πj)

2

3 3
√
πiπjπh − 1 if πiπh ≤ (πj)

2

3. iv. has the magnitude 3 3
√
πiπjπh − 1.

4. v. and x. have the same magnitude πi + 2
√
πjπh − 1, since (πi)

2 < πjπh.

We are left to show that

πi + 2
√
πjπh − 1 > max{πh + 2

√
πiπj − 1, πj + 2

√
πiπh − 1, 3 3

√
πiπjπh − 1}.

Note that πi < min{πj, πh} and πiπj > (πh)
2 imply that πj > πh. So

πi + 2
√
πjπh − 1− (

πh + 2
√
πiπj − 1

)
= (

√
πi −√πh)

(√
πi +

√
πh − 2

√
πj

)
> 0.

This shows that πi +2
√
πjπh− 1 > πh +2

√
πiπj − 1. By symmetry of πj and πh, we have

πi + 2
√
πjπh − 1 > πj + 2

√
πiπh − 1. Finally, πi + 2

√
πjπh − 1 > 3 3

√
πiπjπh − 1 is proved

in Corollary 6.2 after Lemma 6.1. This completes the proof of Proposition 3.4.

Lemma 6.1. Suppose that x, y, z satisfy the following conditions: 1. 0 ≤ x < min{y, z} ≤
1; 2. x+ y + z = 1; 3. xz ≤ y2; 4. 3

√
xyz ≤ 1

3
. Then x+ 2

√
yz > 3 3

√
xyz.

Proof. First note that if x = 0, then x + 2
√
yz > 3 3

√
xyz holds trivially, so it suffices

to consider x > 0. We define a function f(x, y, z) = x + 2
√
yz − 3 3

√
xyz and show that

f(x, y, z) > 0, for x, y, z that satisfy conditions 1-4. Note that x < min{y, z} is equivalent

to x < 1
3
. Our approach to the proof is to show that f attains a minimum at x = 1

3
when

we replace condition 1 with condition 1′: 0 < x ≤ min{y, z} ≤ 1.

The minimization problem is as follows.

min
x,y,z∈R++

f(x, y, z)

s.t. g1 = 1− x− y − z = 0,

g2 =
1

3
− x ≥ 0,

g3 = y2 − xz ≥ 0,

g4 =
1

27
− xyz ≥ 0.
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We form the Lagrange function, and rewrite the problem as

max
x,y,z∈R++,λi

L = −f(x, y, z) +
4∑

i=1

λigi.

The Kuhn-Tucker conditions are

∂L

∂x
= −1 + 3

√
yz

x2
− λ1 − λ2 − zλ3 − yzλ4 = 0,

∂L

∂y
= −

√
z

y

(
1− 6

√
x2

yz

)
− λ1 + 2yλ3 − xzλ4 = 0,

∂L

∂z
= −

√
y

z

(
1− 6

√
x2

yz

)
− λ1 − xλ3 − xyλ4 = 0,

1− x− y − z = 0,

1

3
− x ≥ 0, λ2 ≥ 0, λ2

(
1

3
− x

)
= 0,

y2 − xz ≥ 0, λ3 ≥ 0, λ3

(
y2 − xz

)
= 0,

1

27
− xyz ≥ 0, λ4 ≥ 0, λ4

(
1

27
− xyz

)
= 0.

We solve the problem by considering whether constraints g2, g3, g4 are binding.

(i) x = 1
3
. Since x ≤ min{y, z}, we have x = y = z = 1

3
, and f = 0.

(ii) x < 1
3
. This implies that λ2 = 0. We have four situations.

a. Only g3 is binding. Then y2 = xz, λ3 ≥ 0, and xyz < 1
27
, λ4 = 0. Solve y2 = xz

and x+ y + z = 1, we get

y =
−z +

√
4z − 3z2

2
.

Notice that f = x+ 2
√
yz − 3 3

√
xyz = 1− 4y − z + 2

√
yz, so

df

dz
= −1 +

√
y

z
+

(√
z

y
− 4

)
dy

dz
,

where

dy

dz
= −1

2

(
1− 2− 3z√

4z − 3z2

)
.

For z ∈ [1
3
, 1), df

dz
= 0 only if z = 1

3
and z ≈ .9014. But f(.9014) > 0 = f(1

3
), so

f attains the minimum at z = 1
3
. But this implies that x = 1

3
, a contradiction to

x < 1
3
. Therefore, there is no minimum in this case.
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b. Only g4 is binding. Then xyz = 1
27
, λ4 ≥ 0, and xz < y2, λ3 = 0. The Kuhn-Tucker

conditions are reduced to

−1 + 3

√
yz

x2
− λ1 − yzλ4 = 0,

7−
√
z

y

(
1− 6

√
x2

yz

)
− λ1 − xzλ4 = 0,

−
√
y

z

(
1− 6

√
x2

yz

)
− λ1 − xyλ4 = 0.

So we have

z

y
=
λ1 + xzλ4

λ1 + xyλ4

.

This equation holds only if y = z or λ1 = 0. If y = z, then

xyz = (1− 2y)y2 =
1

27
⇒ y =

1

3
= z = x,

which is a contradiction to x < 1
3
. If λ1 = 0, then

−27x+ 9 = λ4,−
√

27x+ 9x = xλ4 ⇒ x =
1

3
,

which again contradicts x < 1
3
. So there is no minimum in this case.

c. Both g3 and g4 are binding. Then y2 = xz, λ3 ≥ 0, and xyz = 1
27
, λ4 ≥ 0. The two

equalities together imply that x = y = z = 1
3
, a contradiction to x < 1

3
. So there is

no minimum in this case.

d. Neither of g3, g4 is binding. Then xz < y2, λ3 = 0, and 7xyz < 1
27
, λ4 = 0. The

Kuhn-Tucker conditions are reduced to

−1 + 3

√
yz

x2
− λ1 = 0,

−
√
z

y

(
1− 6

√
x2

yz

)
− λ1 = 0,

−
√
y

z

(
1− 6

√
x2

yz

)
− λ1 = 0.

So we have y = z or x2 = yz. If y = z, then 3

√
y2

x2 = 6

√
x2

y2 ⇒ x = y = z = 1
3
. If

x2 = yz, then again we must have x = y = z = 1
3
. Both cases lead to a contradiction.
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So f attains a unique minimum at x = y = z = 1
3

for x, y, z satisfying conditions 1′

and 2-4. This implies that f > 0, or x+2
√
yz > 3 3

√
xyz, for x, y, z that satisfy conditions

1-4 in Lemma 6.1.

Corollary 6.2. Suppose that πi < min{πj, πh}, and πiπh ≤ (πj)
2 or πiπj ≤ (πh)

2. Then

πi + 2
√
πjπh − 1 > 3 3

√
πiπjπh − 1.

Proof. Let πi = x, {πj, πh} = {y, z}. Since πi, πj, πh are probabilities on the set of

candidates K = {1, 2, 3}, they satisfy the first two conditions in Lemma 6.1 (where

πi < min{πj, πh} is by assumption). They also satisfy condition 3 in Lemma 6.1 by as-

sumption. Finally, note that by definition, the magnitude of any event is non-positive. So

3 3
√
πiπjπh− 1 ≤ 0, which implies that 3

√
πiπjπh− 1 ≤ 1

3
. Therefore, applying Lemma 6.1,

we have πi + 2
√
πjπh > 3 3

√
πiπjπh.

3. Proof of Lemma 4.1.

Proof. We apply the same technique used to prove Lemma 3.3. We first calculate the

magnitude of M by solving the following maximization problem.

max
αn

πn
i ψ(αn

i ) + πn
j ψ(αn

j )

s.t. g = πn
j α

n
j − πn

i α
n
i ≥ 0.

We form the Lagrange function

max
αn,λ

L = πn
i ψ(αn

i ) + πn
j ψ(αn

j ) + λ
(
πn

j α
n
j − πn

i α
n
i

)

and solve first order conditions to get αn∗
i = e−λ, αn∗

j = eλ, and L(αn∗) = e−λπn
i +eλπn

j −1.

The Kuhn-Tucker conditions require that g ≥ 0, λ ≥ 0, and λg = 0.

(i) g > 0. Then λ = 0. This implies that αn∗
i = αn∗

j = 1. So µM = 0 for πj > πi.

(ii) g = 0. Then limn→∞ eλ =
√

πi

πj
. λ ≥ 0 only when πi = πj, in which case µM = 0.

To calculate the magnitude of M ′, we solve the following maximization problem.

max
αn

πn
i ψ(αn

i ) + πn
j ψ(αn

j )

s.t. g = πn
i α

n
i − πn

j α
n
j −

1

n
≥ 0.
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We have αn∗
i = eλ, αn∗

j = e−λ, and L(αn∗) = eλπn
i + e−λπn

j − 1− λ
n
. If g > 0, then λ = 0,

so αn∗
i = αn∗

j = 1. But this implies that xn(i)−xn(j) = n(πn
i −πn

j ) ≤ 0, a contradiction to

g > 0. So we must have g = 0. FOC yields limn→∞ eλ =
√

πj

πi
. So µM ′ = 2

√
πiπj − 1 < 0

since the maximum of the LHS is attained at πi = πj. This shows that µM > µM ′ .

Finally, µM > µM ′ implies limn→∞ P(M ′)/P(M ∪M ′) = 0. Since P(M ∪M ′) = 1, and

M , M ′ are mutually exclusive events, we have limn→∞ P(M ′) = 0, limn→∞ P(M) = 1.

4. Proof of Lemma 4.2

Proof. We list out all pivot events as follows:

i = j = h, i = j > h, i = h > j, j = h > i,

i > max{j, h}, j > max{i, h}, h > max{i, j}.

The magnitudes of the first four events can be calculated using Lemma 3.3, which turn

out to be all smaller than 0.

In general, to calculate the magnitude of the event i > max{j, h}, we need to solve

the following problem.

max
αn

∑
s∈S

πn
sψ(αn

s ) + λ1g1 + λ2g2

s.t. g1 = αn
i π

n
i − αn

j π
n
j −

1

n
≥ 0,

g2 = αn
i π

n
i − αn

hπ
n
h −

1

n
≥ 0.

(i) g1 = 0, g2 = 0. We have

lim
n→∞

eλ1 =
3

√
π2

j

πiπh

, lim
n→∞

eλ2 = 3

√
π2

h

πiπj

.

So µ = 3 3
√
πiπjπh − 1 if π2

j ≥ πiπh and π2
h ≥ πiπj.

(ii) g1 > 0, g2 = 0. We have

lim
n→∞

eλ1 = 1, lim
n→∞

eλ2 =

√
πh

πi

.

So µ = πj + 2
√
πiπh − 1 if πh ≥ πi and πiπh > π2

j .
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(iii) g1 = 0, g2 > 0. We have µ = πh + 2
√
πiπj − 1 if πj ≥ πi, and πiπj > π2

h.

(iv) g1 > 0, g2 > 0. We have µ = 0 for πi > πj and πi > πh.

If πi = πj < πh, only the second case has a solution. So the magnitude of i > max{j, h}
and j > max{i, h} is πj +2

√
πiπh− 1 < 0. Finally, it is straightforward to check that the

magnitude of h > max{i, j} is 0, the largest among all events. The limit probability can

be verified following the same argument as in the proof of Lemma 4.1.
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