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Abstract
We analyze existence, uniqueness and properties of equilibria in

incompletely discriminating Tullock contests with logistic contest suc-
cess functions, when contestants are risk averse. We prove that a
Nash equilibrium for such a contest exists, but give an example of a
symmetric contest with both symmetric and asymmetric equilibria,
showing that risk aversion may lead to multiple equilibria. Symmet-
ric contests have unique symmetric equilibria but additional conditions
are necessary for general uniqueness. We also study the e¤ects on in-
cumbents of additional competitors entering the contest under these

1



conditions and examine the e¤ects of risk aversion on rent dissipation
in symmetric and asymmetric contests.
Keywords: contest theory, aggregative noncooperative games, risk

aversion
JEL classi�cations: C72, D72
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1 Introduction

Incompletely discriminating contests are widely used to analyze the conse-
quences of rent-seeking behavior. In such a contest, contestants compete to
win an indivisible rent with a common value to all contestants. Competition
takes the form of choosing a level of expenditure and the pro�le of expendi-
ture levels determines the probabilities of winning through a contest success
function1. The payo¤of the winner is the value of the rent to that contestant
net of the expenditure on rent seeking. The payo¤of losers is the negative of
their expenditure. This results in a simultaneous-move game in which strate-
gies are expenditure levels, a player�s payo¤ is her expected utility and we
seek Nash equilibria. Such contests were introduced by Tullock [29] in part
as a response to the competitive approach to rent seeking, which concluded
that the whole value of the rent would be dissipated in rent-seeking activity.
In these contests, dissipation is reduced both through strategic e¤ects and as
a consequence of the technology implicit in the contest success function. The
study of such contests has blossomed into an extensive literature. Nitzan
[19] and, more recently, Konrad [15] o¤er valuable surveys.
Most of the contest literature assumes that contestants are risk neutral.

However, a number of authors have investigated the e¤ects of risk aversion.
Motivated partly by the dissipation research agenda, many of these papers
compare equilibria under risk aversion with the corresponding contest in
which players are risk neutral and investigate whether risk aversion reduces
total expenditure on rent seeking. An early example is Hillman and Katz
[11]. who work largely within the competitive paradigm characteristic of the
early literature but also discuss some strategic issues in an appendix. They
use a Taylor�s series expansion to derive an expression for limiting rent dis-
sipation in a symmetric contest when the rent is small, and adopt numerical
methods to obtain some extensions of this to larger rents. Long and Vousden
[16] discuss comparative statics and extensions to endogenous and divisible
rents. Millner and Pratt [17], focussing on symmetric two-player contests,
pointed out that risk-aversion need not reduce rent dissipation unless fur-
ther restrictions are imposed on utility functions. Konrad and Schlesinger
[14] show that this ambiguity extends to symmetric contests with any �nite
number of players and elucidate it by decomposing the risk e¤ects of an in-
crease in expenditure into a mean-preserving spread and contraction. These
observations are in line with observations of the e¤ects of risk aversion on
strategic e¤ects in a wider class of games made by Skaperdas [24] and Grad-

1In an incompletely discriminating contest, this probability is less than one for the
contestant with the greatest level of expenditure. The terminology is due to Hillman and
Riley.
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stein [10]. Millner and Pratt also noted that, if the third derivative of the
utility function is positive2, risk aversion will reduce equilibrium rent-seeking
and carried out an experiment, the results of which were consistent with
such a reduction. Their theoretical result was extended to more than two
players in a recent note of Treich [28]. Existence of a Nash equilibrium was
investigated by Skaperdas and Gan [26], who derived necessary and su¢ cient
conditions for an equilibrium in two-player contests with constant absolute
risk aversion and showed that, in some circumstances, risk aversion reduces
expenditure on rent seeking. Cornes and Hartley [4] established existence
and uniqueness of equilibrium in an asymmetric contest in which the coef-
�cient of absolute risk aversion of contestants was constant. Bozhinov [3]
extended this to constant relative risk aversion, but with a restriction on
the size of the ratio of the size of the rent to initial wealth3. Cornes and
Hartley also show that, given two otherwise identical contestants, the expen-
diture of the one with smaller coe¢ cient was greater and global reductions in
risk aversion increased aggregate lobbying. They also developed a formula
for rent dissipation in a large symmetric contest and pointed out that selec-
tion e¤ects in large contests may eliminate the more risk averse contestants,
thereby partially o¤setting the reduction in rent dissipation caused by risk
aversion. Münster [18] studied the e¤ects of risk aversion when contestants
do not know how many other potential contestants have entered the con-
test. This leads to a game of incomplete information. Here, we con�ne the
analysis to contests with complete information.
One focus of the general contest literature has been the existence and

uniqueness of a pure-strategy equilibrium [27], [5]. With the exception of
the special cases examined by Skaperdas and Gan [26], Cornes and Hartley [4]
and Bozhinov [3], little attention has been paid to existence and uniqueness
of equilibria in general contests with risk averse contestants. Indeed, most
articles consider only symmetric equilibria of symmetric contests. Existence
is complicated by inevitable discontinuities in payo¤s at the origin (zero
expenditure by all contestants.) Nevertheless, we show how other methods
can be used to prove existence of an equilibrium for a wide class of contest
success functions (those studied by Szidarowszky and Okuguchi [27]). If the
contest is symmetric, it will have a unique symmetric equilibrium. However,
we cannot rule out the possibility that such contests also have asymmetric

2This condition is now known as prudence [9], but Millner and Pratt�s paper antedates
this terminology.

3Since utility functions of contestants exhibiting constant relative risk aversion are only
de�ned for positive arguments, initial wealth must exceed the rent. However, Bozhinov�s
upper bound on the ratio of rent to initial wealth is strictly less than one and depends on
the coe¢ cient of risk aversion.
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equilibria, nor of multiple equilibria of general contests. In particular, we
present a symmetric example with a �proportional�contest success function
(in which the probability that a contestant wins is equal to the ratio of the
expenditure of that contestant to total expenditure) which possesses both
symmetric and asymmetric equilibria. This shows that additional conditions
(which we call �regularity�) are needed to ensure uniqueness and a number
of such conditions are exhibited in the sequel. All these conditions impose
an upper bound on the curvature of the utility function and we show that
this bound is always satis�ed provided that the rent is small enough. In
the case of constant relative risk aversion, we can give an explicit value for
the largest rent admitting a unique equilibrium. Cornes and Hartley [4]
show that constant absolute risk aversion is su¢ cient for regularity and here
we show that this remains true if the coe¢ cient of absolute risk aversion is
non-increasing provided this coe¢ cient is not too large.
Comparative statics of contests have also been widely studied. For ex-

ample, Long and Vousden [16] investigate contests in which contestants are
risk averse and the rent is divisible. Nti [21] studies comparative statics
for symmetric contests with risk-neutral contestants. For reasons of space,
we restrict our analysis to the e¤ects of entry, but permit the contestants
to be risk-averse. In a symmetric contest, we show that, under the gen-
eral conditions discussed above, entry reduces expenditure of incumbents in
the symmetric equilibrium. In regular asymmetric contests, entry increases
aggregate lobbying and decreases the probability that incumbents win and
their payo¤s in equilibrium.
We can use these results to analyze the e¤ects of risk aversion on rent

dissipation. Study of this issue was initiated by Tullock [29], who observed
that strategic e¤ects in a symmetric contest with n contestants reduce the
proportion of the rent dissipated from 1 under competition to (at most)4

(n� 1) =n. A number of factors may further reduce rent dissipation, includ-
ing asymmetry and the technology embodied in the contest success function
[5]5. For asymmetric contests with risk-averse contestants, we also assume
contestants are prudent and not too large (as measured by their equilib-
rium probability of winning.) Aggregate lobbying e¤ort is smaller in such
a contest than in a second contest with the same contest success function
but risk-neutral contestants. This extends the recent result of Treich [28]
for symmetric contests. When there are many contestants, the reduction

4The exact value depends on the contest success function and is equal to (n� 1) =n for
the simplest case (probability proportional to expenditure).

5Riley [22] discusses the role of asymmetry in reducing rent-seeking for completely
discriminating winner-takes-all contests, where the whole rent is dissipated even for �nitely
many contestants.
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in dissipation caused by strategic e¤ects vanishes ((n� 1) =n approaches 1)
and studying the limit n �! 1 allows us to focus directly on the impact
of risk aversion on rent dissipation. For symmetric contests, we derive an
expression for the limiting dissipation ratio (proportion of the rent dissipated
in equilibrium) in terms of the utility function. Special cases of this expres-
sion include the �small rent� formula of Hillman and Katz [11] as well as
the limiting dissipation ratio found by Cornes and Hartley for the case of
constant absolute risk aversion [4]. As in that paper, this limiting value is
equal to one under risk neutrality and is strictly less than one under strict
risk aversion. Furthermore, if two symmetric contests share the same contest
success function but contestants in the second are more risk averse (in the
Arrow-Pratt sense) than the former, then limiting rent dissipation is higher
in the former contest.
Cornes and Hartley also studied the interaction between asymmetry in

contests and risk aversion. Since asymmetry can also reduce rent dissipation,
it might be expected that the reductions due to risk aversion and asymmetry
will reinforce each other. However, the opposite will be true in large con-
tests. With the proportional contest success function and many contestants
exhibiting constant but di¤erent coe¢ cients of risk aversion, competition will
drive the more risk averse contestants out of the contest, rendering them in-
active. Only the least risk averse contestants will actively participate in
the contest. In the limit, rent dissipation approaches that associated with
the smallest coe¢ cient of risk aversion. With a more general contest suc-
cess function, the story is a little more complicated: which contestants are
inactive will depend on the contest success function as well as attitudes to
risk. However, qualitative conclusions are otherwise unchanged. Selection
e¤ects mean that, typically, the active contestants in a large contest exhibit
the same attitudes to risk and success probability. This allows us to apply
results derived for symmetric contests to asymmetric contests.
To obtain these results we need a usable characterization of Nash equi-

libria. The natural characterization is as a �xed point of the best-response
mapping, but this is a multi-dimensional mapping, which makes it hard to
handle directly and for this reason, the existing literature on incompletely
discriminating contests with risk aversion, except [4], assumes either sym-
metry or two contestants (or both). Instead, we use an alternative charac-
terization in terms of share correspondences. This methodology was �rst
discussed in [5], building on the share functions used in [4] to study con-
testants with constant absolute risk aversion and is ultimately derived from
an approach to Cournot equilibrium pioneered by Selten [23]. The advan-
tage of the approach is that much of the analysis is unidimensional. The
method works because payo¤s are aggregative (depend on own strategy and
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aggregate strategy) or, when contest success functions are not proportional,
the contest is strategically equivalent to an aggregative game. This approach
may have independent interest for other applications, which can be modelled
as aggregative games, including a number of extensions of the basic contest
model.
The plan of the paper is as follows. In Section 2, we describe how the

contest may be constructed as a simultaneous-move game and present an
example which has a symmetric proportional contest success function and
identical risk averse contestants yet possesses multiple equilibria. In the
following section, we formally de�ne share correspondences, derive some of
their properties and establish existence of a Nash equilibrium. In Section
4, we �rst discuss uniqueness of symmetric equilibria of symmetric contests
and then turn to additional conditions for ensuring a unique equilibrium of
a general contest. In the following section, we study the e¤ects of entry
on equilibria, in both symmetric and asymmetric contests. In Section 6,
after a brief look at small contests, we go on to develop an expression for the
dissipation ratio for large symmetric contests and then extend this result to
asymmetric contests. Section 7 concludes and proofs postponed from the
main body of the text are given in the Appendix.

2 Setup and counterexample

We study a contest with n(� 2) contestants of whom contestant i chooses
to spend xi 2 R+ to in�uence the probability of winning an indivisible rent
of value R. The expenditure xi purchases lobbying e¤ort fi (xi) where fi
can be thought of as the production function of contestant i. We assume
that all production functions are increasing and that production exhibits
non-increasing returns.

A1 The production function fi is continuous, twice continuously di¤eren-
tiable in R+, and satis�es fi (0) = 0, f 0i (x) > 0 for x � 0 and f 00i (x) � 0
for x > 0.

It is convenient to write x 2 Rn+ for the strategy pro�le (x1; : : : ; xn) and
we study contests with a single winner, in which the probability pi (x) that
contestant i wins is proportional to lobbying e¤ort:

pi (x) =
fi (xi)Pn
j=1 fj (xj)

. (1)

This �logistic�contest success function is widely used in the study of contests
and was given an axiomatic foundation by Skaperdas [25]. If fi (xi) = xi
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for all i, we refer to the contest success function as proportional. In cases
where fi is not de�ned for negative arguments, we interpret derivatives at
the origin as one-sided and permit a limiting value of +1. This allows
us to incorporate production functions such as fi (x) = xr where 0 < r �
1, originally studied by Tullock [29] and in which the marginal product is
unbounded.
We also suppose that contestants are risk averse or risk neutral with

a concave Bernoulli utility function ui for contestant i, which satis�es the
following conditions.

A2 Contestant i has a utility function ui, which is continuously di¤erentiable
and satis�es u0i (x) > 0 and u

00
i (x) � 0 for x 2 R.

Given a strategy pro�le x 6= 0, contestant i faces a gamble: win R � xi
with probability pi, lose xi, otherwise. In this case, we take the payo¤ of
contestant i to be her expected utility:

e�i (x) = fi (xi)Pn
j=1 fj (xj)

ui (R� xi) +

"
1� fi (xi)Pn

j=1 fj (xj)

#
ui (�xi) .

If the pro�le is x = 0, we suppose that there is no winner and therefore takee�i (0) = ui (0) for all i6. This de�nes an n-player simultaneous-move game
in which player i has strategy set R+ 7 and payo¤ e�i.
Note that e�i is discontinuous at the origin. Unfortunately, there is no

way to de�ne payo¤s for all contestants that is continuous or even upper
semi-continuous at the origin and that also respects the assumption that
there is at most one winner8. This discontinuity at the origin implies that at

6A natural alternative assumption is that every contestant wins with probability 1=n
when x = 0. This makes no di¤erence to our results.

7Since strategies exceeding R are strictly dominated, we can take the strategy set to
be [0; R] without loss of generality. Indeed, there may be utility functions satisfying A2
only for xi � R, for which this may be the natural strategy set.

8The condition that there is at most one winner can be expressed as

nX
i=1

e�i (x)� ui (�xi)
ui (R� xi)� ui (�xi)

� 1.

Any attempt to de�ne payo¤s at the origin that are upper semi-continuous for all con-
testants and consistent with this inequality will encounter a contradiction. For, if xj = 0
for j 6= i, the payo¤ of contestant i is ui (R� xi) and this approaches ui (R) as xi �! 0.
Upper semi-continuity of e�i at 0 would dictate e�i (0) � ui (R) for all i, but this would
violate the displayed inequality at x = 0 (and introduce 0 as a spurious equilibrium).
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least two contestants must be active (choose positive xi) in any Nash equilib-
rium. Indeed, if only contestant i were active, we would have x�1 = 0. But
argmaxx e�i (x;0) is empty, contradicting the de�nition of equilibrium. The
discontinuity also prevents us from direct use of standard existence theorems
(e.g. the Debreu-Fan-Glicksberg pure-strategy existence theorem [7])9. The
fact that payo¤s are not even upper semi-continuous prevents direct appli-
cation of pure-strategy existence theorems such as those of Dasgupta and
Maskin [6], which permit discontinuous payo¤s. We return to this issue in
the next section, where we prove that, nevertheless, A1 andA2 are su¢ cient
to ensure existence of a Nash equilibrium. When all players are risk neutral,
this game is strategically equivalent to Cournot oligopoly with unit elastic
demand and non-decreasing marginal costs. It is well known that such a
game not only has a Nash equilibrium but that the equilibrium is unique
[27], [5]. However, as the following counterexample shows, this result does
not survive if risk neutrality is relaxed to risk aversion.

Example 1 Consider the contest C (10; f ;u; 1), where f (x) = x for all x � 0
and u satis�es10

u (x) = x� 0:45x2

for 0 � x � 1. (Numerical values throughout this example are given to three
signi�cant �gures.) Assumption A1 obviously holds for all contestants and
simple computation shows that A2 is satis�ed with the displayed utility func-
tion. Direct calculation can be used to verify that this symmetric contest has
a symmetric Nash equilibrium in which xi = 0:0563 for all i. However, this
equilibrium is not unique. For example, there are also asymmetric equilibria
in which any three contestants choose xi = 0:184 and the remaining seven
contestants choose xi = 0.

For most analytical purposes it is helpful to rewrite the game using lob-
bying e¤ort as strategic variable. Since fi is strictly increasing, gi = f�1i
exists, is twice continuously di¤erentiable in R+ and satis�es gi (0) = 0 and
g0i � 0 and g00i � 0. Let yi = fi (xi) and Y =

Pn
j=1 yj be aggregate lobbying.

Then we can rewrite the payo¤ e�i of contestant i as
�i (yi; Y ) = ui [�gi (yi)] +

yi
Y
Di (yi) (2)

9Such theorems typically also require compact strategy spaces, but, since it is a strictly
dominated strategy to bid more than the rent, the strategy space can be taken as [0; R]
without changing the set of equilibria.
10We can take the strategy set to be [0; 1] or R+. In the latter case, it is necessary to

extend the de�nition of u to x � 1 so that u is twice continuously di¤erentiable, concave
and increasing: Taking u (x) = 0:561� 90:0 exp (�9x), for example, will achieve this.
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for 0 � yi � Y , where

Di (yi) = fui [R� gi (yi)]� ui [�gi (yi)]g > 0, (3)

provided Y > 0. Since x = 0 cannot be an equilibrium, Y is positive in all
equilibria. Note that the transformed game is aggregative: each contestant�s
payo¤ depends only on their own strategy and the sum of all strategies, a
fact we exploit throughout the development.

3 Share correspondences

Our analysis is rooted in the notion of a share correspondence. It extends
the ��tting-in function�used by Selten [23], Bamón and Frayssé [1], Novshek
[20] and others to study Cournot equilibrium and other aggregative games.
The share correspondence of contestant i, denoted Si, is a mapping from R++
to subsets of [0; 1]. For any Y > 0, consider equilibrium strategy pro�les
with aggregate lobbying e¤ort Y and let Si (Y ) denote the probability that
contestant i wins in such an equilibrium. Thus,

Si (Y ) =
(
yi
Y
: y is a Nash equilibrium with

nX
j=1

yj = Y

)
. (4)

Share correspondences can be used to study equilibria using the readily-
proved fact that by is a Nash equilibrium if and only if byi=bY 2 Si

�bY � for
all i, where bY =Pn

j=1 byj. Equivalently, a necessary and su¢ cient condition
(using standard set addition) for bY to be an equilibrium value of aggregate
lobbying is

1 2
nX
j=1

Sj
�bY � . (5)

If this holds, there must be �i 2 Si
�bY � for all i such that Pn

j=1 �j = 1, in

which case the strategy pro�le by = ��1bY ; : : : ; �nbY � is a Nash equilibrium.
Share correspondences can be characterized in terms of best-response

mappings: Since the best response of contestant i to the strategy pro�le y�i
depends only on Y�i =

P
j 6=i yj, we can write the best-response correspon-

dence as
Bi (Y�i) = argmax

y
�i (y; y + Y�i) ,

for any Y�i � 0. The share correspondence satis�es

� 2 Si (Y )() �Y 2 Bi ((1� �)Y ) .
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We can use �rst-order conditions to rewrite this characterization, since
payo¤s are quasi-concave functions of yi for �xed Y�i � 0. (The proof is in
the appendix.)

Lemma 1 IfA1 andA2 hold for contestant i, then �i (y; y + Y�i) is a quasi-
concave function of y � 0 for any Y�i � 0.

From (2), the marginal payo¤ can be written:

@

@y
�i (y; y + Y�i) = Ai

�
yi;

yi
yi + Y�i

�
+

Y�i

(yi + Y�i)
2Di (yi) , (6)

where

Ai (y; �) = �g0i (y) f�u0i [R� gi (y)] + (1� �)u0i [�gi (y)]g . (7)

It follows from Lemma 1 that yi 2 Bi (Y�i) if and only if the right hand side
of (6) is non-positive and equal to zero if yi > 0. Hence,

Si (Y ) = f� : 0 � � < 1; �i (Y; �) � 0; ��i (Y; �) = 0g , (8)

where �i is the marginal payo¤ expressed in terms of aggregate lobbying and
share:

�i (Y; �) = Ai (�Y; �) +
1� �

Y
Di (�Y ) . (9)

Note that �i (Y; 1) < 0 for any Y > 0. If �i (Y; 0) � 0, then 0 2 Si (Y ).
Alternatively, if �i (Y; 0) > 0, continuity implies that �i (Y; �) = 0 for at
least one � 2 (0; 1) and this puts � 2 Si (Y ). We conclude that share
correspondences are non-empty for all Y > 0. The following lemma, proved
in the appendix, gives more information on these correspondences.

Lemma 2 Assume A1 and A2 hold for contestant i and � 2 Si (Y ) for
some Y > 0. Then

1. �Y � fi (R),

2. 0 2 Si (Y ) if and only if

Y � Y i =
f 0i (0) fui (R)� ui (0)g

u0i (0)
, (10)

3. if (10) does not hold, 1� � � KiY , where

Ki =
u0i (�R)

f 0i (R) fui (R)� ui (0)g
.
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We refer to Y i as the dropout value of contestant i. Note that, if f 0i (0) =
1, the dropout value is in�nite: Y i = 1 and the the second part of the
lemma has the following corollary.

Corollary 1 Assume A1 and A2 hold for contestant i and f 0i (0) = 1.
Then 0 =2 Si (Y ) for all Y > 0.

Corollary 4, for example, applies to all contestants in a generalized Tullock
contest in which fi (x) = xr for all i and some 0 < r < 1. It implies that
with such a contest success function, every contestant will be active in all
equilibria.
We can also use Lemma 2 to deduce properties of Si (Y ) for small and

large Y which will be useful in the sequel. In particular, the correspondence
�approaches 1�as Y �! 0 and �approaches 0�as Y �! 1, in the sense of
the following corollary, which follows directly from the �rst and third parts
of the lemma.

Corollary 2 Assume A1 and A2 hold for contestant i. For any " > 0,
there exist Y � and Y + such that (i) if � 2 Si (Y ) and 0 < Y < Y �, then
� > 1� " and (ii) if � 2 Si (Y ) and Y > Y +, then � < ".

It follows that all values in the image of the aggregate correspondencePn
j=1 Sj exceed 1 for small enough Y and fall below 1 for all large enough

Y . Existence turns on whether there is a value of Y at which (5) holds and
therefore an equilibrium exists. The proof of the following theorem may be
found in the appendix.

Theorem 1 A contest in which A1 and A2 hold for all contestants has an
equilibrium.

It is interesting to compare this with the existence results of Skaperdas
and Gan [26]. These authors consider contests with more general contest
success functions than ours but with only two contestants, both exhibiting
constant absolute risk aversion. With our contest success function, Skaper-
das and Gan�s su¢ cient conditions for existence are a special case of Theorem
1. In particular, constant absolute risk aversion can be relaxed to simple
risk aversion.

4 Uniqueness

Example 1 shows that A1 and A2 are insu¢ cient on their own to exclude
the possibility of multiple equilibria. In this section, we explore additional
conditions for uniqueness.

12



4.1 Symmetric contests

We �rst consider symmetric equilibria of symmetric contests, noting that
such equilibria are widely studied in the literature on contests. Note that all
contestants must be active in a symmetric equilibrium and win with prob-
ability 1=n, so a necessary and su¢ cient condition for bY to be the value of

aggregate lobbying in a symmetric equilibrium is that 1=n 2 S
�bY �, where S

is the (common) share correspondence of all contestants. In the Appendix,
we use the �rst order conditions to show that this occurs for exactly one
value of bY .
Theorem 2 A symmetric contest in which A1 and A2 hold for all con-
testants has a unique symmetric equilibrium.

The applicability of this result is limited. Firstly, the contest must
be symmetric. Even then, Example 1 shows that the contest may have
multiple equilibria and a selection argument is needed to justify choosing
the symmetric equilibrium, noting that every contestant may prefer some
asymmetric equilibrium11. For this reason, we now relax the restriction to
symmetric equilibria.

4.2 General contests

Multiple equilibria can arise in two ways. Firstly, there can be several
equilibria sharing a common value of Y . This is always the case where a
symmetric contest has asymmetric equilibria as in Example 1. The second
possibility, also illustrated by Example 1, is that di¤erent equilibria corre-
spond to di¤erent values of Y . However, if Si (Y ) is a singleton for all positive
Y , multiple equilibria of the �rst type are obviously ruled out. In such a
case, the correspondence de�nes a share function si, where Si (Y ) = fsi (Y )g
for all Y > 0 and (5) implies that bY is an equilibrium value of aggregate
lobbying if and only if

nX
j=1

sj

�bY � = 1. (11)

This entails a unique equilibrium pro�le:
�
s1

�bY � bY ; : : : ; sn �bY � bY �. In
a general aggregative game, multiple equilibria of the second type are still

11It is straightforward to verify numerically that the payo¤ to an active player in the
asymmetric equilibrium described in Example 1 is higher than that in the symmetric
equilibrium.
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possible, but in contests with risk-averse (or risk-neutral) contestants, this
cannot happen. This is a consequence of the following lemma, character-
izing a number of useful properties of the share function and proved in the
Appendix.

Lemma 3 Assume that A1 and A2 hold for contestant i and Si (Y ) is a
singleton fsi (Y )g for all Y > 0. Then

1. si is a continuous function;

2. si is strictly decreasing where positive;

3. si (Y ) �! 1 as Y �! 0.

4. If f 0i (0) is �nite, si (Y ) = 0 if and only if Y � Y i. If f 0i (0) =1, then
si (Y ) > 0 for all Y > 0 and si (Y ) �! 0 as Y �!1.

When a share function si exists for every contestant, it follows from the
�rst and second parts of the lemma that the aggregate share function

Pn
j=1 sj

is a continuous function that is strictly decreasing where positive. Further-
more, the third and fourth parts imply that it approaches n as Y �! 0 and
approaches or is equal to zero as Y �! 1. We may conclude that (11)
holds for exactly one value of bY and therefore the contest has a unique Nash
equilibrium.

Theorem 3 A contest in which A1 and A2 hold and Si (Y ) is a singleton
for all i and all Y > 0 has a unique equilibrium.

We shall call contestant i regular, if A1 and A2 are satis�ed and, for all
Y > 0, there is a unique � 2 [0; 1] satisfying �i (Y; �) � 0 and ��i (Y; �) = 0.
If all contestants are regular, we shall call the contest regular. Restating
Theorem 3, a regular contest has a unique equilibrium. Example 1 shows
that A1 and A2 alone are insu¢ cient to ensure regularity.

Example 2 (Example 1 revisited) In the contest discussed in Example
1, we can calculate �i using ui (x) = x� 0:45x2, to �nd

�i (Y; �) = �1 + 0:9� (1� Y ) +
1� �

Y
(0:55 + 0:9�Y ) .

It can be veri�ed that �i (0:563; 0) < 0 and �i (0:563; 0:1) = 0 for all i which
means that no contestant is regular.
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4.3 Regularity

Example 3 indicates the importance of �nding su¢ cient conditions for regu-
larity. Rather than impose additional restrictions on production functions,
we focus on attitudes to risk and seek conditions on ui that ensure regularity
for all production functions satisfying A1. In [4], Cornes and Hartley show
that a contestant whose preferences are characterized by constant absolute
risk aversion is regular. Bozhinov [3] extends this result to contests in which
players exhibit constant relative risk aversion, but at the cost of imposing
restrictions on initial wealth and the size of the rent. In Example 1, con-
testants are not regular, but exhibit increasing absolute risk aversion. These
results suggest that non-increasing absolute risk aversion may be su¢ cient
for regularity, but this conjecture remains to be settled. Note that prudence
[9] (convex marginal utility), whilst implied by decreasing absolute risk aver-
sion is not itself su¢ cient for regularity. Indeed, the marginal utility in
Example 1 is (weakly) convex. Furthermore, it is straightforward to perturb
the utility function slightly to make marginal utility strictly convex without
recovering regularity, so even strict prudence is insu¢ cient for uniqueness.
In the remainder of this section, we present a su¢ cient condition for

regularity and then show that it is satis�ed for constant relative risk aversion,
provided the rent satis�es an upper bound and for decreasing absolute risk
aversion provided that the coe¢ cient of risk aversion is not too large.
Our principal su¢ cient condition imposes a restriction on the curvature

of the utility function over the interval (0; R). The proof may be found in
the appendix.

Lemma 4 If A1 and A2 hold for contestant i and

di (x) = 2u
0
i (R� x)� u0i (�x) � 0

for all x 2 (0; R), contestant i is regular.

To illustrate the application of this lemma, we consider the case of con-
stant relative risk aversion:

ui (z) =
(Ii + z)1��i

1� �i
where �i > 0 and �i 6= 1, (12)

and Ii > 0 is the initial wealth of contestant i. If �i = 1, we take ui =
ln (Ii + z). We assume Ii > R and restrict strategies to [0; R], ensuring that
Ii � xi > 0 for all possible outcomes.
In this case,

di (x) = 2 (Ii +R� x)��i � (Ii � x)��i
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and we look for the minimizer of di in [0; R]. Firstly, we observe that di is
a quasi-concave function of x for x � Ii. This follows from the observation
that, if

d0i (x) = �i
�
2 (Ii +R� x)��i�1 � (Ii � x)��i�1

�
= 0,

then

d00i (x) = �i (�i + 1)
�
2 (Ii +R� x)��i�2 � (Ii � x)��i�2

�
= �i (�i + 1)

�
2�1=(�i+1) � 1

�
(Ii � x)��i�2 < 0.

We deduce that di is minimized in [0; R] at x = 0, or x = R. The condition
in Lemma 4 holds if di (0) � 0 and di (R) � 0. The �rst of these inequalities
can be re-arranged to

R �
�
21=�i � 1

�
Ii (13)

and the second to

R �
�
1� 2�1=�i

�
Ii <

�
21=�i � 1

�
Ii.

The second inequality can be justi�ed by rearranging

2�1=�i
�
21=�i � 1

�2
> 0.

The following corollary summarizes this conclusion.

Corollary 3 If A1 holds for contestant i and ui is given by (12), where
Ii � R

�
1� 2�1=�i

��1
, or ui (z) = ln (Ii + z), where Ii � 2R, then contestant

i is regular.

This result shows that, if the size of the rent is not too large, the contest
will have a unique Nash equilibrium. Such a result is true in general, though
we may not always be able to give an explicit formula for the bound on
R. To see this, suppose that ui (z) = hi (Ii + z), where hi is concave and
continuously di¤erentiable for positive arguments. Since u0 is continuous,

min
x2[0;Ii]

f2u0 (R� x)� u0 (�x)g

is a continuous function of R. It is also positive for R = 0 and therefore for
all su¢ ciently small R < Ii. It follows that the condition in Lemma 4 holds
for such R.

Corollary 4 Suppose that A1 holds for contestant i and ui (z) = hi (Ii + z),
where Ii > 0 and hi is concave and continuously di¤erentiable for positive
arguments. Then there is R 2 (0; Ii) such that contestant i is regular for all
R < R.
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The intuition behind this corollary is that risk-neutral contestants are
regular and behavior for small gambles is approximately risk neutral. The
corollary provides a formal demonstration of the smoothness implicit in this
argument. Additionally, if the form of hi is known, it may be possible to
use Lemma 4 to derive an explicit expression for R.
We conclude this section with another corollary of Lemma 4.

Corollary 5 If A1 holds for contestant i and the coe¢ cient of absolute risk
aversion of this contestant is non-increasing and does not exceed 1=2R for
any wealth levels between �R and R, contestant i is regular.

To see that this follows from the lemma observe that non-increasing risk
aversion implies u000i � 0 and therefore u00i (x1) � u00i (x2) whenever x1 � x2.
Hence,

2u0i (R� x)� 2u0i (�x) = 2
Z R�x

�x
u00i (t) dt � 2Ru00i (�x) � �u0i (�x) ,

using the bound on the coe¢ cient of risk aversion for the �nal inequality.
Regularity follows from Lemma 4.12

The fact that no upper bound is necessary when the coe¢ cient of risk
aversion is constant [4], together with the result in Lemma 3, suggest that
the bound in the corollary may be relaxed.

5 Entry

The approach used to study equilibrium existence and uniqueness can be
used to analyze comparative statics, particularly with respect to the number
of contestants. In this section, we discuss the e¤ects on the equilibrium of
adding and removing contestants.

5.1 Symmetric contests

We �rst consider symmetric equilibria of symmetric contests. A general
investigation of comparative statics for such equilibria has been conducted
by Nti [21] for contests with risk neutral players. Nti considers changing the
size of the rent as well as the number of contestants. For reasons of space,
we concentrate on the latter here.
12Since the only use of non-increasing risk aversion made in proving Corollary 5 is that

u000i � 0, the assumption of non-increasing risk aversion can be relaxed by assuming this
directly. This assumption is widely known as prudence [9].
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Let Y n denote the level of aggregate lobbying in the symmetric equilib-
rium, when the production function f and utility function u satisfy assump-
tions A1 and A2, respectively. If a share function s exists, Y n satis�es
n s (Y n) = 1. Since s is strictly decreasing where positive, Y n is increasing
in n. If f (x) = x, then expenditure and lobbying are identical, so aggregate
expenditure increase with n.
If no share function exists, Y n is uniquely determined by the consistency

requirement 1=n 2 S (Y n). In contests where S need not be single-valued,
this condition does not determine the ordering of Y m and Y n for m < n. If
Y m � Y n, the lobbying e¤ort of individuals falls as the size of the contest
increases and

ym =
Y m

m
>
Y n

n
= yn,

where ym is individual equilibrium lobbying. However, if Y m < Y n both
numerator and denominator are ordered in the same way, so we need a deeper
analysis to compare ym and yn. Nevertheless, a careful examination of the
optimality conditions, conducted in the appendix, shows that we still have
ym > yn in the (unique) symmetric equilibrium. Since f is strictly increasing
by A1, we also have xm > xn.

Proposition 4 If A1 and A2 hold for all contestants in a symmetric con-
test, individual expenditures decrease with the number of contestants in the
symmetric equilibrium. If, in addition, contestants are regular aggregate lob-
bying increases and if, further, the contest success function is proportional,
aggregate expenditure also increases.

5.2 General contests

Throughout this subsection, we assume that all contestants are regular, so
equilibria are unique. If an extra contestant enters such a contest, the aggre-
gate share function increases. This increase is strict for values of Y smaller
than the entrant�s dropout value. If bY , the pre-entry equilibrium value of
Y , exceeds this dropout value, the entrant will be inactive and incumbents�
equilibrium strategies will be unchanged. Otherwise, the new aggregate
share function will exceed one at Y = bY . Since this function is strictly
decreasing where positive, the equilibrium value of Y rises. Because indi-
vidual share functions are non-increasing, the value of every share function
decreases, strictly where positive. This implies that the probability that an
active incumbent wins the contest falls and inactive incumbents remain inac-
tive. In general, we cannot conclude from the increase in Y that aggregate
expenditure on rent-seeking: X =

Pn
j=1 xj also increases because there is no
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direct relationship between Y and X. There are two exceptional cases. If
the contest is symmetric, Proposition 4 shows that entry increases X. Al-
ternatively, if the contest success function satis�es fi (x) = x for all i, then
X = Y , so X increases even if contestants di¤er in their attitudes to risk.
No direct conclusion can be drawn about the e¤ect of an increase in Y on

equilibrium strategies of individual contestants in asymmetric contests. For
yi = Y si (Y ) and si decreases with Y so Y si (Y ) need not be a monotonic
function of Y . However, this does not prevent us from drawing conclusions
about equilibrium payo¤s as shown by the following lemma, proved in the
appendix.

Lemma 5 Suppose A1 and A2 hold for contestant i and this contestant is
regular. If eY > Y > 0, then �i (Y si (Y ) ; Y ) � �i

�eY si �eY � ; eY � and this
inequality is strict if si (Y ) > 0.

It follows that an increase in Y resulting from entry reduces the payo¤s
of active incumbents. The following result summarizes our discussion.

Proposition 5 Suppose that a regular contestant enters a regular contest.

1. For any incumbent, the probability of winning and the payo¤ fall. This
fall is strict for an incumbent that was active before entry, provided the
entrant is active after entry.

2. If fi (x) = x for all i, aggregate expenditure does not decrease and
strictly increases if the entrant is active after entry.

6 Dissipation

The standard Tullock [29] rent-seeking contest was devised to study how
strategy a¤ects the proportion of the rent R is dissipated in expenditure in
attempts to win the rent. Speci�cally, for any equilibrium bx of the contest,
we study the dissipation ratio

� =
1

R

nX
j=1

bxj.
In a competitive free-entry model, the whole rent will be so dissipated: � = 1.
In this section, we investigate the e¤ect of risk aversion on �.
Konrad and Schlesinger [14] �nd that the dissipation ratio � in a sym-

metric contest with risk-averse contestants need not be smaller than the cor-
responding contest in which contestants are risk-neutral. However, a recent
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note by Treich [28] shows that � is indeed smaller if contestants in the former
contest are also prudent. Contestant i is prudent if u0i is convex. Here, we
demonstrate an extension of Treich�s result to asymmetric contests.
If Si is the share correspondence of regular contestant i, we write sNi

for the share function of a risk-neutral contestant with the same production
function. Note that a risk-neutral contestant for which A1 holds is regular
by Corollary 5 and therefore has a share function13. It follows from the �rst-
order conditions de�ning si that, in an obvious modi�cation of the notation
in (3) and (7), DN

i (y) = R and ANi (y; �) = �g0i (y). Hence,

�Ni (Y; �) = �g0i (�Y ) +
1� �

Y
R.

Comparing �i and �
N
i allows us to compare Si and sNi .

Lemma 6 If A1 and A2 hold for prudent contestant i and � 2 Si (Y )
satis�es � � 1=2 for some Y > 0, then � � sNi (Y ). If this contestant is also
strictly risk averse and 0 < � < 1=2, then � < sNi (Y ).

We can use the lemma to compare a contest with the corresponding con-
test in which all players are risk neutral. If by is an equilibrium pro�le
of the former contest and bY =

P
j byj, then b�i = byi=bY 2 Si (Y ) for all

i and
P

j b�j = 1. It follows from the lemma that, if all b�i � 1=2, thenP
j s
N
j (Y ) � 1. Consequently, bY N the equilibrium lobbying aggregate of the

latter contest, satis�es bY N � bY . Risk aversion reduces lobbying e¤ort.
Proposition 6 Consider two contests with the same number of contestants
and the same contest success function but in which all contestants are risk
averse and prudent and satisfy A1 in the �rst and are risk neutral in the
second.

1. If no contestant wins the former contest with probability greater than
1=2, equilibrium aggregate lobbying e¤ort Y is greater in the latter con-
test.

2. If, in addition, the contest success function is proportional aggregate
expenditure is greater in the latter contest.

3. If the contest is symmetric, individual and aggregate expenditures are
greater in the latter contest [28].

13A direct proof may be found in Cornes and Hartley[5].
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The �nal two assertions follow because X is a strictly increasing function
of Y : either X = Y or X = nf�1i (Y=n). The condition that all b�i � 1=2
holds in all equilibria of a contest in which there are at least two copies of
each type of contestant and a fortiori in a symmetric contest. If contestants
are strictly risk averse and winning probabilities are strictly less than 1=2,
or strictly prudent (strictly convex marginal utility), the comparisons in the
proposition are strict.
A �ne-grained analysis of the e¤ects of risk aversion is possible in large

contests and, in the remainder of this section, we study such contests. For
ease of exposition, we assume throughout the remainder of this section that
f 0i (0) is �nite

14 for all i.

6.1 Symmetric contests

Consider a regular symmetric contest with n contestants. It follows from
Lemma 3 that the common share function, s (Y ), is continuous, decreases
strictly to 0 at the dropout value:

Y =
u (R)� u (0)

u0 (0)
f 0 (0) (14)

and is equal to zero for Y > Y . The aggregate share function ns (Y )

inherits these properties. Since bY n, the equilibrium value of Y , satis�es
s
�bY n

�
= 1=n, we conclude that bY n �! Y as n �!1. The corresponding

dissipation ratio satis�es

�n =
n

R
g

 bY n

n

!
.

Since bY n=n �! 0, we have

g
�bY n=n

�
� g (0)bY n=n

�! g0 (0) (15)

as n �! 1. Using g (0) = 0 and g0 (0) = [f 0 (0)]�1, we deduce that
�n �! e� [u] as n �!1, where

e� [u] = u (R)� u (0)

Ru0 (0)
. (16)

14Note that, if f 0i (0) = 1, an arbitrarily small perturbation of fi will have �nite slope
at the origin. Speci�cally, efi (x) = fi (x+ ") satis�es ef 0i (0) <1 for any " > 0.
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A somewhat more involved argument, given in the appendix, shows that
the latter conclusion is true even if contestants are not regular. Such contests
may have multiple equilibria and therefore multiple values of the dissipation
ratio. Nevertheless, if we select any one value for each n, the selected
sequence tends to e� [u].
Lemma 7 Let �n denote a dissipation ratio of a symmetric contest in which
the common production function f satis�es A1 and f 0 (0) < 1 and the
common utility function u satis�es A2. Then �n �! e� [u] as n �!1.

The limiting dissipation ratio e� [u] is a measure of the curvature of the
utility function. It can be viewed as the ratio of slope of the utility function
between R and 0 to the marginal utility at the origin. Concavity of u implies
that e� [u] increases to 1 (strictly if u is strictly concave) as R decreases to
0. This is consistent with the conclusions of Hillman and Katz [11] for
competitive rent-seeking15. Indeed, if we plug a third-order Taylor�s series
expansion for u (R) into (16), we obtain

e� [u] = 1 + Ru00 (0)

2u0 (0)
+
R2 u000

� bR�
6u0 (0)

,

for some bR 2 (0; R). This agrees (with appropriate change of notation)
with the expression found by Hillman and Katz. These authors go on to
conduct a numerical investigation of rent dissipation in both competitive and
strategic models. It can be con�rmed that e� [u] agrees with the values that
they �nd in the competitive and large strategic cases. Of course, e� [u] = 1
under risk neutrality and e� [u] < 1 if u is strictly concave. Indeed, more
risk averse behavior (in the Arrow-Pratt sense) results in less of the rent
being dissipated. Speci�cally, suppose that there is a di¤erentiable, strictly
increasing, strictly concave16 function  such that u� (z) =  [u (z)] for all z.
Strict concavity of  implies

 [u (R)] <  [u (0)] +  0 [u (0)] [u (R)� u (0)] .

It follows that

u� (R)� u� (0)

Ru�0 (0)
=
 [u (R)]�  [u (0)]

R 0 [u (0)] u0 (0)
<
u (R)� u (0)

Ru0 (0)
,

so e� [u�] < e� [u].
15It also agrees with their strategic analysis, which assumes symmetric linear production.
16This can be weakened to concave and nonlinear in [0; R].
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Corollary 6 For n = 2; 3; : : : let �n denote a dissipation ratio of a symmetric
contest Cn satisfying the assumptions of a symmetric contest satisfying the
assumptions of Lemma 7. Let ��n denote a dissipation ratio of a symmetric
contest with the same contest success function as Cn and in which the utility
function :satis�es A2 and represents more risk averse behavior than in Cn.
Then, ��n < �n for all large enough n.

The proof of Lemma 7 shows that any equilibrium value of Y , say bY n,
satis�es bY n � Y . When regularity is not assumed, share functions need not
exist and we cannot necessarily conclude that equilibrium values of Y are
increasing in n. However, if the selected equilibrium is symmetric and the
contest success function is proportional, then

�n = n
bY n=n

R
=
bY n

R
� Y

R
= e� [u] .

In this case, strategic e¤ects further reduce rent dissipation.

6.2 General contests

In a large asymmetric contest, Lemma 7 might suggest that dissipation would
be an average of e� [u] over all utility functions represented in the contest.
However, there is an additional e¤ect to consider. Increasing the size of the
contest has a selection e¤ect: contestants with smaller dropout values may
be driven into inactivity. Hence, the limiting dissipation ratio need not be
an average of e� [u] over all utility functions in the contest. Rather, as the
number of contestants increases, the selection e¤ect biases the distribution
towards contestants with larger dropout values.
We illustrate the point by considering a �nite set of production functions:

f(1); : : : ; f(T ) satisfying A1 and f 0(t) (0) < 1 for all t and utility functions:

u(1); : : : ; u(T ) satisfying A2. We study a sequence of contests: eCn for n =
2; 3; : : : in each of which f i = f(t), u i = u(t) (contestant i is of type t)
for each contestant i. We nest the contests by assuming that there are
mt (n) contestants of type t, where mt (n+ 1) � mt (n) for t = 1; : : : ; T andPT

t=1mt (n) = n.
Without loss of generality, we can label the types so that Y (t) � Y (T ) for

t = 1; : : : ; T � 1, where

Y (t) =
u(t) (R)� u(t) (0)

u0(t) (0)
f 0(t) (0) .

Contestants of type t, satisfying Y (t) < Y (T ), are inactive in eCn once there are
enough contestants of type T . To see this when a share function exists for all
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types, note that the share function for type T is strictly positive at Y = Y (t)

and, if m(T ) (n) >
�
s(T )

�
Y (t)

���1
, the aggregate share function exceeds one

at Y (t). Since share functions are strictly decreasing where positive, the
equilibrium value of Y exceeds Y (t), so contestants of type t are inactive.
Even if share correspondences are multi-valued, we can modify this argument
along the lines of the proof of Lemma 9 in the Appendix, to deduce that there
is a positive constant � > 0 such that � � � for all � 2 S(T )

�
Y (t)

�
. This

implies that contestants of type t are inactive ifm(T ) (n) > 1=�. We conclude
that, if Y (t) < Y (T ) for t = 1; : : : ; T �1, only contestants of type T are active
once they are su¢ ciently numerous. We can therefore apply the results for
symmetric contests to deduce that, the dissipation ratio approaches e� �u(T )�
in this limit.
A complication with this argument arises if Y (t) = Y (T ) for some t 6= T ,

for then the dropout value Y (t) depends on the marginal product f 0(t) (0) as
well as the limiting dissipation ratio. As a result, if e� �u(t)� 6= e� �u(T )�, a
mixture of types t and T will remain active in the limit and the mix of types
will a¤ect the limiting dissipation ratio. For simplicity of exposition, we
ignore these complications by making the following assumption.

A3 Types are labelled so that for t = 1; : : : ; T � 1, either Y (t) < Y (T ), or
both Y (t) = Y (T ) and f 0(t) (0) = f 0(T ) (0).

Type labels can be chosen so that this assumption holds if all production
functions are identical (symmetric contest success function) or if all utility
functions are identical. Generically, A3 can always be satis�ed: if f 0(t) (0)
and e� �u(t)� are random draws from continuous distributions, the required
labelling can be achieved with probability one.
Assuming A3 holds let T be the set of types satisfying Y (t) = Y (T ). If

m(T ) (n) �! 1 as n �! 1, the equilibrium value of Y approaches Y (T ).
This allows us to determine the limiting dissipation ratio, for if m(T ) (n) is
su¢ ciently large that all types t =2 T are inactive, the dissipation ratio is

1

R

X
t2T

m(t) (n) g(t)

�
s(t)

�bY n
� bY n

�

=
bY n

R

X
t2T

m(t) (n) s(t)

�bY n
� g(t)

�
s(t)

�bY n
� bY n

�
s(t)

�bY n
� bY n

,

where bY n is the equilibrium value of Y in eCn. Since bY n �! Y (T ) = Y (t) for

all t 2 T we deduce that s(t)
�bY n

� bY n �! 0 as n �! 1. The equilibrium
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condition
P

t2T m(t) (n) s(t)

�bY � = 1 shows that the sum on the right hand

side is a convex combination of terms each of which approaches g0(T ) (0) as
n �!1. (These limits are a consequence of (15) for each type in T .) We
may deduce that the dissipation ratio approaches Y (T ) g

0
(T ) (0) =R = e� �u(T )�

as n �!1.

Proposition 7 Suppose f(t) satis�es A1 and f 0(t) (0) <1 and that u(t) sat-
is�es A2 for all t. If A3 holds and �n is a dissipation ratio of the contesteCn, for n = 2; 3; : : :, then �n �! e�(T ) �u(T )� as n �!1.

If f(t) = f(t0) for all t; t0, all contest success function of eCn are symmetric
and the ordering of dropout values is the same as that of limiting dissipation
ratios17. If one type of contestant is more risk averse than another, the
former will have a smaller dissipation ratio and therefore smaller dropout
value. Hence, they be inactive for all large enough n. For example, if all
contestants in a large contest with symmetric contest success function exhibit
constant relative risk aversion, dissipation ratios are close to the dissipation
ratio of the least risk averse contestant. This generalizes a result previously
obtained for contestants with constant absolute risk aversion [4].

7 Conclusion

We have o¤ered a general treatment of common-value, incompletely discrim-
inating contests in which contestants are risk averse. In particular, we
show that, with risk averse contestants and production functions with non-
increasing returns, such contests have a Nash equilibrium. We also show that
additional conditions are required to ensure that this equilibrium is unique
and present several su¢ cient conditions for uniqueness. We also study the ef-
fects of entry on aggregate lobbying and on incumbent contestants. Finally,
we show that, in large contests, risk aversion reduces rent-seeking activity
in both symmetric and asymmetric contests, though, in the latter, the ef-
fect may be o¤set by selection of active players in favor of less risk averse
contestants. Similar conclusions may hold in smaller contests if we make
additional assumptions: prudence and no contestant too large in equilibrium.
The techniques we have used above exploit the aggregative nature of the

contest. A number of variations on the basic model also share this aggrega-
tive structure or are strategically equivalent to an aggregative game and can
therefore potentially be addressed by the similar techniques. For example,

17In fact, we only need f 0(t) (0) = f
0
(t0) (0) for all t; t

0.
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Nti [21] introduces a �discount factor� in the form of an additive constant
in the denominator of the contest success function (1): Baye and Hoppe
[2] observe that certain patent races are strategically equivalent to this form
by interpreting hazard rates as production functions. If lobbying e¤ort is
used as the strategic variable, we still �nd that payo¤s depend only on own
strategy and aggregate strategy. Skaperdas and Gan [26] allow for limited
liability which has the e¤ect of making the payo¤ for losers independent of
expenditure. This is does not change the aggregative nature of the game.
Konrad and Schlesinger [14] examine games in which the probability of win-
ning is �xed but the size of the prize is a function of the expenditure pro�le.
If this function takes a form similar to (1), the game is aggregative and may
remain so when winning probabilities also depend on the expenditure pro�le,
at least for some functional forms. The application of share correspondences
and functions to such games awaits further investigation.
In Sections 3 and 4, we presented a number of conditions that ensure exis-

tence and uniqueness of equilibrium in contests with risk averse contestants.
These appear to be some way from best possible. Cornes and Hartley [4]
show that the equilibrium is unique if all contestants exhibit constant ab-
solute risk aversion. Constant, or non-decreasing risk aversion implies pru-
dence. However, Example 1 shows that prudence (convex marginal utility)
is not itself su¢ cient to ensure uniqueness. The marginal utility in this
example is convex (actually linear), yet the contest has multiple equilibria.
These observations suggest the conjecture that a contest with logistic con-
test success function and contestants exhibiting non-increasing absolute risk
aversion has a unique equilibrium. In Subsection 4.4.3, we proved unique-
ness for the case of non-increasing absolute risk aversion by also imposing an
upper bound on the coe¢ cient of absolute risk aversion.
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9 Appendix

In this appendix, we give proofs postponed from above. The following ex-
pression for the derivative of Ai, de�ned in (7), is used in several of these
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proofs and is recorded here for convenience:

Ai1 (y; �) =
@Ai
@y

(y; �)

= �D00
i (y)� g00i (y)u

0
i [�gi (y)] + [g0i (y)]

2
u00i [�gi (y)]

= �g00i (y) f�u0i [R� gi (y)] + (1� �)u0i [�gi (y)]g
+ [g0i (y)]

2 f�u00i [R� gi (y)] + (1� �)u00i [�gi (y)]g . (17)

Under assumptions A1 and A2, we deduce that

Ai1 (y; �) � 0. (18)

Proof of Lemma 1. It follows from (6) that

@

@y
�i (y; y + Y�i) = �g0i (y)u0i [�gi (y)] +

Y�i

(y + Y�i)
2Di (y) +

y

y + Y�i
D0
i (y) ,

where Ai (y; �) and Di (y) are given in the expressions (7) and (3). Hence,

@2

@y2
�i (y; y + Y�i)

= �g00 (y)u0 [�g (y)] + [g0 (y)]2 u00 [�g (y)]

� 2Y�i

(y + Y�i)
3Di (y) +

2Y�i

(y + Y�i)
2D

0
i (y) +

y

y + Y�i
D00
i (y)

= Ai1

�
y;

y

y + Y�i

�
� 2Y�i

(y + Y�i)
3Di (y) +

2Y�i

(y + Y�i)
2D

0
i (y) ,

using (17) to obtain the second equality.
When @�i=@y = 0, the second derivative simpli�es to

@2

@y2
�i (y; y + Y�i) = Ai1

�
y;

y

y + Y�i

�
� 2g0i (y)

y + Y�i
u0i [R� gi (y)]

and we can use (18) to conclude that @2�i=@y2 � 0. So �i is quasi-concave.

Proof of Lemma 2. It is straightforward to verify that any strategy yi
satisfying gi (yi) > R is strictly dominated by yi = 0. If follows that, if yi is
a best response to any Y�i � 0, then yi � g�1i (R) = fi (R). The �rst part
follows from the fact that � 2 Si (Y ) only if �Y is a best response.
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The second part is a rearrangement of �i (Y; 0) � 0, a necessary and
su¢ cient condition for 0 2 Si (Y ). It uses the fact that f 0i (0) = [g0i (0)]

�1.
To prove the �nal part we start by observing that D0

i (y) � 0, which
implies

Di (�Y ) � Di (0) =
1� �

Y
fui (R)� ui (0)g .

From (18), Ai1 � 0, which gives the �rst inequality below

Ai (�Y; �) � Ai (fi (R) ; �)

= �g0i (fi (R)) f�u0i [R� gi (fi (R))] + (1� �)u0i [�gi (fi (R))]g
= �f�u0i (0) + (1� �)u0i (�R)g =f 0i (R)
� �u0i (�R) =f 0i (R) ;

in the remaining lines we have used (7) for the �rst equality, gi (fi (R)) = R
and g0i (fi (R)) = 1=f

0
i (R) for the second equality as well as u

0
i (0) � u0i (�R)

(a consequence of A2) for the third inequality. If (10) does not hold, � > 0
and so �i (Y; �) = 0. Hence, using (3) and the concavity of u, we have

�u
0
i (�R)
f 0i (R)

+
1� �

Y
fui (R)� ui (0)g � Ai (�Y; �) +

1� �

Y
Di (�Y ) = 0.

This can be rearranged to give the inequality in the Lemma.

Proof of Theorem 1. Consider a sequence of numbers "m 2 (0; fi (R))
satisfying "m �! 0 as m �! 1. We start by modifying the contest by
restricting the strategies of contestant i to satisfy " � yi � fi (R). Since
payo¤s are continuous in all strategies and quasi-concave by Lemma 1, we
can apply a standard existence theorem [7] to deduce that there exists an
equilibrium strategy pro�le bym for each m and write bY m for

P
j bymj . Since

the corresponding sequence of share pro�les (�m1 ; : : : ; �
m
n ) lies in the (com-

pact) n-simplex, we can assume without loss of generality that there is some
(��1; : : : ; �

�
n) in the simplex, such that �

m
i �! �0i as m �! 1. The �rst-

order conditions for the mth contest imply

�i

�bY m; �mi

�
� 0 and

�bY m�mi � "m
�
�i

�bY m; �mi

�
= 0 for i = 1; : : : ; n.

(19)
Since 0 � bY m �

Pm
j=1 fj (R), we can deduce, by restricting to a subsequence

if necessary, the existence of bY � � 0 such that bY m �! bY � as m �! 1. IfbY � > 0, we can take the limitm �!1 and use the continuity of �i to deduce

that the �rst-order conditions for ��i 2 Si
�bY �

�
hold for i = 1; : : : ;m. Since
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we also have
Pm

j=1 �
�
j = 1, the equilibrium condition is satis�ed and existence

of an equilibrium is established. The proof is completed by showing that we
cannot have bY � = 0.
We shall show that bY m �! 0 leads to a contradiction. To see this, note

�rst that
Pn

j=1 �
�
j = 1 implies that �

�
{̂ < 1 for some contestant {̂ and therefore

�m{̂ < 1 for all large enough m. Then,

�{̂

�bY m; �m{̂

�
= A{̂

�
�m{̂
bY m; �m{̂

�
+
1� �m{̂bY m

D{̂

�
�m{̂ bY m

�
.

Since A{̂
�
�m{̂
bY m; �m{̂

�
has a �nite limit and D{̂

�
�m{̂
bY m
�
�! D{̂ (0) > 0 as

m �! 1, we deduce that �{̂
�bY m; �m{̂

�
> 0 for all large enough m. This

contradicts (19).

Proof of Theorem 2. Since all contestants are active in a symmetric
equilibrium, any equilibrium value of Y must satisfy �1

�bY ; 1=n� = 0. Since,
�1 (Y; 1=n) is a continuous function, it follows immediately from Lemma 8

that �1
�bY ; 1=n� = 0 has at most one solution. By Theorem 1, there is

exactly one solution and there is a unique equilibrium in which yi = bY =n for
all i.

The proof of Theorem 2 uses the following lemma, which is also used to
establish Lemma 3.

Lemma 8 If A1 and A2 hold for contestant i and �i (Y; �) = 0, then
@�i (Y; �) =@Y < 0.

Proof. Using Di as de�ned in (3) and Ai1 in (17), we have

@�i (Y; �)

@Y
= �Ai1 (�Y; �) + �

1� �

Y
D0
i (�Y )�

1� �

Y 2
Di (�Y ) .

If �i (Y; �) = 0, then

@�i (Y; �)

@Y
= �Ai1 (�Y; �) + �

1� �

Y
D0
i (�Y ) +

Ai (�Y; �)

Y
.

Using (18): Ai1 � 0, we �nd, after some rearrangement,

@�i (Y; �)

@Y
� �g

0
i (�Y )

Y

�
� (2� �)u0i [R� gi (�Y )] + (1� �)2 u0i [�gi (�Y )]

	
.
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For 0 < � � 1, we have � (2� �) > 0, so @�i (Y; �) =@Y < 0.

Proof of Lemma 3. Continuity of si for positive Y follows by a standard
compactness argument utilizing the fact that � = si (Y ) if and only if (Y; �)
satis�es

�i (Y; �) � 0 and ��i (Y; �) = 0. (20)

(Suppose Y n �! Y 0 as n �!1 and consider a subsequence of the sequence
fsi (Y n)g convergent to some �0 2 [0; 1]. Using the facts that (Y n; si (Y

n))
satis�es (20) for all n and that �i (Y; �) is continuous for 0 � � � 1 and
Y > 0, we can take limits in (20) on the subsequence to deduce that (Y 0; �0)
satis�es (20). Hence, �0 = si (Y

0). Since si (Y n) lies in the compact set
[0; 1] for all n, we may conclude that si (Y n) �! si (Y

0) as n �!1.
The limits of si as Y �! 0 and Y �!1 are immediate consequences of

Corollary 2.
That the share function is zero if and only if Y � Y i holds is a simple

restatement of the second part of Lemma 2 for a singleton-valued share cor-
respondence. The assertion for the case f 0i (0) = 1 is a direct consequence
of the �rst and second parts of the lemma.
It remains to establish that si is strictly decreasing where positive and,

since si is a continuous function, it is enough to show that, if si (Y ) > 0,
there is a Y 0 > Y such that si (Y 00) < si (Y ) for all Y 00 2 (Y; Y 0). To do
this, note that �i (Y; si (Y )) = 0 and therefore Lemma 8 implies there is a
Y 0 > Y such that, if Y < Y 00 < Y 0, then �i (Y

00; si (Y )) < 0. There are
now two possibilities. One possibility is that �i (Y

00; 0) � 0, in which case
si (Y

00) = 0 < si (Y ). Alternatively, we must have �i (Y
00; 0) > 0, in which

case, since �i (Y
00; si (Y )) < 0 and �i (Y

00; �) = 0 for a unique � = si (Y
00), we

must have si (Y 00) < si (Y ). This completes the proof.

Proof of Lemma 4. It is clear that contestant i will be regular if
�i (Y; �) is a strictly decreasing function of � 2 (0; 1) where it crosses the
axis: �i (Y; �) = 0. To prove that this is the case, use (7) to eliminate Ai
from the expression for �i and di¤erentiate with respect to �, holding Y �xed
to get,

@�i
@�

= �Y g00i (�Y )u0i [�gi (�Y )] + Y [g0i (�Y )]
2
u00i [�gi (�Y )]

+�Y D00
i (�Y )�

1

Y
Di (�Y ) + (2� �)D0

i (�Y ) ,

= Y Ai1 (�Y; �)�
1

Y
Di (�Y ) + (2� �)D0

i (�Y ) ,
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where the �nal line uses the second equality in (17). Substituting for Di,
using �i = 0, and rearranging gives

@�i
@�

����
�i=0

= Y Ai1 (�Y; �)�
g0i (�Y )'i (Y; �)

1� �
,

where

'i (Y; �) =
�
2� 2� + �2

�
u0i [R� gi (�Y )]� (1� �)2u0i [�gi (�Y )]

= � (2� �)u0i [R� gi (�Y )] + (1� �)2di (�Y ) .

Since � (2� �) > 0 for � 2 (0; 1) and di � 0, we must have 'i > 0 if � > 0.
Using (18), we can deduce that @�i=@� < 0 when �i = 0, completing the
proof.

Proof of Proposition 4. The equilibrium condition 1=n 2 S (Y n) is
equivalent to � (nyn; 1=n) = 0, where yn = Y n=n and

�
�y
�
; �
�
= A (y; �) +

(1� �)�

y
D (y) ,

from the de�nition in (9). (We drop subscripts throughout this proof.)
Hence,

�
@

@�
�
�y
�
; �
�
= �

@

@�
A (y; �) +

� (1� 2�)
y

D (y)

= A (y; �) + g0 (y)u0i [�gi (y)] +
� (1� 2�)

y
D (y) .

If � (y=�; �) = 0, we �nd, with some manipulation,

(1� �)�
@

@�
�
�y
�
; �
�

= ��2g0 (y) fu0 [R� g (y)]� u0 [�g (y)]g+ (1� 2�) g0 (y)u0 [�g (y)] .

Concavity of the utility function implies that the term in braces is non-
positive. So, considered as a function of �, � (y=�; �) crosses the axis in the
interval [0; 1=2] at most once and from below.
Since � (nyn; 1=n) = 0, we have � ((n+ 1) yn; 1= (n+ 1)) < 0. Also,

�

�
(n+ 1) yn+1;

1

n+ 1

�
= 0,

so Lemma 8 implies that yn > yn+1.
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Proof of Lemma 5. Under the assumptions of the lemma, contestant
i has a share function si, which satis�es the properties set out in Lemma
3. Indeed, if si (Y ) = 0, then si

�eY � = 0 and the conclusion of the lemma
follows trivially.
For the case when si (Y ) > 0, we �rst observe that si is strictly decreasing

where positive, so

Y [1� si (Y )] < eY h1� si

�eY �i .
The de�nition of a share functions says that Y si (Y ) is a best response to
Y�i = Y � Y si (Y ). Hence,

�i (Y si (Y ) ; Y ) = max
y�0

�i (y; Y � Y si (Y ) + y)

> max
y�0

�i

�
y; eY � eY si �eY �+ y

�
= �i

�eY si �eY � ; eY � .
The inequality in the second line follows from the fact that �i (y; Y ) is a
strictly decreasing function of Y for any y > 0.

Proof of Lemma 6. Since u0i is convex, the area under its graph is smaller
than the area under the chord from �g (y) to R� g (y), giving the inequality
[9]:

1

2
u0i [R� g (y)] +

1

2
u0i [�g (y)] �

ui [R� g (y)]� ui [�g (y)]
R

,

for any y � 0. Since u0i is decreasing, we deduce that, if � � 1=2, then
Ai (y; �) � �g0i (y)Di (y) =R. It follows from (9) that

�i (Y; �) �
Di (�Y )

R
�Ni (Y; �) . (21)

Since � 2 Si (Y ) implies �i (Y; �) = 0 if � < 1 (the case � = 0 is trivial),
we conclude that �Ni (Y; �) � 0. Since �Ni

�
Y; sNi (Y )

�
= 0 and �Ni is strictly

decreasing (since risk neutrality implies regularity), we have sNi (Y ) � �.
If contestant i is also strictly risk averse, then u0i [R� g (y)] > u0i [�g (y)]

for all y. If � < 1=2, (21) holds strictly and �i (Y; �) = 0, then �
N
i (Y; �) > 0

and the �nal assertion of the lemma follows directly.

The proof of Lemma 7 exploits the following lemma, which can also be
used to establish Proposition 7.
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Lemma 9 Suppose the production function f satis�es A1 and f 0 (0) < 1
and the utility function u satis�es A2. Let S be the corresponding share
correspondence. For any Y 0 2

�
0; Y

�
, there is a � (Y 0) > 0, such that

� � � (Y 0) for any � 2 S (Y ) and any Y 2 (0; Y 0].

When regularity holds, there will be a share function s and the lemma is
trivial: by Lemma 3, the share function is positive and strictly decreasing in�
0; Y

�
and we only have to take � (Y 0) = s (Y 0). The proof is slightly more

intricate with a share correspondence, since this is not necessarily decreasing.

Proof of Lemma 9. Part 3 of Lemma 2 implies that there is a Y � 2
�
0; Y

�
such that � > 1=2 for all Y 2 (0; Y �). Now de�ne

�
�
Y 0
�
= inf

�
� : � 2 S (Y ) ; Y 2

�
Y �; Y 0

�	
= inf

�
� : �i (Y; �) = 0; Y 2

�
Y �; Y 0

�	
.

Since Y 0 < Y , the equivalence of the two de�nitions is a direct consequence
of Part 2 of Lemma 2 and the �rst-order conditions characterizing S. Since
�i is continuous in both arguments, the in�mum is achieved at

�eY ; e��, say
and e� 2 S �eY �, so e� > 0, by Lemma 2. By construction, if Y 2 [Y �; Y 0]

and � 2 S (Y ), then � � e�.
To complete the proof, note that, if Y 0 � Y �, the lemma holds with

� (Y 0) = 1=2. If Y 0 > Y �, the lemma holds with � (Y 0) = min f1=2; e�g.
Proof of Lemma 7. For each n, we let bY n be an equilibrium value of Y
in Cn and �rst show that bY n �! Y as n �!1. Part 2 of Lemma 2 implies
that bY n < Y . If Y 0 2

�
0; Y

�
, it follows from Lemma 9 that, if n > 1=� (Y 0)

and �i 2 S (Y ) for all i, where Y < Y 0, then
Pn

j=1 �j > 1. Therefore there

cannot be an equilibrium value of Y 2 (0; Y 0]. Hence bY n > Y 0 for all large
enough n, as claimed. For all Y > 0, de�ne � (Y ) = maxS (Y ). Part 2 of
Lemma 2, implies that � (Y ) �! 0 as Y �! Y and therefore

�
�bY n

�
�! 0 as n �!1. (22)

To complete the proof, note that the dissipation ratio corresponding to
the equilibrium byn is

�n =
1

R

nX
j=1

g
�b�nj bY n

�
,
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where b�ni = byni =bY n for all i. By the Intermediate Value Theorem, there is
�ni 2 [0; 1] for each i such that

g
�b�ni bY n

�
= g (0) + b�ni bY ng0

�
�ni b�ni bY n

�
for all n and i. Since g (0) = 0 and g0 is a non-decreasing function,

�n � 1

R

nX
j=1

b�nj bY ng0 (0) =
bY n

R
g0 (0) ,

using the equilibrium condition
Pn

j=1 b�nj = 1, and
�n =

1

R

nX
j=1

b�nj bY ng0
�
�nj b�ni bY n

�
� 1

R

nX
j=1

b�nj bY ng0
�
�
�bY n

� bY n
�

=
bY n

R
g0
�
�
�bY n

� bY n
�
,

where the inequality uses �nj �
n
j � �nj � �

�bY n
�
. We can deduce that

�n �! g0 (0)Y =R = e� [u] as n �!1 from bY n �! Y and (22).
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