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Abstract

This paper studies whether the hypothesis of competitive equilibrium can

be rejected upon observation of the response of commodity prices to changes

in individual real incomes, for an economy where there are externalities. Some

of the results are negative: even under refined classes of preferences, requir-

ing, for instance, strategic complementarity in the demand for the externality,

the hypothesis of Nash-Walras equilibrium is not refutable. Some separability,

at least between two commodities and the externality, suffices for testable re-

strictions to exist. Information on individual demands for the commodity that

causes the externality yields only extremely mild restrictions. Importantly, for

the particular case of a public good some restrictions do exist.
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The results of [3] notwithstanding, the Sonnenschein-Mantel-Debreu theorem,

which implies that the response of aggregate excess demand to changes in prices

can be arbitrary, was understood to imply that general equilibrium theory imposed

no, or hardly any, testable restrictions at the aggregate level.1
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It is now clear that this view of the problem of falsifiability of general equilib-

rium theory is overly pessimistic: in an insightful contribution, [6] have shown that

some information at the individual level may generate nontrivial testable restric-

tions, even if it does not reveal actual individual choices, and only describes indi-

vidual constraints. Specifically, [6] observed that the object under consideration in

the Sonnenschein-Mantel-Debreu analysis, the aggregate excess demand function, is

not the appropriate object on which restrictions are to be derived, since (i) it is not

observable, under the ‘null’ hypothesis of general equilibrium, except at points at

which it is, by definition, zero; and (ii) it measures the response of some endoge-

nous variable (demand) to another endogenous variable (prices). Instead, [6] study

restrictions on how prices respond to changes in individual endowments: a finite sub-

set of the equilibrium manifold overcomes the observability problem, and provides

information on how an endogenous variable responds to perturbations on exogenous

variables. The key result is that this response is not arbitrary: there exists a (finite)

set of non-tautological conditions that is necessary (and sufficient) for the existence

of preferences that rationalize a given, finite set of data on prices and individual

endowments.

The results of [6] constituted the basis for further developments on the empirical

implications of general equilibrium. [10] obtained restrictions in a differential setting,

while [14] extended [6] to intertemporal problems under uncertainty, and [7] to a set-

ting where preferences of individuals are allowed to change randomly. [1] derives a

test of the hypothesis that a sequence of allocations can be supported by compet-

itive prices, and [2] derives testable implications of Pareto-efficiency and individual

rationality.2

Importantly, by an application of the methodology of [6] to the analysis of public

goods via Lindahl prices, [23] shows that the hypothesis is of Pareto-efficiency in

the provision of public goods is falsifiable, whenever information on market prices,

production levels and individual incomes is available.

Here, I address the question of testability for the hypothesis of competitive equilib-

rium for economies with externalities. The equilibrium concept under consideration

is Nash-Walras equilibrium, which combines the competitive elements of price-taking

behavior with the strategic principle of Nash equilibrium. By an immediate exten-
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sion, the introduction of externalities will not affect the restrictions derived by [6] if

one imposes, for instance, additive separability of individual preferences in the ex-

ternalities. Here, I study the extent to which one can deviate from this extreme

assumption of separability, without completely losing the empirical implications of

the model without externalities. Some of the results are negative: even under refined

classes of preferences, the hypothesis of Nash-Walras equilibrium is not refutable on

the basis of data on prices and individual endowments. Some separability, at least

between two commodities and the externality, gives testable restrictions. Information

on individuals choices of the externality yields only some extremely mild restrictions.

Importantly, for the particular case of a public good some restrictions do exist.

1 General setting and a basic result

There is a finite number, L+1, of commodities; these commodities are to be consumed

in nonnegative amounts, so the consumption set of each individual is RL
+ × R+, and

a consumption bundle for individual i is denoted by (xi, yi). A consumption profile

(allocation) is (x, y) = (xi, yi)I
i=1.

The society is a finite set, I, of consumers denoted by i = 1, . . . , I, with I ≥ 2.

Externalities exist because the utility of each individual is affected by the consumption

of the last commodity by all the other consumers: for individual i, preferences are

represented by a utility function ui : RL
+×R+×RI−1

+ → R, and ui(xi, yi, y¬i) is person

i’s utility level if her consumption bundle is (xi, yi) and the profile of consumption

of the last commodity by the other individuals in the society is y¬i. The profile of

preferences is denoted by u = (ui)I
i=1.

The endowment of agent i is a bundle, (ei, ki), and the profile of endowments is

an allocation (e, k). Prices are denoted by (p, q).3

An economy, E , is a profile of individual preferences and endowments: E =

(u, e, k). For an economy, a Nash-Walras equilibrium consists of prices and an

allocation of commodities, (p, q, x, y), such that:

1. each consumer’s demand is rational, given the prices and the choices of other
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individuals: each (xi, yi) solves the problem

max
x̃,ỹ

ui(x̃, ỹ, y¬i) : p(x̃− ei) + q(ỹ − ki) ≤ 0;

2. all markets clear:
∑

i(x
i − ei, yi − ki) = 0.

Let W(E) denote the set of Nash-Walras equilibria of E , and let W (E) be the

projection of this set into the space of prices. A data set is a finite sequence of pairs

consisting of a vector of prices and a profile of individual endowments, (pt, qt, et, kt)
T
t=1.

I assume that all observed prices and endowments are strictly positive. A profile of

preferences u rationalizes a data set if each observation of prices is consistent with

the corresponding (observed) profile of endowments, in the sense of being a vector of

Nash-Walras equilibrium prices: for every t, (pt, qt) ∈ W (u, et, kt).

The problem of testability with respect to some class of preferences is whether

rationalizability by a profile defined in that class imposes (non-tautological) implica-

tions on data sets. Observation of data violating these conditions would contradict

the hypothesis that all the observed values of the endogenous variables (prices) are de-

termined by the Nash-Walras mechanism, given the observed values of the exogenous

variables (endowments) under fixed unobservable fundamentals (invariant preferences

that lie in the relevant class).

The following result says that rationalizability by a profile of preferences defined in

the basic class of conditions used to guarantee existence of Nash-Walras equilibrium

imposes no testable implications.

Proposition. Any data set is rationalizable by a profile of continuous preferences

that are strongly concave and strictly monotone in own consumption (xi, yi).4

This result, the most basic one in the paper, follows in fact as a corollary of

proposition 1 below. Rationalizations for any data set are constructed on the basis

the following algorithm, where e = (1, 0, . . . , 0) ∈ RL.

Algorithm. Input: a data set (pt, qt, et, kt)
T
t=1.

1. t = 1.

2. If yi
t′ 6= ki

t, for all i and all t′ < t, then let xi
t = ei

t and yi
t = ki

t, for all i, and go

to step 7.
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3. Let J = {i|∃t′ < t : yi
t′ 6= ki

t}.

4. If J = ∅, let ε = 1 and go to step 6.

5. Let ε = mini∈J {mint′<t:yi
t′ 6=ki

t
{|yi

t′ − ki
t|}}.

6. Let γ = mini6=1{
(I−1)pt,1ei

t,1

qt
}, δ = 1

2
min{ε, k1

t , γ}, y1
t = k1

t − δ, x1
t = e1

t + qtδ
pt,1

e,

and, for every i 6= 1, yi
t = ki

t + δ
I−1

and xi
t = ei

t −
qtδ

pt,1(I−1)
e.

7. If t = T , stop. Else, t = t + 1 and go to step 2.

Output: (xt, yt)
T
t=1.

The crucial properties of the output of the algorithm are in the following lemma.

Lemma 1. Given a data set, let (xt, yt)
T
t=1 be the output of the algorithm. Then,

1. for every i and every t, (xi
t, y

i
t) � 0;

2. for every i and every t, ptx
i
t + qty

i
t = pte

i
t + qtk

i
t;

3. for every t,
∑

i(x
i
t, y

i
t) =

∑
i(e

i
t, k

i
t);

4. for every i and every t, and for every t′ 6= t, yi
t′ 6= yi

t.

Proof. The proofs of this and all other lemmata are in Appendix A2.

2 Further assumptions

2.1 Concavity and monotonicity

The basic proposition obtained above does not imply that rationalizability with re-

spect to proper subclasses of preferences is not testable. For instance, the possibility

that concavity or monotonicity may fail with respect to the externality is allowed by

that proposition.

Proposition 1. Any data set is rationalizable by a profile of continuous, strongly

concave and strictly monotone preferences.
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Proof. Given the data set, let (xt, yt)
T
t=1 be the output of the algorithm.

Fix i and let j 6= i. For simplicity of notation, and using property 4 of lemma 1,

suppose that yj
1 > yj

2 > . . . > yj
T . Suppose that there exists no solution (ui

t, λ
i
t, µ

i
t)

T
t=1

to the system:

1. for every t and every t′ 6= t,

ui
t′ < ui

t + λi
t(pt(x

i
t′ − xi

t) + qt(y
i
t′ − yi

t)) + µi
t(y

j
t′ − yj

t );

2. for every t, λi
t > 0.

Then, it follows from the Theorem of the Alternative for strict inequalities, [22, §22.2],

that there exist αt,t′ ≥ 0, for all t and all t′ 6= t, and βt ≥ 0, for all t, with at least

one of these numbers strictly positive, such that:

3. for every t,
∑

t′ 6=t αt,t′ =
∑

t′ 6=t αt′,t;

4. for every t,
∑

t′ 6=t αt,t′(pt(x
i
t − xi

t′) + qt(y
i
t − yi

t′)) = βt;

5. for every t,
∑

t′ 6=t αt,t′(y
j
t − yj

t′) = 0;

Since yj
1 > yj

t for all t ≥ 2, it follows from 5 that α1,t′ = 0 for every t′ 6= 1. Then,

from 3, it must be that also αt′,1 = 0 for every t′ 6= 1. Then, 4 implies that α2,t′ = 0

for every t′ 6= 2, and hence, from 3, that also αt′,2 = 0 for every t′ 6= 2. Continuing

recursively, it follows that all αt,t′ = 0, which implies, by 4, that every βt = 0, which is

impossible. It follows that one can find a solution (ui
t, λ

i
t, µ

i
t)

T
t=1 to the system defined

by 1 and 2.

As in [19, Theorem 2], define function h : RL × R× RI−1 → R+ by

h(x, y, y¬) =
√
‖(x, y, y¬)‖2 + 1− 1.

Function h is strongly convex and has the properties that h(x, y, y¬) = 0 only at

(x, y, y¬) = 0, and that all its partial derivatives are less than 1. For each t, let

εi
t ∈ (0, λi

t min{minl{pt,l}, qt}) be small enough so that for all t′ 6= t,

ui
t′ < ui

t + λi
t(pt(x

i
t′ − xi

t) + qt(y
i
t′ − yi

t)) + µi
t(y

j
t′ − yj

t )− εi
th((xi

t, y
i
t, y

¬i
t )− (xi

t′ , y
i
t′ , y

¬i
t′ )),
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and define function vi
t : RL

+ × R+ × RI−1
+ → R by

vi
t(x

i, yi, y¬i) = ui
t + λi

t(pt(x
i − xi

t) + qt(y
i − yi

t))

+µi
t(y

j − yj
t )− εi

th((xi
t, y

i
t, y

¬i
t )− (xi, yi, y¬i)),

which is strictly monotone in (xi, yi), and strongly concave.

Define ui by ui(xi, yi, y¬i) = mint{vi
t(x

i, yi, y¬i)}. It is immediate that ui is con-

tinuous, strongly concave in all arguments and strictly monotone in (xi, yi). Fix t,

and observe that ui(xi
t, y

i
t, y

¬i
t ) = ui

t, whereas, whenever p(x̃− ei
t) + q(ỹ − ki

t) ≤ 0, by

condition 2 of lemma 1,

ui(x̃, ỹ, y¬i
t ) ≤ vi

t(x̃, ỹ, y¬i
t )

≤ ui
t + λi

t(pt(x̃− xi
t) + qt(ỹ − yi

t))

= ui
t + λi

t(pt(x̃− ei
t) + qt(ỹ − ki

t))

≤ ui
t.

Given condition 3 of lemma 1, the latter implies that profile u rationalizes the data

set. To conclude the proof, notice that the result holds if one adds

(max{1,−min
t
{µi

t − εi
t}}+ 1)

∑
j′ 6=i

yj′

to the definition of each ui, and that in this case the function is strictly monotone in

all arguments.

The proposition means that the assumption that convexity applies only to the

variables that each individual chooses is innocuous from the perspective of testability:

the Nash-Walras hypothesis is nontestable with and without that assumption.

2.2 Strategic complementarities

The literature on monotone comparative statics (see, for example, [20] and [25]), and

in particular its application to abstract games, [8], have shown that the assumption

of strategic complementarity strengthens, significantly, the tests of hypotheses of

noncooperative behavior. The following theorem shows that such result does not

extend to the present setting.
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A utility function ui will be said to exhibit strategic complementarity if, for

every xi,

ui(xi, yi, y¬i)− ui(xi, ŷi, y¬i) ≥ ui(xi, yi, ŷ¬i)− ui(xi, ŷi, ŷ¬i)

whenever yi ≥ ŷi and y¬i ≥ ŷ¬i.

Proposition 2. Any data set is rationalizable by a profile of continuous, concave,

strictly monotone preferences that satisfy strategic complementarity.

Proof. From a run of the algorithm, fix the output (xt, yt)
T
t=1.

Fix an individual i. Let j 6= i, and assume that yj
1 < yj

2 < . . . < yj
T . Suppose that

there exists no array of real numbers (ui
t, λ

i
t, µ

i
t)

T
t=1 that solves the following system

of inequalities:

1. for all t, and for all t′ 6= t,

−ui
t + ui

t′ + λi
t(pt(x

i
t − xi

t′) + qt(y
i
t − yi

t′)) + µi
t(y

j
t − yj

t′) < 0;

2. for all t, −λi
t < 0;

3. for all t ≤ T − 1, λi
tqt − λi

t+1qt+1 < 0;

4. for all t ≤ T − 1, −µi
t + µi

t+1 < 0.

Then, again by [22, §22.2], there must exist nonnegative real numbers αt,t′ , for all t

and all t′ 6= t, βt, for all t, γt, for all t ≤ T − 1, and δt, for all t ≤ T − 1, not all of

which are zero, that solve the following system of equalities

5. for all t,
∑

t′ 6=t αt,t′ =
∑

t′ 6=t αt,t′ ;

6.
∑

t′ 6=1 α1,t′(p1(x
i
1 − xi

t′) + q1(y
i
1 − yi

t′)) + γ1q1 = β1;

7. for all t, 2 ≤ t ≤ T − 1,∑
t′ 6=t

αt,t′(pt(x
i
t − xi

t′) + qt(y
i
t − yi

t′)) + (γt − γt−1)qt = βt;

8.
∑

t′ 6=T αT,t′(pT (xi
T − xi

t′) + qT (yi
T − yi

t′))− γT−1qT = βT ;
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9.
∑

t′ 6=1 α1,t′(y
j
1 − yj

t′) = δ1;

10. for all t, 2 ≤ t ≤ T − 1,
∑

t′ 6=t αt,t′(y
j
t − yj

t′) + δt−1 = δt;

11.
∑

t′ 6=T αT,t′(y
j
T − yj

t′) + δT−1 = 0.

It follows from 11 that δT−1 = 0, and that αT,t′ = 0 for all t 6= T . Then, 5 implies

that αt′,T = 0 for all t′ 6= T . Since δT−1 = 0 and αT−1,T = 0, then, by 10, δT−2 = 0,

and αT−1,t′ = 0 for all t′ 6= T − 1. Again, 5 then implies that αt′,T−1 = 0 for all

t′ 6= T −1. Following recursively, we get that for all t ≥ 2 it is true that δt−1 = 0, and

that αt,t′ = 0 for all t′ 6= t. It follows, then, from 9, that α1,t′ = 0 for all t′ 6= 1. Since

qT > 0, it follows from item 8 that γT−1 = 0 and βT = 0. Immediately, it follows

from item 7 that γT−2 = 0 and βT−1 = 0, since qT−1 > 0. Recursively, item 7 implies

that for all t ≥ 2, γt−1 = 0 and βt = 0. It follows that γ1 = 0 and then, from item 6,

that β1 = 0. All this contradicts the fact that at least one of these numbers should be

nonzero, so it follows that the system defined by items 1 to 4 must have a solution.

Define individual preferences ui, by

ui(xi, yi, y¬i) = min
t
{ui

t + λi
t(pt(x

i − xi
t) + qt(y

i − yi
t)) + µi

t(y
j − yj

t )}.

It is immediate that function ui is continuous and concave in all arguments, and, by

2, it is strictly monotone on (xi, yi). To see that ui satisfies strategic complementar-

ity, it suffices to observe that its right-hand partial derivative with respect to yi is

nondecreasing in y¬i. To see that this is the case, fix xi, yi, y¬i and ỹ¬i, and let t and

t̃ be such that the right-hand partial at (xi, yi, y¬i) is λi
tqt, and the the right-hand

partial at (xi, yi, ỹ¬i) is λi
t̃
qt̃. By construction,

ui
t + λi

t(pt(x
i − xi

t) + qt(y
i − yi

t)) + µi
t(y

j − yj
t ) ≤

ui
t̃ + λi

t̃(pt̃(x
i − xi

t̃) + qt̃(y
i − yi

t̃)) + µi
t̃(y

j − yj

t̃
),

and

ui
t̃ + λi

t̃(pt̃(x
i − xi

t̃) + qt̃(y
i − yi

t̃)) + µi
t̃(ỹ

j − yj

t̃
) ≤

ui
t + λi

t(pt(x
i − xi

t) + qt(y
i − yi

t)) + µi
t(ỹ

j − yj
t ).

Adding these two inequalities yields (µi
t − µi

t̃
)(yj − ỹj) ≤ 0, and then, from 3 and 4,

it follows that (λi
tqt − λi

t̃
qt̃)(y

j − ỹj) ≥ 0.
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Strict monotonicity in y¬i can be obtained as in the proof of proposition 1, without

affecting the remainder of the argument.

To complete the proof, it suffices that (pt, qt, xt, yt) be a Nash-Walras equilibrium

of economy (u, et, kt), for every t. By part 3 of lemma 1, it suffices that for each

individual, (xi
t, y

i
t) solve the problem

max
x̃,ỹ

ui(x̃, ỹ, y¬i
t ) : ptx̃ + qtỹ ≤ pte

i
t + qtk

i
t.

That (xi
t, y

i
t) is feasible follows from parts 1 and 2 of lemma 1. From item 1 above, it is

immediate that ui(xi
t, y

i
t, y

¬i
t ) = ui

t. Now, suppose that (x̃, ỹ) satisfies that ptx̃+ qtỹ ≤
pte

i
t + qtk

i
t; then, by construction,

ui(x̃, ỹ, y¬i
t ) ≤ ui

t + λi
t(pt(x̃− xi

t) + qt(ỹ − yi
t)) + µi

t(y
j
t − yj

t )

= ui
t + λi

t(pt(x̃− ei
t) + qt(ỹ − ki

t))

≤ ui
t

= ui(xi
t, y

i
t, y

¬i
t ).

It follows that even the combination of overall concavity, strategic complementar-

ity and monotonicity imposes no testable implications. The following result exploits

the fact that the results above do not assume that endowments are different across

observations.

Corollary. Any finite set of prices is a subset of Nash-Walras equilibrium prices for

some economy with a given profile of endowments and a profile of continuous, concave,

strictly monotone preferences that satisfy strategic complementarity. Formally, for

any finite set of strictly positive prices, {(ps, qs)}S
s=1, and any profile of strictly positive

endowments, (e, k), there exists a profile of preferences, u, satisfying the conditions

above, such that {(ps, qs)}S
s=1 ⊆ W (u, e, k). Alternatively, all preferences can be taken

to be strongly concave and strictly monotone.

Proof. The result is immediate from the two previous propositions, by letting the

data set be (ps, qs, e, k)S
s=1.

This corollary resembles the results of [17], although the presence of externalities

allows for further properties on preferences.
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3 Separability

Obviously, additive separability of each ui in y¬i restores the testable implications of

the model without externalities. I now show that weaker separability assumptions do

impose some restrictions as well.

Let L ≥ 2. A utility function ui will be said to be weakly separable (in xi)

if there exist a strictly monotone function V i : RL
+ → R and a function U i :

V [RL
+] × R × RI−1

+ → R, strictly monotone in its first two arguments, such that

ui(xi, yi, y¬i) = U i(V i(x), yi, y¬i).5 We will say that ui is weakly, smoothly separable

if it is differentiable and has interior contour sets, and if functions U i and V i are

differentiable.

3.1 A characterization

Given a data set, (pt, qt, et, kt)
T
t=1, define the following condition (see [27] and [6]).

Condition 1. There exist vectors xi
t and ρi

t, and real numbers yi
t, ui

t, vi
t, θi

t, λi
t and

µi
t, for every individual i and every observation t, such that

1. for all i and t, xi
t ≥ 0, yi

t ≥ 0, λi
t > 0 and µi

t > 0;

2. for all i and t, ρi
t = λi

tpt and θi
t = µi

tqt;

3. for all i and t, ptx
i
t + qty

i
t = pte

i
t + qtk

i
t;

4. for all i and t, and for all t′ such that y¬i
t′ = y¬i

t ,

ui
t′ ≤ ui

t +
µi

t

λi
t

(V i
t′ − V i

t ) + θi
t(y

i
t′ − yi

t);

5. for all i, t and t′,

vi
t′ ≤ vi

t + ρi
t(x

i
t′ − xi

t);

6. for all t,
∑

i(x
i
t, y

i
t) =

∑
i(e

i
t, k

i
t).

The condition is said to be satisfied in the interior if, furthermore, xi
t � 0 and

yi
t > 0, for all i and t.

The following lemma does not give tests of rationalizability (because of the exis-

tential quantifiers involved), but will be instrumental for the proposition that follows.

11



Lemma 2. Condition 1 is a (weak) characterization of rationalizability under weak

separability:

1. if a data set is rationalizable by a profile of weakly, smoothly separable prefer-

ences that satisfy concavity and strong monotonicity in own demands, then it

satisfies condition 1 in the interior;

2. if a data set satisfies condition 1, then it is rationalizable by a profile of weakly

separable, concave and strongly monotone preferences.

3.2 The test

In order to obtain a proper test, all existential quantifiers must be eliminated from

the characterization given by lemma 2.

Proposition 3. Rationalizability by a profile of weakly separable preferences is testable

using a finite set of inequalities on data. Formally, for any finite sequence of profiles

of strictly positive individual endowments, d = (et, kt)
T
t=1, there exists a semialgebraic

set of sequences of strictly positive prices for all commodities, ∆d, such that:

1. if (pt, qt, et, kt)
T
t=1 is rationalizable by a profile of weakly, smoothly separable

preferences that satisfy concavity and strict monotonicity in own demands, then,

then (pt, qt)
T
t=1 ∈ ∆d;

2. if (pt, qt)
T
t=1 ∈ ∆d, then (pt, qt, et, kt)

T
t=1 is rationalizable by a profile of weakly

separable, concave and strictly monotone preferences.

Also, there exist d for which ∆d is a proper subset of (RL
++ × R++)T .

Proof. Consider the set of (pt, qt, (x
i
t, y

i
t, ρ

i
t, ν

i
t , λ

i
t, µ

i
t, u

i
t, v

i
t)

I
i=1)

T
t=1 such that for all i

and all t,

1. xi
t ≥ 0, yi

t ≥ 0, λi
t > 0 and µi

t > 0;

2. ρi
t = λi

tpt and θi
t = µi

tqt;

3. ptx
i
t + qty

i
t = pte

i
t + qtk

i
t;
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4. for all t′ such that y¬i
t′ = y¬i

t ,

λi
tu

i
t′ ≤ λi

tu
i
t + µi

t(v
i
t′ − vi

t) + λi
tθ

i
t(y

i
t′ − yi

t);

5. for all t′, vi
t′ ≤ vi

t + ρi
t(x

i
t′ − xi

t);

6.
∑

i(x
i
t, y

i
t) =

∑
i(e

i
t, k

i
t).

This is a finite set of polynomial inequalities, so it follows from the Tarski-Seidenberg

theorem (see [21, Theorem 8.6.6]) that its projection into the space of prices only,

∆d, is semialgebraic.

Parts 1 and 2 follow, respectively, from parts 1 and 2 of lemma 2. Example 1

below illustrates d for which ∆d ( (RL
++ × R++)T .

3.3 Non-rationalizable data

In order to complete the argument of proposition 3, we must show that there exist data

sets which cannot be rationalized under the separability hypothesis. The following

example is one such data set.

Example 1. Suppose that I = L = 2. Suppose that a data set includes the following

two observations:

e1
1 = (1, 4), e1

2 = (4, 1), e2
1 = (2, 1), e2

2 = (1, 2),

k1
1 = 0.01, k1

2 = 0.005, k2
1 = 0.01, k2

2 = 0.005,

p1 = (1, 10), p2 = (10, 1), q1 = 0.1, q2 = 0.2.

Suppose that the data set is rationalized by the profile of weakly separable pref-

erences (u1, u2). Let (x1
t , y

1
t ) solve

max
x1,y1

u1(x1, y1, y2
t ) : pt · (x1 − e1

t ) + qt(y
1 − k1

t ) ≤ 0,

and suppose that u1(x1, y1, y2) = U1(V 1(x1), y1, y2). Then, it must be that each x1
t

solves the problem maxx V 1(x) : ptx ≤ T 1
t , with T 1

t = pte
1
t − qt(y

1
t − k1

t ). Since, by

aggregate feasibility, T 1
t ∈ [pte

1
t−qtk

2
t , pte

1
t +qtk

1
t ] , it follows that T 1

t ∈ [40.999, 41.001].

Also, since e1
1 + e2

1 = (3, 5) and e1
2 + e2

2 = (5, 3), feasible values of x1
1 and x1

2 can only

be, respectively, in

X1 = {(x1, x2)|x1 ∈ [0, 3], x2 =
T 1

1

10
− 0.1x1}
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and

X2 = {(x1, x2)|x2 ∈ [0, 3], x1 =
T 1

2

10
− 0.1x2}

⊂ {(x1, x2)|x1 ∈ [3.7999, 4.2], x2 = T 1
2 − 10x1}.

Since X1 ∩X2 = ∅, necessarily x1
1 6= x1

2. Since x1
1 ∈ X1, then

p2x
1
1 = 10x1

1,1 +
T 1

1

10
− 0.1x1

1,1 ≤ 9.9(3) + 4.1001 < T 1
2 = p2x

1
2,

whereas, since x1
2 ∈ X2, then

p1x
1
2 = x1

2,1 + 10(T 1
2 − 10x1

2,1) ≤ 410.01− 99(3.7999) < T 1
1 = p1e

1
1,

which is impossible, as it violates the weak axiom of revealed preferences.

It follows that under weak separability the hypothesis of competitive equilibrium

does impose testable restrictions that take the form of a finite set of inequalities on

data. The results will still hold as long as for each individual there are two of the

L + 1 commodities for which the person’s preferences are weakly separable.

In the analysis of [6] the data identify individual budget constraints at each ob-

servation, and the tests exploit an existing tension between the principles of market-

clearing (in the form of the nonnegativity constraints) and individual rationality (in

the form of the weak axiom of revealed preferences). Here, the overall budget con-

straint of each individual is observed, but not the ‘reduced’ budget that constrains

the individual’s choice of the commodities in which her preferences are separable;

nonnegativity constraints on all other commodities, however, do impose bounds on

the position of these reduced budgets, and, then, within these bounds, the tension

between market clearing and individual rationality yields the testable implications.

4 Public goods

Another canonical case is when the externality is actually a public commodity: its

consumption is nonrival and nonexclusive. In this case, preferences are ui : RL
+ ×

R+ → R, and the utility level of individual i given a consumption allocation (x, y) is

ui(xi,
∑

j yj).

14



For this situation to be of interest, I introduce production in the economy: I

assume that there exists an aggregate technology F ⊆ RL × R, so that a production

plan of netputs (X, Y ) is technologically feasible if, and only if, (X,Y ) ∈ F . The

ownership structure of the economy is θ = (θi)I
i=1, a vector of nonnegative numbers

such that
∑

i θ
i = 1.

An economy is now a profile of individual preferences and endowments, a technol-

ogy and an ownership structure: E = (u, e, k, θ,F). For a given economy, a Nash-

Walras equilibrium is a vector of prices, a profile of demands and a production

plan, (p, q, x, y, X, Y ), such that

1. the firm maximizes profits: plan (X, Y ) solves the problem

max
X̃,Ỹ

pX̃ + qỸ : (X̃, Ỹ ) ∈ F ;

2. every consumer is rational, given prices and the demands of other consumers:

each (xi, yi) solves the problem

max
x̃,ỹ

ui(x̃, ỹ +
∑
j 6=i

yj) : px̃ + qỹ ≤ pei + qki + θi(pX + qY );

3. all markets clear:
∑

i(x
i − ei, yi − ki) = (X, Y ).

Under nonnegativity of consumption, it is immediate that the second condition in

this definition is equivalent to, and can be replaced by,

2. for each i, (xi,
∑

j yj) solves the problem

max
x̃,ỹ

ui(x̃, ỹ) :

{
px̃ + qỹ ≤ pei + q(ki +

∑
j 6=i y

j) + θi(pX + qY ),

ỹ ≥
∑

j 6=i y
j.

As before, W(E) denotes the set of Nash-Walras equilibria of E , and W (E) is the

projection of this set into the space of prices.

A data set is now (pt, qt, et, kt, θt)
T
t=1, a finite sequences of prices, endowments and

ownership structures. As before, all prices and endowments are taken to be strictly

positive. A data set is rationalizable if there exist a profile of preferences u and a

technology F such that

(pt, qt) ∈ W (u, et, kt, θt,F),

for every observation t.
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4.1 A characterization

I follow the same strategy as before, in order to show that the hypothesis of Nash-

Walras equilibrium in this setting does impose testable implications: first, I obtain

a (partial) characterization of rationalizability mediated by existential quantifiers;

then, I argue that quantified variables can be eliminated to obtain an equivalent set

of conditions on observable variables only, and use an example to show that these

conditions are not tautological.

The following two lemmas are helpful for the first characterization, but are also

of interest on their own. First, I obtain revealed-preference conditions, in the form

of Afriat inequalities, for a rational consumer facing a choice problem with a public

good.

Lemma 3. Fix a sequence of prices, nominal incomes, mt, demands for all commodi-

ties, (xt, yt), and aggregate demand for the public good by the rest of the consumers,

ȳt, denoted by (pt, qt, mt, xt, yt, ȳt)
T
t=1.

1. If there exists a continuous, strictly monotone utility function u such that each

(xt, yt) solves the problem

max
x̃,ỹ

u(x̃, ỹ) : ptx̃ + qtỹ ≤ mt + qtȳt and ỹ ≥ ȳt,

then, ptxt + qtyt = mt + qtȳt and there exist numbers ut and λt > 0, for all t,

such that

ut′ ≤ ut + λt(pt(xt′ − xt) + qt(max{yt′ , ȳt} − yt)),

for all t and t′.

2. If, for all t, ptxt + qtyt = mt + qtȳt and yt ≥ ȳt, and there exist numbers ut and

λt > 0 such that

ut′ ≤ ut + λt(pt(xt′ − xt) + qt(max{yt′ , ȳt} − yt)),

for all t and t′, then there exists a continuous, monotone utility function u such

that each (xt, yt) solves the problem

max
x̃,ỹ

u(x̃, ỹ) : ptx̃ + qtỹ ≤ mt + qtȳt and ỹ ≥ ȳt.
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If, furthermore,

ut′ ≤ ut + λt(pt(xt′ − xt) + qt(yt′ − yt)),

for all t and t′, then all utility functions can be taken to be concave and strictly

monotone.

The following lemma extends the analysis of [28] to derive testable implications

of profit maximization to no-free-lunch technologies.

Lemma 4. Fix a sequence of prices and production plans, (pt, qt, Xt, Yt)
T
t=1. There

exists a nonempty, closed, convex, negative monotonic no-free-lunch technology F
such that each production plan (Xt, Yt) solves the program

max
X̃,Ỹ

ptX̃ + qtỸ : (X̃, Ỹ ) ∈ F ,

if, and only if,

1. for all t and t′, ptXt′ + qtYt′ ≤ ptXt + qtYt;

2. for some ρ ∈ RL
++ and some ϕ ∈ R++, ρXt + ϕYt ≤ 0 for all t.

Now, given a data set, (pt, qt, et, kt)
T
t=1, define the following condition (see [6] and

[12]).

Condition 2. There exist vectors xi
t and Xt, and real numbers yi

t, ui
t, Yt and λi

t, for

every individual i and every observation t, such that

1. for all i and t, xi
t ≥ 0, yi

t ≥ 0 and λi
t > 0;

2. for all i and t, ptx
i
t + qty

i
t = pte

i
t + qtk

i
t + θi

t(ptXt + qtYt);

3. for all i, t and t′, either

ui
t′ ≤ ui

t + λi
t(pt(x

i
t′ − xi

t) + qt(
∑

j

yj
t′ −

∑
j

yj
t )),

or

ui
t′ ≤ ui

t + λi
t(pt(x

i
t′ − xi

t)− qty
i
t);
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4. for all t and t′, ptXt′ + qtYt′ ≤ ptXt + qtYt;

5. for all t,
∑

i(x
i
t, y

i
t) =

∑
i(e

i
t, k

i
t) + (Xt, Yt).

Define also the following, stronger, condition.

Condition 3. There exist vectors xi
t, Xt and ρ, and real numbers yi

t, ui
t, Yt, ϕ and

λi
t, for every individual i and every observation t, that satisfy items 1, 2, 4 and 5 in

condition 2 and, also,

3’. for all i, t and t′,

ui
t′ ≤ ui

t + λi
t(pt(x

i
t′ − xi

t) + qt(
∑

j

yj
t′ −

∑
j

yj
t ));

6. ρ � 0, ϕ > 0 and for all t, ρXt + ϕYt ≤ 0.

These conditions provide a (weak) characterization of rationalizable data sets,

which is mediated by existential quantifiers; the characterization is similar in spirit

to lemma 2.

Lemma 5. Conditions 2 and 3 offer a (weak) characterization of rationalizability

with public goods:

1. if a data set is rationalizable by a nonempty technology and a profile of contin-

uous, strictly monotone preferences, then it satisfies condition 2;

2. if a data set satisfies condition 2, then it is rationalizable by a nonempty, closed,

convex and negative monotonic technology, and a profile of continuous monotone

preferences;

3. if a data set satisfies condition 3, then it is rationalizable by a nonempty, closed,

convex, negative monotonic, no-free-lunch technology, and a profile of continu-

ous, strictly monotone and concave preferences.
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4.2 The test

The derivation of the test now follows, again, by eliminations of the quantifiers of the

characterization.

Proposition 4. In the case of public goods, rationalizability is testable using a finite

set of inequalities on data. Formally, for any finite sequence consisting of profiles of

strictly positive individual endowments and an ownership structure, d = (et, kt, θt)
T
t=1,

there exist semialgebraic sets of sequences of strictly positive prices for all commodi-

ties, ∆C
d and ∆d, with ∆C

d ⊆ ∆d, such that:

1. if (pt, qt, et, kt, θt)
T
t=1 is rationalizable by a nonempty technology and a profile of

continuous, strictly monotone preferences, then (pt, qt)
T
t=1 ∈ ∆d;

2. if (pt, qt)
T
t=1 ∈ ∆d, then (pt, qt, et, kt, θt)

T
t=1 is rationalizable by a nonempty,

closed, convex and negative monotonic technology, and a profile of continuous,

monotone preferences;

3. if (pt, qt)
T
t=1 ∈ ∆C

d , then (pt, qt, et, kt, θt)
T
t=1 is rationalizable by a nonempty,

closed, convex, negative monotonic no-free-lunch technology, and a profile of

strictly monotone and concave preferences.

Also, there exist d for which ∆d is a proper subset of (RL
++ × R++)T .

Proof. As before, notice that given (et, kt, θt)
T
t=1, the systems defined by conditions

2 and 3 are finite sets of polynomial inequalities, so the sets of their solutions are

semialgebraic. Let ∆d be the projection, into the space of sequences of prices, of the

set of solutions to the system defined by condition 2, and let ∆C
d be the projection

of the set defined by condition 3. By the Tarski-Seidenberg theorem, these sets are

semialgebraic. The proposition then follows from lemma 5 and example 2 below.

4.3 Non-rationalizable data

The argument that the test is nontautological is given, once again, by an example of

data that cannot be rationalized under the hypothesis of public goods. Consider the

following case.

19



Example 2. Suppose that I = 2 and L = 1. Suppose that a data set includes the

following two observations:

e1
1 = 9, e1

2 = 1, e2
1 = 1, e2

2 = 1,

k1
1 = 1, k1

2 = 9, k2
1 = 1, k2

2 = 1,

θ1
1 = 1, θ1

2 = 1, θ2
1 = 0, θ2

2 = 0,

p1 = 100, p2 = 1, q1 = 1, q2 = 100.

Suppose that a data set is rationalized by a nonempty technology and a profile of

continuous, strictly monotone preferences. Let xi
t ≥ 0 and yi

t ≥ 0, for i, t = 1, 2, be

the associated consumption levels, and let (Xt, Yt), for t = 1, 2, be the associated pro-

duction plans. Profit maximization, monotonicity of preferences and market clearing

immediately imply the following conditions:

p1X1 + q1Y1 ≥ p1X2 + q1Y2, (1)

p2X2 + q2Y2 ≥ p2X1 + q2Y1, (2)

p1x
1
1 + q1y

1
1 = p1(e

1
1 + X1) + q1(k

1
1 + Y1), (3)

p2x
1
2 + q2y

1
2 = p2(e

1
2 + X2) + q2(k

1
2 + Y2), (4)

p1x
2
1 + q1y

2
1 = p1e

2
1 + q1k

2
1, (5)

p2x
2
2 + q2y

2
2 = p2e

2
2 + q2k

2
2, (6)

x1
1 + x2

1 = e1
1 + e2

1 + X1, (7)

x1
2 + x2

2 = e1
2 + e2

2 + X2, (8)

y1
1 + y2

1 = k1
1 + k2

1 + Y1, (9)

y1
2 + y2

2 = k1
2 + k2

2 + Y2. (10)

By direct computation (see appendix A1), these conditions imply, furthermore, that

p1x
1
2 + q1(y

1
2 + y2

2) < p1(e
1
1 + X1) + q1(k

1
1 + Y1) + q1y

2
1, (11)

p2x
1
1 + q2(y

1
1 + y2

1) < p2(e
1
2 + X2) + q2(k

1
2 + Y2) + q2y

2
2, (12)

p1x
1
2 < p1e

1
1 + q1k

1
1 + p1X1 + q1Y1, (13)

p2x
1
1 < p2e

1
2 + q2k

1
2 + p2X2 + q2Y2. (14)

But this is impossible, as it contradicts individual rationality for individual 1.
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Indeed, since each (x1
t , y

1
t + y2

t ) solves the problem

max
x̃,ỹ

u1(x̃, ỹ) :

{
ptx̃ + qtỹ ≤ pt(e

1
t + Xt) + qt(k

i
t + Yt) + qty

2
t

ỹ ≥ y2
t ,

it must also solve the problem

max
x̃,ỹ

u1(x̃, ỹ) :

{
ptx̃ + qtỹ ≤ pt(e

1
t + Xt) + qt(k

i
t + Yt) + qty

2
t

ptx̃ ≤ pt(e
1
t + Xt) + qt(k

i
t + Yt).

But then, it follows from [12, proposition 1] that the following acyclicity condition

must be observed: for t 6= t′, if

ptx
1
t′ + qt(y

1
t′ + y2

t′) ≤ pt(e
1
t + Xt) + qt(k

1
t + Yt) + qty

2
t

and

ptx
1
t′ ≤ pt(e

1
t + Xt) + qt(k

1
t + Yt)

then, either

pt′x
1
t + qt′(y

1
t + y2

t ) ≥ pt′(e
1
t′ + Xt′) + qt′(k

1
t′ + Yt′) + qt′y

2
t′ ,

or

pt′x
1
t ≥ pt′(e

1
t′ + Xt′) + qt′(k

1
t′ + Yt′).

It follows, once again, that the assumption that the externality is in the form of

a produced public good gives testable restrictions on prices, given the observation of

real endowments and of the ownership structure of the economy.

In a production economy, one might expect refutability to fail because: (i) if prof-

its are not observed, individual incomes are undetermined and hence the restrictions

imposed by individual rationality may be weakened; and (ii) in the presence of pro-

duction, nonnegativity constraints on consumption are less informative: production

may transform endowments so as to allow consumption allocations outside the orig-

inal Edgeworth boxes. Introducing production, however, adds profit maximization

as an element of the model and this additional structure may as well be a source of

refutability for the hypothesis.

On the other hand, the assumption of a public good yields sufficient structure to

impose empirical implications on individually-rational behavior. While it is true that
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the decisions of other agents in the economy induce changes in the utility function of

each individual in terms of the variables that she chooses, the fact that these effects

have the public-good structure implies that one can see the problem as the one of

an individual who always maximizes the same, given utility function, only subject to

not-necessarily-linear budget constraints.

5 Further information

The last results show that further restrictions may (but need not) yield testability for

the competitive hypothesis under externalities. Alternatively, I now show that if one

observes individual demands for the externality some restrictions arise even under the

more general classes of preferences. I consider again the simpler case of an exchange

economy with general types of externalities.

In this case, some concepts need to be redefined, although I keep the existing

notation, for simplicity. Now, a data set is (pt, qt, et, kt, yt)
T
t=1, a finite sequence that

includes information on yi
t for every individual and observation. I assume, again, that

all observed prices, endowments and consumptions are strictly positive, and that∑
i(y

i
t − ki

t) = 0, for all t, and pte
i
t + qt(k

i
t − yi

t) ≥ 0, for all i and all t.

Consistently, W (E) now denotes the projection of the set of Nash-Walras equilibria

of economy E into the space of prices and individual consumptions of the externality.

Also, a data set is rationalized by a profile of preferences u, if (pt, qt, yt) ∈ W (u, et, kt),

for every observation t.

5.1 A characterization and the test

As before, given a data set, define the following condition.

Condition 4. There exist vectors xi
t and ρi

t, and numbers ui
t, θi

t and λi
t, for each

individual i and each observation t, such that:

1. for every i and t, xi
t ≥ 0, ρi

t � 0, θi
t > 0 and λi

t > 0

2. for every i and t, ρi
t = λi

tpt and θi
t = λi

tqt;

3. for every i and t, ptx
i
t = pte

i
t + qt(k

i
t − yi

t);
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4. for every i and t, and for all t′ such that y¬i
t′ = y¬i

t ,

ui
t′ ≤ ui

t + ρi
t(x

i
t′ − xi

t) + θi
t(y

i
t′ − yi

t);

5. for every t,
∑

i x
i
t =

∑
i e

i
t.

The following lemma does not give tests of rationalizability, but will yield such

test upon quantifier elimination.

Lemma 6. Condition 4 characterizes rationalizability if demands for the externality

are observed:

1. if a data set is rationalizable by a profile of continuous preferences that are

locally nonsatiated in own consumption, it satisfies condition 4.

2. if a data set satisfies condition 4, then it is rationalizable by a profile of contin-

uous, concave and strongly monotone preferences.

Now, the testability result is the following proposition.

Proposition 5. Rationalizability under observation of demands for the externality is

testable using a finite set of inequalities on data. Formally, for any finite sequence

of profiles of strictly positive individual endowments and demands for the externality,

d = (et, kt, yt)
T
t=1, there exists a semialgebraic set of sequences of strictly positive

prices for all commodities, ∆d, such that:

1. if (pt, qt, et, kt, yt)
T
t=1 is rationalizable by a profile of continuous preferences that

satisfy concavity and strong monotonicity on own demands, then (pt, qt)
T
t=1 ∈

∆d;

2. if (pt, qt)
T
t=1 ∈ ∆d, then (pt, qt, et, kt, yt)

T
t=1 is rationalizable by a profile of con-

tinuous, concave and strongly monotone preferences.

Also, there exist d for which ∆d is a proper subset of (RL
++ × R++)T .

Proof. (The argument is similar to the proof of propositions 3 and 4.) Condition 4

defines a semialgebraic set, so its projection into the space of prices is semialgebraic

as well. Lemma 6 then yields statements 1 and 2, while the fact that there are d for

which ∆d ( (RL
++ × R++)T follows from example 3 below.
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5.2 Non-rationalizable data

Example 3. Suppose that I = L = 2. The information of the data set with partial

observation includes the following two observations:

e1
1 = (1, 4) e1

2 = (4, 1) e2
1 = (2, 1) e2

2 = (1, 2)

k1
1 = 1 k1

2 = 0.5 k2
1 = 1 k2

2 = 1.5

p1 = (1, 10) p2 = (10, 1) q1 = 1 q2 = 2

y1
1 = 0 y1

2 = 0 y2
1 = 2 y2

2 = 2

Suppose that the data set is rationalized by preference profile (u1, u2). Since

y2
1 = y2

2, it follows that consumer 1 maximizes the same utility function, u1(·, ·, y2
1),

at both observations. Let x1
t be such that (x1

t , y
1
t ) solves the problem

max
x1,y1

u1(x1, y1, y2
t ) : pt(x

1 − e1
t ) + qt(y

1 − k1
t ) ≤ 0.

Define X1 = {x|x1 ∈ [0, 3], x2 = 4.2 − 0.1x1} and X2 = {x|x1 ∈ [3.9, 4.2], x2 =

42 − 10x1}. Since p1e
1
1 + q1(k

1
1 − y1

1) = 42 = p2e
1
2 + q2(k

1
2 − y1

2), e1
1 + e2

1 = (3, 5) and

e1
2 + e2

2 = (5, 3), it follows that x1
1 ∈ X1 and x1

2 ∈ X2. Since X1 ∩ X2 = ∅, then

x1
1 6= x1

2. Since x1
1 ∈ X1, then

p2x
1
1 + q2y

1
1 = 9.9x1

1,1 + 4.2 ≤ 9.9(3) + 4.2 < 42 = p2e
1
2 + q2k

1
2,

whereas, since x1
2 ∈ X2, by a similar argument, p1x

1
2 + q1y

1
2 < p1e

1
1 + q1k

1
1. But this is

impossible, since it violates the weak axiom of revealed preferences.

It follows from the proposition that, upon observation of prices, individual en-

dowments and individual demands for the externality, the hypothesis of Nash-Walras

equilibrium is testable. However, it is important to notice how mild the (exhaustive)

restrictions are: any feasible data set generated randomly with non-atomic measures

is rationalizable with full probability.

6 Concluding remarks

The results obtained here show that the assumption that there exist consumption

externalities significantly weakens the testability results obtained by [6]. Under basic
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assumptions on individual preferences, the equilibrium hypothesis imposes no restric-

tions on finite subsets of the equilibrium manifold. Intuitively, this occurs because

the presence of externalities allows for the construction of utility functions whose

cross-sections with respect to own consumption are maximized by each agent at only

one of the observations; immediately, revealed preference arguments are vacuous, and

the tensions existing between individual rationality and market clearing, which yields

the results in [6], disappears. Importantly, this is the case even when one imposes

the hypothesis that all individual preferences exhibit strategic complementarity in

the consumption of the externality commodity. This result contrasts with the litera-

ture on monotone comparative statics, and with the application of this literature to

abstract games.

Stronger restrictions on unobservables, or the observation of individual consump-

tions of the externality, are required to restore testability. Separability of preferences

in own consumption would yield the results trivially: if consumption of the externality

commodity by other agents of the economy is assumed to not affect each individual’s

behavior, the restrictions obtained for the case when there are no externalities imme-

diately hold. What is interesting, though, is how much less separability needs to be

assumed if some restrictions are to be maintained. The result obtained here shows

that it suffices for preferences to be weakly separable in two of the commodities traded

in competitive markets (including, possibly, the externality commodity itself).

Another important case corresponds to the hypothesis that the externality com-

modity is a public good. Here, I have considered the case in which production takes

place, and have, for simplicity, assumed the existence of only one firm. In terms of

data, I have assumed that the ownership structure over this aggregate technology

is observed as well. The results show that the structure imposed by the principles

of profit maximization and individual rationality, along with the structure imposed

by the hypothesis of the public good, suffice to yield testable implications on prices,

endowments and stock distribution.

Finally, I have argued that for general classes of preferences, under observation

of individual demands for the externality, some nontautological restrictions do exist.

Inspection of these conditions, however, shows that the exhaustive set of restrictions

imposed is extremely mild.
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Some of the results obtained here are easy to generalize. For example, at the cost

of some technical complication, one can substitute the assumption that the external-

ities come from consumption of some commodity, for one in which they stem from

some abstract action on continuous individual sets. In this case, of course, there are

no prices attached to the externality, but arbitrary bounds may be imposed instead.

The results obtained here extend to that setting, under the proviso that preferences

be restricted to be locally Lipschitzian. The case considered here, consumption ex-

ternalities, is then a particular case of that abstract setting, although some of the

results obtained here can only be derived from the general case for compact arbitrary

subsets of the domain.
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Appendix A1: Proofs of the claims

A preliminary fact is the following:

Claim 1. X1 ≥ X2 ≥ −2 and Y2 ≥ Y1 ≥ −2. Moreover, y1
2 + y2

2 > k1
1 + y2

1.

Proof. From equations 1 and 2, by direct substitution,

100X1 ≥ 100X2 + (Y2 − Y1) ≥ 100X2 +
1

100
(X1 −X2),

so X1 ≥ X2. Also, by equation 8, given nonnegativity, X2 = x1
2 + x2

2 − e1
2 − e2

2 ≥
−e1

2 − e2
2 = −2. That Y2 ≥ Y1 ≥ −2 is proven similarly. Now, equation 10 and the

previous inequality imply that

y1
2 + y2

2 = 10 + Y2 ≥ 10 + Y1 > 3 + Y1 ≥ 3 + Y1 − y1
1.

But then, by direct substitution and equation 9,

y1
2 + y2

2 > (2k1
1 + k2

1) + Y1 − y1
1 = k1

1 + y2
1.

Claim 2. p1x
1
2 + +q1(y

1
2 + y2

2) < p1(e
1
1 + X1) + q1(k

1
1 + Y1) + q1y

2
1.

Proof. By direct substitution and equation 4,

p1x
1
2 + q1(y

1
2 + y2

2) = 100x1
2 + y1

2 + y2
2

= 100x1
2 +

1

100
(901 + X2 + 100Y2 − x1

2) + y2
2

= 9.01 +
1

100
(X2 + 100Y2) + (100− 1

100
)x1

2 + y2
2

= 9.01 +
1

100
(X2 + 100Y2)

+(100− 1

100
)(e1

2 + e2
2 + X2 − x2

2) + y2
2,

where the last equality comes from equation 8. By direct substitution, nonnegativity

and equation 6, then,

p1x
1
2 + q1(y

1
2 + y2

2) = 208.99 + 100X2 + Y2 − (100− 1

100
)x2

2 + y2
2

≥ 208.99 + 100X2 + Y2 + y2
2

= 208.99 + p1X2 + q1Y2 +
p2e

2
2 + q2k

2
2 − p2x

2
2

q2

≤ 208.99 + p1X2 + q1Y2 +
p2e

2
2 + q2k

2
2

q2

= 211 + p1X2 + q1Y2.
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By equation 1, then,

p1x
1
2 + q1(y

1
2 + y2

2) ≤ 211 + p1X1 + q1Y1

< 901 + p1X1 + q1Y1

= p1e
1
1 + q1k

1
1 + p1X1 + q1Y1

≤ p1e
1
1 + q1k

1
1 + p1X1 + q1Y1 + q1y

2
1,

where the last inequality comes from nonnegativity.

Claim 3. p2x
1
1 + +q2(y

1
1 + y2

1) < p2(e
1
2 + X2) + q2(k

1
2 + Y2) + q2y

2
2.

Proof. By direct substitution, using equations 3 and 9,

p2x
1
1 + q2(y

1
1 + y2

1) = x1
1 + 100(y1

1 + y2
1)

=
p1(e

1
1 + X1) + q1(k

1
1 + Y1 − y1

1)

p1

+ 100(y1
1 + y2

1)

= 9.01 +
1

100
(100X1 + Y1) + (100− 1

100
)y1

1 + 100y2
1

= 9.01 +
1

100
(100X1 + Y1)

+(100− 1

100
)(2 + Y1 − y2

1) + 100y2
1

= 208.99 + X1 + 100Y1 +
1

100
y2

1

= 208.99 + p2X1 + q2Y1 +
1

100

p1(e
2
1 − x2

1) + q1k
2
1

q1

,

where the last equality comes from equation 5. By equation 2 and nonnegativity,

p2x
1
1 + q2(y

1
1 + y2

1) ≤ 208.99 + p2X2 + q2Y2 +
1

100

p1e
2
1 + q1k

2
1

q1

= 211 + p2X2 + q2Y2

< 901 + p2X2 + q2Y2

≤ 901 + p2X2 + q2Y2 + q2y
2
2

= p2e
1
2 + q2k

1
2 + p2X2 + q2Y2 + q2y

2
2.

Claim 4. p1x
1
2 < p1e

1
1 + q1k

1
1 + p1X1 + q1Y1.

Proof. By claim 2,

p1x
1
2 + q1(y

1
2 + y2

2) < p1(e
1
1 + X1) + q1(k

1
1 + Y1) + q1y

2
1.
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By claim 1, y1
2 + y2

2 > k1
1 + y2

1, so it must be that

p1x
1
2 < p1(e

1
1 + X1) + q1Y1 < p1(e

1
1 + X1) + q1(k

1
1 + Y1).

Claim 5. p2x
1
1 < p2e

1
2 + q2k

1
2 + p2X2 + q2Y2.

Proof. By direct substitution and equations 3 and 9,

p2x
1
1 = x1

1

=
901 + 100X1 + Y1 − y1

1

100

= 9.01 + X1 +
1

100
(y2

1 − k1
1 − k2

1)

= 8.99 + X1 +
1

100
y2

1

= 8.99 + X1 +
1

100
(p1(e

2
1 − x2

1) + q1k
2
1),

where the last equality comes from equation 5. By nonnegativity and direct substi-

tution,

p2x
1
1 ≤ 8.99 + X1 +

1

100
(p1e

2
1 + q1k

2
1)

= 11 + X1

< 701 + X1.

Since, by claim 1, Y1 ≥ −2, using equation 2, it follows that

p2x
1
1 < 901 + X1 + 100Y1

= 901 + p2X1 + q2Y1

≤ 901 + p2X2 + q2Y2

= p2e
1
2 + q2k

1
2 + p2X2 + q2Y2.

Appendix A2: Proofs the lemmata

Proof of lemma 1: Notice that, since T is finite, if δ is defined at some pass through

the algorithm, then δ > 0. The first three properties are immediate. For property

4, it suffices to show that if at the t-th pass through the algorithm, it is true that
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yi
t′ 6= yi

t′′ for every distinct t′, t′′ < t, then yi
t′ 6= yi

t for all t′ < t. This is tautological

if t = 1, and follows from step 2 if (xi
t, y

i
t)

I
i=1 = (ei

t, k
i
t)

I
i=1. Now, consider t ≥ 2 and

assume that (xi
t, y

i
t)

I
i=1 is given by steps 3-6. Consider three different cases:

1. If t = 2 and J = ∅. Then, ki
2 = yi

1 for all i, and since δ > 0, follows that

yi
2 6= ki

2 = yi
1.

2. If t = 2 and J 6= ∅. Then, if 1 /∈ J , it is true that y1
1 = k1

2, and, since δ > 0, it

follows that y1
2 = k1

2 − δ = y1
1 − δ 6= y1

1. Else, 1 ∈ J and one has that if y1
1 = y1

2,

then, since y1
2 = k1

2 − δ, so it would follow that

|y1
1 − k1

2| = δ ≤ ε

2
< ε ≤ |y1

1 − k1
2|,

an obvious contradiction. On the other hand, for each i ∈ I \ (J ∪ {1}), it is

true that yi
1 = ki

2, and, since δ > 0, it follows that

yi
2 = ki

2 +
δ

I − 1
= yi

1 +
δ

I − 1
6= yi

1.

Finally, for each i ∈ J \ {1}, if one had that yi
1 = yi

2, then, since yi
2 = ki

2 + δ
I−1

and δ > 0, it would follow that

|yi
1 − ki

2| =
δ

I − 1
≤ δ ≤ ε

2
< ε ≤ |yi

1 − ki
2|,

again, a contradiction.

3. If t ≥ 3. In this case, by the induction assumption, J = I, from where, if there

exists t′ ≤ t − 1 with y1
t′ = y1

t , then y1
t = k1

t − δ and δ > 0 would imply that

y1
t′ 6= k1

t and

|y1
t′ − k1

t | = δ ≤ ε

2
< ε ≤ min

t′′≤t−1:y1
t′′ 6=k1

t

{|y1
t′′ − k1

t |},

an obvious contradiction. Similarly, if for some i 6= 1, one had that for some

t′ ≤ t − 1 it is true that yi
t′ = yi

t, then, yi
t = ki

t + δ
I−1

and δ > 0 imply that

yi
t′ 6= ki

t and

|yi
t′ − ki

t| =
δ

I − 1
≤ δ ≤ ε

2
< ε ≤ min

t′′≤t−1:yi
t′′ 6=ki

t

{|yi
t′′ − ki

t|},

again a contradiction.
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Proof of lemma 2. For part 1, let (xi
t, y

i
t) � 0 solve the problem

max
x̃,ỹ

ui(x̃, ỹ, y¬i
t ) : ptx̃ + qtỹ ≤ pte

i
t + qtk

i
t.

and satisfy item 6 of condition 1. Item 3 of the condition follows from monotonicity

of ui.

Since each ui is smoothly, weakly separable, there exist smooth functions V i

and U i, such that (i) V i is concave and strongly increasing; (ii) U i is concave and

strictly increasing in its first two arguments; and (iii) everywhere, U i(V i(xi), yi, y¬i) =

ui(xi, yi, y¬i).

Individual rationality and strict monotonicity of U i in its first argument imply

that, for all t, xi
t solves

max
x̃

V i(x̃) : ptx̃ ≤ pte
i
t + qt(k

i
t − yi

t).

By the Kühn-Tucker theorem, it follows that there exist λi
t > 0 and µi

t > 0, for all

i and t, such that ∂(xi,yi)u
i(xi

t, y
i
t, y

¬i
t ) = µi

t(pt, qt) and ∂V i(xi
t) = λi

tqt. Item 1 of

condition 1 is satisfied, while item 2 is immediate if we define ρi
t = λi

tpt and θi
t = µi

tqt.

By concavity of V i, it follows that V i(xi) ≤ V i(xi
t) + θi

t(x
i−xi

t), for all yi. By the

chain rule,

∂V iU i(V i(xi
t), y

i
t, y

¬i
t ) = (∂V i(xi

t))
−1∂xiui(xi

t, y
i
t, y

¬i
t ) =

µi
tpt,1

λi
tpt,1

=
µi

t

λi
t

,

so it follows, by convexity of U i, that

U i(V i, yi, y¬i
t ) ≤ U i(V i(xi

t), y
i
t, y

¬i
t ) + θi

t(y
i − yi

t) +
µi

t

λi
t

(V i − V i(xi
t)),

for all V i and yi. Defining vi
t = V i(xi

t) and ui
t = U i(V i

t , yi
t, y

¬i
t ), for all i and t, yields

items 4 and 5 of condition 1, and completes the proof of the first part.

For the second part, since the data satisfy condition 1, fix xi
t, ρi

t, ui
t, vi

t, θi
t, λi

t and

µi
t, for all individual i and observation t, that satisfy the six items of the condition.

Fix an individual i. I first claim that there exist real numbers wi
t and vectors νi

t ,

for all observation t, such that

−wi
t + wi

t′ + νi
t(y

¬i
t − y¬i

t′ ) ≤ µi
t

λi
t

(vi
t′ − vi

t) + θi
t(y

i
t′ − yi

t),

for all t and t′. If this were not the case, then, by the Theorem of the Alternative for

systems of weak inequalities, [22, §22.1], there would exist nonnegative numbers αt,t′ ,

for all t and all t′ 6= t, such that
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i. for all t,
∑

t′ 6=t αt,t′ =
∑

t′ 6=t αt′,t;

ii. for all t, for all j 6= i,
∑

t′ 6=t αt,t′(y
j
t − yj

t′) = 0;

iii.
∑

t

∑
t′ 6=t αt,t′(

µi
t

λi
t
(vi

t′ − vi
t) + θi

t(y
i
t′ − yi

t)) < 0.

For notational simplicity, define αt,t = 0 for all t. Fix j 6= i. Let T j
1 = {t|yj

t′ ≤
yj

t , all t′}. Item ii implies that for all t ∈ T j
1 and all t′ /∈ T j

1 , αt,t′ = 0. Then, from

item i, ∑
t∈T j

1

T∑
t′=1

αt′,t =
∑
t∈T j

1

T∑
t′=1

αt,t′ =
∑
t∈T j

1

∑
t′∈T j

1

αt,t′ =
∑
t∈T j

1

∑
t′∈T j

1

αt′,t,

so it follows that for all t ∈ T j
1 and all t′ /∈ T j

1 , αt′,t = 0. Letting T j
2 = {t /∈ T j

1 |y
j
t′ ≤

yj
t , all t′ /∈ T j

1 }, a similar argument yields, from ii, that for all t ∈ T j
2 and all t′ /∈ T j

2 ,

αt,t′ = 0, and, then, from i, that αt′,t = 0 for all t ∈ T j
2 and all t′ /∈ T j

2 . We can follow

recursively, to obtain that αt,t′ = 0 whenever yj
t′ 6= yj

t . Doing the same for all j 6= i, it

follows that αt,t′ = 0 whenever y¬i
t′ 6= y¬i

t . But, then, item iii implies that there exists

some y¬i such that∑
t:y¬i

t =y¬i

∑
t′:y¬i

t =y¬i

αt,t′(
µi

t

λi
t

(vi
t′ − vi

t) + θi
t(y

i
t′ − yi

t)) < 0,

which is impossible since, by item 4 of condition 1 and item i above,∑
t:y¬i

t =y¬i

∑
t′:y¬i

t′ =y¬i

αt,t′(
µi

t

λi
t

(vi
t′ − vi

t) + θi
t(y

i
t′ − yi

t)) ≥
∑

t:y¬i
t =y¬i

∑
t′:y¬i

t′ =y¬i

αt,t′(u
i
t′ − ui

t)

= 0.

It follows that we can find real numbers wi
t and vectors νi

t such that, for all t and t′,

wi
t′ ≤ wi

t +
µi

t

λi
t

(vi
t′ − vi

t) + θi
t(y

i
t′ − yi

t) + νi
t(y

¬i
t′ − y¬i

t ).

Then, we can define functions V i(xi) = mint{V i
t + ρi

t(x
i − xi

t)},

U i(V, yi, y¬i) = min
t
{wi

t +
µi

t

λi
t

(V − vi
t) + θi

t(y
i − yi

t) + νi
t(y

¬i − y¬i
t )},

and ui(xi, yi, y¬i) = U i(V i(xi), yi, y¬i). Each function ui is continuous, concave and

weakly separable, and it is strictly monotone in (xi, yi). By construction and item 5

of condition 1, for all t, ui(xi
t, y

i
t, y

¬i
t ) = wi

t, and if ptx
i + qty

i ≤ pte
i
t + qtk

i
t, then, by
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item 3 of condition 1, also ptx
i + qty

i ≤ ptx
i
t + qty

i
t, which immediately implies, using

items 1 and 2 of the condition, that

ui(xi, yi, y¬i
t ) ≤ wi

t +
µi

t

λi
t

(min
t′
{vi

t′ + ρi
t′(x

i − xi
t′)} − vi

t) + θi
t(y

i − yi
t)

≤ wi
t +

µi
t

λi
t

ρi
t(x

i − xi
t) + θi

t(y
i − yi

t)

= wi
t + µi

tptρ
i
t(x

i − xi
t) + µi

tqt(y
i − yi

t)

≤ wi
t.

It is immediate from item 6 of the condition that profile (ui)I
i=1 rationalizes the data.

Strict monotonicity of each ui in y¬i can be obtained as in the proof of proposition

2.

Proof of lemma 3. For part 1, define, for each t, the continuous and increasing func-

tion gt : RL × R → R, by

gt(x, y) = max{ptx + qty −mt − qtȳt, ptx−mt}.

By construction, since u is strictly monotone, ptx+ qty = mt + qtȳt and it is true that

each (xt, yt) solves the program

max
x,y

u(x, y) : ptx + qty ≤ mt + qtȳt and ptx ≤ mt.

This means that each (xt, yt) solves the program maxx,y u(x, y) : gt(x, y) ≤ 0 and

gt(xt, yt) = 0. It then follows from [12, proposition 1], that there exist numbers

ut and λt > 0, for all t, such that ut′ ≤ ut + λtgt(xt′ , yt′), for all t and t′. Since

ptxt + qtyt = mt + qtȳt and qt > 0, by direct computation,

gt(x, y) = max{pt(x− xt) + qt(y − yt), pt(x− xt) + qt(ȳt − yt)}
= pt(x− xt) + qt(max{y, ȳt} − yt),

which proves the result, since λt > 0.

For part 2, define the continuous and monotone function u : RL
+ × R+ → R by

u(x, y) = min
t
{ut + λt(pt(x− xt) + qt(max{y, ȳt} − yt)).

Fix t and suppose that ptx + qty ≤ mt + qtȳt and y ≥ ȳt. It is immediate that

u(x, y) ≤ ut, while, by the conditions on ut and λt, u(xt, yt) = ut. Under the extra

hypotheses, concavity and monotonicity can be obtained by defining

u(x, y) = min
t
{ut + λt(pt(x− xt) + qt(y − yt))}.
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Proof of lemma 4. For necessity, the first item follows directly from profit maximiza-

tion. Now, suppose that for no (ρ, ϕ) ∈ RL
++ × R++ is it true that ρXt + ϕYt ≤ 0

for all t. It follows from [22, Theorem 22.2], again, that there exist α ∈ RT
+ and

β ∈ RL+1
+ \ {0}, such that ∑

t

αt(Xt, Yt) = β > 0.

It follows that α > 0 and, by convexity of F , that

(X,Y ) =

∑
t αt(Xt, Yt)∑

t αt

∈ F .

But, (X, Y ) = 1∑
t αt

β > 0, contradicting no-free-lunch.

For sufficiency, as in [28], let F be the convex hull of the set ∪t((Xt, Yt)−RL
+×R+),

which is nonempty, closed and convex. That each (Xt, Yt) solves max(X,Y )∈F ptX+qtY

follows from [28, Theorem 2]. To see that Y satisfies no free lunch, suppose that

(X, Y ) ∈ F and (X, Y ) > 0. By construction, we can find a sequence (X̃t, Ỹt, αt)
T
t=1

such that (X̃t, Ỹt) ≤ (Xt, Yt) and 0 ≤ αt ≤ 1, for all t, and
∑

t αt(X̃t, Ỹt) = (X, Y ).

Then, by the second item,

0 < ρX + ϕY = ρ
∑

t

αtX̃t + ϕtỹt ≤ ρ ·
T∑

t=1

αtyt =
T∑

t=1

αt
(
ρ · yt

)
≤ 0.

Proof of lemma 5. For part 1, fix (ui)i and F that rationalize the data. There must

exist xi
t, Xt, yi

t and Yt such that

a. (Xt, Yt) solves maxX̃,Ỹ ptX̃ + qtỸ : (X̃, Ỹ ) ∈ F ;

b. (xi
t,

∑
j yj

t ) solves

max
x̃,ỹ

ui(x̃, ỹ) :

{
ptx̃ + qtỹ ≤ pte

i
t + qtk

i
t + θi

t(ptXt + qtYt) + qt

∑
j 6=i y

j
t

ỹ ≥
∑

j 6=i y
j
t ;

c.
∑

i(x
i
t − ei

t, y
i
t − ki

t) = (Xt, Yt).

From part 1 of lemma 3, condition b implies that

ptx
i
t + qt

∑
j

yj
t = pte

i
t + qt(k

i
t +

∑
j 6=i

yj
t ) + θi

t(ptXt + qtYt),
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and that there exist numbers ui
t and λi

t > 0, such that

ui
t′ ≤ ui

t + λi
t(pt(x

i
t′ − xi

t) + qt(max{
∑

j

yj
t′ ,

∑
j 6=i

yj
t} −

∑
j

yj
t )),

for all t and t′. Items 1, 2 and 3 of condition 2 follow immediately (since λi
t > 0). Item

4 is follows from profit maximization (condition a), while item 5 follows immediately

from market clearing (condition c).

For part 2, fix the vectors xi
t and Xt, and the numbers yi

t, ui
t, Yt and λi

t that yield

condition 2. Notice that, by the second part of lemma 2, there exists continuous,

monotone utility functions ui such that each (xi
t,

∑
j yj

t ) solves the problem

max
x̃,ỹ

ui(x̃, ỹ) :

{
ptx̃ + qtỹ ≤ pte

i
t + qtk

i
t + θi

t(ptXt + qtYt) + qt

∑
j 6=i y

j
t

ỹ ≥
∑

j 6=i y
j
t .

Also, by [28, theorem 3], there exists a nonempty, closed, convex and negative mono-

tonic technology, F , such that each (Xt, Yt) solves the program

max
X̃,Ỹ

ptX̃ + qtỸ : (X̃, Ỹ ) ∈ F .

The conclusion follows, since markets clear by condition 2.

Given condition 3, part 3 is similar, using the extra hypotheses in the second

result in lemma 3, and lemma 4.

Proof of lemma 6. Part 1 it follows from Walras’s law and Afriat’s theorem (see [26]),

by definition of rationalizability.

The proof of part 2 is similar to the proof of the second part of lemma 2, so details

can be omitted. Condition 4 implies, again by the Theorem of the Alternative, that

there exist numbers wi
t and vectors νi

t , for all individual and observation, such that

wi
t′ − wi

t + νi
t(y

¬i
t − y¬i

t′ ) ≤ λi
t(pt(x

i
t′ − xi

t) + qt(y
i
t′ − yi

t)),

for all i, t and t′. Individual preferences can be defined by

ui(xi, yi, y¬i) = min
t
{wi

t + λi
t(pt(x

i − xi
t) + qt(y

i − yi
t)) + νi

t(y
¬i − y¬i

t )},

and an additive term can be used to guarantee strong monotonicity in all arguments.
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Notes
1 See [13], for an observation about the empirical implications of the competitive equilibrium

models. For the theorem, see [24], [16], [11], and, also, [17].
2 Moreover, [15], [10], [4], [18] and [9] further showed conditions under which information on

individual fundamentals can be uniquely identified from knowledge of the equilibrium manifold.
3 For simplicity of notation, I’ll assume that prices are row vectors and quantities are column

vectors.
4 That is, for every y¬i, function ui(·, ·, y¬i) is strongly concave and strictly monotone.
5 See [5, §3].
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