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Abstract
We present a model of participation in elections in small networks, in which

citizens su�er from cross-pressures if voting against the alternative preferred by
some of their social contacts. We analyze how the existence of cross-pressures may
shape voting decisions, and so, political outcomes; and how parties may exploit
this e�ect to their interest. We characterize the strong perfect equilibria of the
game and show that, in equilibrium, the social network determines which party
wins the election. We also show that to dispose of the citizens better connected in
the network with the other faction is not a guarantee to win the election.
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"To go against the dominant thinking of your friends, of most of the peo-
ple you see every day, is perhaps the most di�cult act of heroism you can
perform".

Theodore H. White

1 Introduction
Empirical research on the US (Lazarsfeld et al. (1944), Simmel (1955), Campbell et al.
(1960), and, more recently, Mutz (2002, 2006)) shows that people experiencing con�icts
and inconsistencies between their opinions and those of their relatives, friends or co-
workers, are less likely to participate in politics. Mutz (2002), in an empirical study
for the US presidential and congressional elections of the 1992 and 1996, �nds that the
probability of voting in an election is positively related to some of the usual predictors
such as political interest, partisanship, education or age. But she also �nds that the
decision to cast a vote is strongly negatively related to the exposition to dissonant
political opinions within one's personal network. Mutz (2002) documents two theories
to explain this e�ect. First, that cross-cutting exposure is likely to engender attitudinal
ambivalence to an individual, inducing political inaction. Second, that cross-pressures
arising from one's personal network can create the need to be socially accountable, and
then, it may bring about uncomfortable feelings when facing a decision that does not
please everybody in one's network. As a result, individuals embedded in networks that
supply them with political information that challenges their views can be discouraged
from involving and participating in politics.

Despite this evidence, and to the best of our knowledge, there is no model of voter
turnout in which this phenomenon has been formally introduced. This paper is intended
to be a �rst step in this direction. More precisely, our aim is to analyze how the
existence of cross-pressure may shape voting decisions, and so, political outcomes; and
how political parties may exploit this e�ect to their interest.

To this aim, we consider a �nite population of citizens who are to vote between
two alternatives: the one currently being implemented and a new alternative. There is
a network representing the structure of friendship relationships among the citizens in
the community, i.e., a link between two agents represents the idea that they are close
friends and not merely acquaintances. We assume that the network architecture and
the preferences of the citizens are common-knowledge. The model thus �ts most clearly
voting situations where the number of people involved is not too large. Citizens select
their preferred alternative in a winner-take-all election. Each citizens' utility depends
upon the alternative implemented and the identity of the representatives running for
o�ce. The latter captures the possibility that a citizen gets utility from holding o�ce
himself or that he encounters costs from confronting ideologically a friend. The political
process is modeled as a three-stage game. At stage 1 the challenger chooses a list of
citizens to represent its alternative. All the citizens observe the nominations and the
nominees decide whether to accept to run for o�ce or not. If at least one nominee
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does not accept, no election is held and the incumbent keeps in o�ce. Otherwise, we
move to the second stage. At stage 2, the incumbent chooses a list of citizens to contest
the challenger. As previously, all nominees have to accept to run for o�ce in order to
move to the third stage. At stage 3 citizens decide whether to vote or to abstain. This
decision is based on the bene�ts of having their preferred alternative implemented and
on the cross-cutting cost that a citizen may incur when he votes for other alternative
rather than the one preferred by some of his friends.

A number of situations �t into our analysis of the voting game. For example, in the
�eld of the academics, we can think of elections for the board of directors in a department
(chair, vice-chair and secretary) or in a college (dean and associate deans). Similarly,
the elections for the board of directors in private �rms or soccer clubs work, in some
cases, this way. Finally, the elections for mayor in small villages of continental Europe
(e.g. Austria, Finland, Italy or Spain), where parties make lists of representatives to be
elected, resembles, to some extend, the structure of our game.

Our stylized model delivers some stark results. We show that there always exist a
(strong perfect) equilibrium and characterize the set of pure strategy (strong perfect)
equilibria of the game. We then show that all the equilibria are outcome equivalent
in terms of which alternative gets into o�ce. Thus, in equilibrium, the primitives of
the model determine which group wins the election. We also provide some results on
how parties exploit the cross-cutting e�ect to their interest. In particular, we show
that if parties choose one representative each, it is optimal for a party to nominate the
citizen who has more friends in the other faction, therefore, who can generate the highest
amount of cross-pressure. However, if they have to choose more than one representative
each, more complex strategic considerations enter into the game and the previous rule
is not always optimal. The model thus predicts that, in general, to dispose of the
citizens better connected in the network with the other faction is not a guarantee to
win the election. In this complex environment, we are able to bound the set of lists
that parties may use in equilibrium, which simpli�es the process of identi�cation of the
unique equilibrium outcome in terms of which alternative gets into o�ce. Finally, we
devote some space to analyze the last mover advantage and to study the equilibria of
the game for low and high values of the cross-cutting cost.

Our model �ts into the literature on voter turnout, pioneered by Riker and Or-
deshook (1968), Ledyard (1981, 1984) and Palfrey and Rosenthal (1983, 1985), who
model participation in elections as an individual activity. These models predict low
voter turnout in costly elections, a prediction that contradicts mass participation. The
consensus that seem to hold today is, however, that in order to generate voter turnout in
costly elections, participation has to be understood as a group activity.1 These "group-
based" models of turnout, such as Uhlaner (1989), Morton (1991), Shachar and Nalebu�
(1999), or Herrera and Martinelli (2006), consider that voters may be mobilized by lead-
ers, who happen to a�ect the voting decisions of a�ne citizens by means of some kind
of consumption bene�t (they suggest reasons such a social pressure or side-payments).
We have in common with this literature the idea that leaders (representatives in our

1See Feddersen (2004) for an excellent survey of this literature.
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context) in�uence voter turnout. One important problem of mobilization models is,
however, that they do not explicitly model how leaders a�ect voting decisions. We con-
tribute to this literature by explaining how leaders may generate social pressure and
by analyzing how they can strategically use their in�uence to serve their own interests.
Additionally, we endogenize the choice of leaders and are the �rst to introduce a net-
work architecture into a model of turnout. The model is thus pioneer in highlighting
the importance that variables such as location and connectivity have in voting games.

In a similar vein, the literature on coalition formation and vote buying considers
that leaders (vote buyers) may a�ect the voting decisions of citizens (vote sellers) by
means of side-payments. Groseclose and Snyder (1996) present a model of sequential
vote buying in a legislature with a last mover advantage. This last mover advantage
also appears in our game.2 In their paper, however, vote sellers only care about how
they vote, not about which alternative wins. This is in sharp contrast to our analysis,
where citizens care about their voting behavior (which determines whether they incur
the cross-cutting cost), as well as about the winner of the election. Their focus is also
di�erent to ours: they study whether buying a supermajority coalition may be cheaper
than buying a minimal winning coalition, and show that, indeed, it may well be the
case.

Finally, Fowler (2005) is our closest reference within the literature on social networks.
He considers a small world network in which citizens imitate each other's voting deci-
sions, and studies how turnout cascades arise, providing an explanation to the striking
turnout numbers in large elections.

In the analysis that follows, we present the model and the structure of the game
in Section 2. In Section 3 we de�ne the equilibrium notion and characterize the set
of equilibria of the game. In Section 4 we analyze how the parties strategically create
cross-pressure to serve their own interest and study the last mover advantage. In Section
5 we relax some of the assumptions and analyze the equilibria of the game for low and
high values of the cross-cutting cost. Finally, in Section 6 we discuss how our results
depend on certain key features of the model.

2 The model
A �nite and small population of citizens N is to vote between two alternatives, the
one currently being implemented (B) and a new alternative (A). The set of citizens N
is divided into two disjoint groups NA and NB. We index by a ∈ NA = {1, ..., |NA|}
the citizens favoring alternative A and we index by b ∈ NB = {|NA| + 1, ..., |N |} the
citizens favoring alternative B. There is an undirected network g : N × N → {0, 1}
representing the structure of friendship relationships among the elements of N , where
g(i, j) = 1 if i and j are friends, and g(i, j) = 0 otherwise.3 We assume that the structure

2Recently, Dekel et al. (2008) analyze a sequential vote buying game where the number of "bribing"
rounds is determined endogenously and so, no advantage is given, a priori, to any of the parties.

3The fact that g is undirected means that, for each i, j ∈ N , g(i, j) = g(j, i). See Section 6 for a
discussion on this issue.
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of friendship relationships (g) and each other's preferences (NA and NB) are common
knowledge. These assumptions are to be interpreted in a context of small networks,
where they are easily satis�ed (see Section 6 for a discussion on this issue).

The citizens select their preferred alternative in a winner-take-all election. There are
k seats in o�ce for the winning alternative.4 An incumbent, party B, and a challenger,
party A, have to choose k representatives, with k ∈ {1, ...,min{|NA|, |NB|}}, to run for
o�ce and implement, if elected, their preferred alternative. We assume that party A,
the challenger, moves before party B, the defender of the alternative currently being im-
plemented. Although we use a sequential structure primarily for analytic convenience,5
this sequentiality can be justi�ed in our setup, where one of the parties supports the
status quo, which stays in place if no removal process is opened. Groseclose and Snyder
(1996) justify a similar sequence of events based on the fact that it can represent the
equilibrium outcome of a more general game in which, a priori, no player moves �rst.6

The political process is modeled as the following three-stage game:
Stage 1 (challenger stage). The challenger, party A, chooses k citizens, from

the set NA, to represent alternative A. All players become informed of the identity of
the k proposed representatives. Then each nominee decides, simultaneously, whether to
accept or not to be part of the list. If at least one of the nominees does not accept, the
game �nishes: no challenging list forms and the incumbent keeps in o�ce.7 In contrast,
if all the nominees accept, the list forms, it is publicly observed, and we move to the
second stage.

Stage 2 (incumbent stage). The incumbent, party B, chooses k citizens, from
the set NB, to represent alternative B and contest the challenger. All players become
informed of the identity of the k proposed representatives. Then each nominee decides,
simultaneously, whether to accept or not to be part of the list. If at least one of the
nominees does not accept, the game �nishes: the incumbent does not form a list and
the challenger gets into o�ce. In contrast, if all the nominees accept, the list forms, it
is publicly observed, and we move to the third stage.

Stage 3 (voting stage). Each citizen i ∈ N decides whether to vote for his
preferred alternative or to abstain. The alternative with more votes gets into o�ce. In
case of a tie, a coin �ip determines the winner.

We next de�ne the strategies for parties and citizens. Let LA and LB denote the set
4For example, elections for board of directors or governance committees in university departments

or �rms, where there is usually more than one seat in o�ce (chair and vice-chair, dean and associate
deans, etc.).

5In the simultaneous version of the game, pure strategy equilibria may fail to exist.
6The game would be one like ours with an initial stage in which both parties decide, simultaneously,

whether to open the game or not. If just one party chooses to open, it moves �rst. If both parties
choose to open, a coin �ip determines who is the �rst mover. Finally, if none of them chooses to open,
the game is not played and the status quo stays in place. As pointed out by Groseclose and Snyder
(1996), the defender of the status quo (party B in our game) has no incentive to initiate such a game,
and so, if it happens to play, it will necessarily be the last mover.

7This speci�c formulation of the model might be interpreted as a reduced form of a more general
game in which parties are allowed to propose a new list if at least one nominee does not accept to run
for o�ce (see Section 6).
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of lists available to parties A and B respectively, i.e.,

LA = {lA ⊆ NA : |lA| = k} and LB = {lB ⊆ NB : |lB| = k}.
A strategy for party A, sA, is an element from LA, and a strategy for party B is a
function sB : LA → LB. Let SA and SB be the sets of strategies for parties A and B,
respectively.

Regarding citizens, for each a ∈ NA, a strategy sa is a pair of functions (ra, va),8

where ra : LA → {0, 1} and va : LA × LB → {0, 1} are such that

ra(lA) =
{

1 if citizen a accepts to run for o�ce in lA
0 otherwise.

va(lA, lB) =
{

1 if citizen a votes for A in an election between lA and lB
0 otherwise.

Let Sa be the set of strategies of citizen a. Analogously, for each b ∈ NB, a strategy sb

is a pair (rb, vb), where rb : LA × LB → {0, 1} and vb : LA × LB → {0, 1}.9 Let Sb the
set of strategies of citizen b. Let S = SA × SB ×

∏
a∈NA

Sa ×
∏

b∈NB
Sb.

Now, we de�ne the payo�s. For each s ∈ S, let

rA(s) = mina∈sA{ra(sA)} and rB(s) = minb∈sB(sA){rb(sA, sB(sA))}.
In words, for each party j ∈ {A,B}, rj(s) = 1 (rj(s) = 0) indicates that j runs (does
not run) for o�ce. For each s ∈ S, let PA(s) be the probability that alternative A gets
into o�ce. We consider that the objective of parties is to win o�ce, which provides a
payo� that we normalize to one. Hence, given s ∈ S, the payo� to party A is

PA(s) =





0 if
{

rA(s) = 0 or
rA(s) = rB(s) = 1 and

∑
a∈NA

va(sA, sB(sA)) <
∑

b∈NB
vb(sA, sB(sA))

1
2 if rA(s) = rB(s) = 1 and

∑
a∈NA

va(sA, sB(sA)) =
∑

b∈NB
vb(sA, sB(sA))

1 otherwise.

Clearly, the payo� to party B is PB(s) = 1− PA(s).
Regarding citizens, payo�s depend upon the alternative implemented and the iden-

tity of the representatives running for o�ce.10 We consider two sources of positive
payo�s: the bene�t of holding o�ce, h > 0, and the bene�t of having their preferred
alternative implemented, d > 0. We assume h > d, which implies that, in the model,
a citizen's most important source of bene�t is to hold o�ce (which can take the form
of supplementary payments, lower teaching duties, more power to allocate resources
to own's interests, etc.). These two payo�s are consequentialist, therefore a necessary

8Note that sa is a strategy of the citizen with index a ∈ {1, ..., |NA|}. Di�erent citizens in NA may
therefore have di�erent strategies.

9In order to de�ne the strategy pro�les in a compact way, we consider that each a ∈ NA chooses
ra(lA) ∈ {0, 1} for each lA ∈ LA, regardless of whether a ∈ lA or not. Analogous considerations hold
for each b ∈ NB . Clearly, the choices of all agents in NA\lA and NB\lB are irrelevant.

10The latter captures the possibility that a citizen gets utility from holding o�ce himself or that he
encounters costs from confronting ideologically a friend.
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condition for a citizen enjoying these bene�ts is that his preferred alternative wins, in-
dependently of whether the citizen votes or abstains. In contrast, we consider that the
act of voting may imply a cross-cutting cost, c > 0, that is expressive, i.e., independent
of the election outcome. In particular, we assume that i ∈ N incurs this cost if at least
one of i's friends runs for o�ce for the alternative i does not favor and i either runs for
o�ce or votes. This assumption is easily justi�ed in our model, where the relative high
value of holding o�ce helps to explain why the citizens running for the election may
�nd it pro�table to exert pressure on the friends that do not support their "political"
career (see Section 6 for a discussion on our formulation of the cross-cutting cost).

In order to introduce a compact expression for the payo� to each a ∈ NA, let us
de�ne f(a) as the set of a's friends that favor his cross-preferred ideology, i.e.,

f(a) = {b ∈ NB : g(a, b) = 1}.
Analogously, for each b ∈ NB, f(b) = {a ∈ NA : g(a, b) = 1}. Formally, given s ∈ S, the
payo� to each a ∈ NA is

πa(s) = PA(s)(ha(s) + d)− ca(s),

where

ha(s) =
{

h if citizen a ∈ sA

0 otherwise.

ca(s) =





c if





rA(s) = rB(s) = 1,
f(a) ∩ sB(sA) 6= ∅ and
either a ∈ sA or va(sA, sB(sA)) = 1

0 otherwise.

The payo� to each b ∈ NB is πb(s) = PB(s)(hb(s) + d) − cb(s), where hb(s) and cb(s)
are de�ned analogously.

Note that the structure of links among citizens within the same group (those with
the same preferences) does not a�ect players' payo�s. Therefore, in the remainder of
the paper, we restrict our attention to the bipartite graph g̃ : NA×NB → {0, 1} induced
by g, where g̃(a, b) = g(a, b) for each a ∈ NA and b ∈ NB.

Finally, let us introduce two assumptions that hold in the main body of the paper:
(A1) c > d and (A2) h+d

2 > c. By (A1), any citizen that is not in a list and has a
friend running for o�ce for the alternative he does not favor, gets a higher payo� by
abstaining than by voting. By (A2), any nominee who anticipates that his list will
win or tie in an election, gets a higher payo� by accepting than by rejecting to run for
o�ce. Hence, our model represents a situation where the ideological bene�t (itself) does
not compensate citizens for incurring the cross-cutting cost, but where the (additional)
bene�t of holding o�ce does. (A1)-(A2) imply h > h+d

2 > c > d, i.e., an intermediate
level of the cross-cutting cost. These assumptions are relaxed in Section 5, where we
analyze the cases c < d and c > h+d

2 .
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3 Equilibrium analysis
3.1 The equilibrium notion
In the multistage setup proposed in our game it is reasonable to require subgame per-
fection to the Nash concept. However, the subgame perfect Nash equilibrium is a very
weak concept for our model: in general, multiple outcomes can be sustained as subgame
perfect Nash equilibria due to coordination problems.11 To address these problems we
need a re�nement that requires equilibria to be immune to coalitional deviations. The
two most well-known re�nements that capture this idea are, possibly, the strong Nash
equilibrium (Aumann (1959)) and the coalition-proof Nash equilibrium (Bernheim et al.
(1987)).12 The precise equilibrium concept that we shall use is the strong perfect equilib-
rium, which adapts the strong Nash equilibrium notion to the class of sequential-move
games. The notion of strong perfect equilibrium was �rst introduced by Rubinstein
(1979) for repeated games with in�nite horizon and posteriorly generalized by Brusco
(1997). Formally, for each C ⊆ N , let SC =

∏
i∈C Si and S−C =

∏
i/∈C Si.

De�nition 1. (Aumann (1959)) A strong Nash equilibrium is a strategy pro�le s ∈ S
such that, for each C ⊆ N and ŝC ∈ SC , there exists at least one i ∈ C such that
πi(ŝC , s−C) ≤ πi(s).

De�nition 2. (Brusco (1997)) A strong perfect equilibrium is a strategy pro�le s ∈ S
which is a strong Nash equilibrium for each proper subgame of the game.

3.2 Equilibrium characterization
Let S∗ ⊂ S be the set of strong perfect equilibria of our model. We focus on pure
strategy equilibria and solve the three period game by backward induction.

The voting stage
Given lA ∈ LA and lB ∈ LB, we de�ne the sets VA(lA, lB) and VB(lA, lB) as those
encompassing the citizens in favor of alternatives A and B, respectively, that either
incur or do not incur the cross-cutting cost c regardless of their behavior in the voting
stage. Formally, for each (lA, lB) ∈ LA × LB

VA(lA, lB) = lA ∪ {a ∈ NA : lB ∩ f(a) = ∅}
VB(lA, lB) = lB ∪ {b ∈ NB : lA ∩ f(b) = ∅}.

We illustrate this concept in Example 1.
11For example, if k > 2 and there are a, a′ ∈ sA with ra(s) = ra′(s) = 0, then, for each a′′ ∈ sA\{a, a′},

all ra′′ ∈ {0, 1} can be sustained in a subgame perfect Nash equilibrium (in all the cases, rA(s) = 0
and B keeps in o�ce). Analogously, if ra(sA) = 1 for all a ∈ sA, the nominees in sB(sA) face the same
coordination problem (so A can get into o�ce). Note that similar coordination problems appear in the
third stage of the game (e.g., each a ∈ NA abstains and at least two players in NB vote, or vice versa).

12The strong Nash equilibrium is more restrictive than the coalition-proof Nash equilibrium. While
the strong Nash equilibrium considers all possible coalitional deviations, the coalition-proof Nash equi-
librium only considers deviations that are self-enforcing.
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Example 1. Let NA = {1, ..., 5}, NB = {6, ..., 10} and g̃ be represented in Figure
1, where for each a ∈ NA and b ∈ NB, g̃(a, b) = 1 if and only if there is an arc
between a and b. Suppose k = 2 and consider a pair of lists, for instance, {1, 5} and
{9, 10}. Then, VA({1, 5}, {9, 10}) = {1, 5} ∪ {1, 3} = {1, 3, 5} and VB({1, 5}, {9, 10}) =
{9, 10} ∪ {8, 9} = {8, 9, 10}.

1 2 3 4 5

6 7 8 9 10

Figure 1.

The next lemma characterizes the (strong perfect) equilibria of the voting stage.

Lemma 1. Assume (A1)-(A2). Given (lA, lB) ∈ LA × LB, s is a strong perfect equi-
librium of the voting stage if and only if, for each i ∈ N\(VA(lA, lB) ∪ VB(lA, lB)),
vi(lA, lB) = 0 and,

i) if |VA(lA, lB)| > |VB(lA, lB)|, ∑
a∈NA

va(lA, lB) > |VB(lA, lB)|,
ii) if |VA(lA, lB)| < |VB(lA, lB)|, ∑

b∈NB
vb(lA, lB) > |VA(lA, lB)| and,

iii) if |VA(lA, lB)| = |VB(lA, lB)|, for each j ∈ VA(lA, lB)∪VB(lA, lB), vj(lA, lB) = 1.

Proof. In the Appendix.

Lemma 1 says that, in equilibrium, any citizen that is not in a list and incurs the
cross-cutting cost if voting, abstains. Hence, given two lists running for o�ce, the out-
come of an election depends on the cardinalities of VA(lA, lB) and VB(lA, lB). More
precisely, if VA(lA, lB) > (<) VB(lA, lB), party A (B) wins the election. In case of equal-
ity, there is a tie.

The incumbent stage
Given lA ∈ LA, by Lemma 1 we de�ne the set of lists of party B that win the election,
WB(lA), and the set of lists of party B that tie in the election, TB(lA), as follows

WB(lA) = {lB ∈ LB : |VB(lA, lB)| > |VA(lA, lB)|} and
TB(lA) = {lB ∈ LB : |VB(lA, lB)| = |VA(lA, lB)|}.

As previously, we can illustrate these concepts by means of Example 1. Consider again
the list {1, 5} of party A. The reader can check that WB({1, 5}) = {{7, 10}, {8, 10}}
and TB({1, 5}) = {{6, 7}, {6, 8}, {6, 10}, {7, 8}, {9, 10}}.

The next lemma characterizes the (strong perfect) equilibria of the incumbent stage.

Lemma 2. Assume (A1)-(A2). Given lA ∈ LA, s is a strong perfect equilibrium of the
incumbent stage if and only if

i) for each lB ∈ LB,
- if |VB(lA, lB)| ≥ |VA(lA, lB)|, rB(lA, lB) = 1 and,
- if |VB(lA, lB)| < |VA(lA, lB)| and there is b′ ∈ lB s.t. lA ∩ f(b′) 6= ∅, rB(lA, lB) = 0.
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ii) and party B chooses,
- if WB(lA) 6= ∅, sB(lA) ∈ WB(lA) and,
- if WB(lA) = ∅ and TB(lA) 6= ∅, sB(lA) ∈ TB(lA).

Proof. In the Appendix.

Lemma 2 characterizes, in turn, the optimal behavior of citizens in lB and party
B. Part i) requires that all the nominees accept to run for o�ce if, given Lemma 1,
lB wins or ties in an election against lA. If, on the contrary, lB looses, part i) requires
that lB does not run for o�ce if at least one member of lB incurs the cross-cutting cost.
Part ii) requires that party B chooses a winning list, if available, and chooses a list that
procures a tie, if there are no winning lists.

The challenger stage
We �nally de�ne the set of lists of party A that, given Lemmas 1 and 2, allow party A
to get into o�ce, WA, and the set of lists of party A that procure a tie, TA, as follows13

WA = {lA ∈ LA : WB(lA) ∪ TB(lA) = ∅} and
TA = {lA ∈ LA : WB(lA) = ∅ ∧ TB(lA) 6= ∅}.

The next lemma characterizes the (strong perfect) equilibria of the challenger stage.
The interpretation of the results is completely analogous to that of Lemma 2.

Lemma 3. Assume (A1)-(A2). s is a strong perfect equilibrium of the challenger stage
if and only if

i) for each lA ∈ LA,
- if |VA(lA, sB(lA))| ≥ |VB(lA, sB(lA))|, rA(lA) = 1 and,
- if |VA(lA, sB(lA))| < |VB(lA, sB(lA))| and there is a ∈ lA s.t. sB(lA) ∩ f(a) 6= ∅,

rA(lA) = 0.
ii) and party A chooses,
- if WA 6= ∅, sA ∈ WA and,
- if WA = ∅ and TA 6= ∅, sA ∈ TA.

The proof of Lemma 3 is omitted as it follows analogous arguments to those used to
prove Lemma 2.

At this point, we have the complete characterization of the strong perfect equilibria
of the game. Note, however, that in view of Lemmas 1-3, the set of strong perfect
equilibria may be large. Despite this multiplicity, the next proposition shows that all
the equilibria are outcome equivalent in terms of which alternative gets into o�ce.

Proposition 1. Assume (A1)-(A2). Then S∗ 6= ∅ and, for each (s, s′) ∈ S∗ × S∗,
PA(s) = PA(s′).

Proof. The fact that S∗ 6= ∅ follows, by construction, from Lemmas 1-3. By Lemmas 1-
3, for each s ∈ S∗: If WA 6= ∅, then PA(s) = 1; if WA = ∅ and TA 6= ∅, then PA(s) = 1/2
and; if WA = TA = ∅, then PA(s) = 0.

13In the case of Example 1, the reader can check that WA = ∅ and TA = {{1, 2}, {2, 4}, {2, 5}}.
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Proposition 1 thus shows that, given (A1)-(A2), there always exist (at least) one
strong perfect equilibrium, and that even though there may be (and generally will be)
multiplicity of equilibria, all of them are outcome equivalent in terms of which alternative
gets into o�ce. This result allows us to focus on a (reasonable) subset of strong perfect
equilibria, without restricting the set of equilibrium outcomes. Formally, let S∗∗ ⊂ S∗

be the subset of strong perfect equilibria such that s ∈ S∗∗ if and only if it satis�es the
following conditions (1)-(3):
(1) For each i ∈ N, vi(lA, lB) = 1 if and only if i ∈ VA(lA, lB) ∪ VB(lA, lB).

(2) For each lA ∈ LA, lB ∈ LB, a ∈ NA and b ∈ NB,
ra(lA) = 1 if and only if |VA(lA, sB(lA))| ≥ |VB(lA, sB(lA))| and
rb(lA, lB) = 1 if and only if |VB(lA, lB)| ≥ |VA(lA, lB)|.

(3) sA ∈ arg maxlA∈LA
|VA(sB(lA), lA)| − |VB(sB(lA), lA)| and, for each lA ∈ LA,

sB(lA) ∈ arg maxlB∈LB
|VB(lA, lB)| − |VA(lA, lB)|.

We obtain conditions (1)-(3) by imposing some restrictions on the conditions obtained
in Lemmas 1-3. Basically, we require citizens to use weakly dominant strategies and
parties to maximize the net plurality de�ned as the di�erence between the number of
votes obtained by the parties. Note that, by construction, S∗∗ 6= ∅.

4 The parties' game
In the previous section we have analyzed how the existence of cross-pressure a�ects vot-
ing decisions and have characterized the equilibrium behavior of citizens and parties. In
the following, we study the strategic behavior of parties when choosing their represen-
tatives and the implications that the sequential structure assumed in the model has for
the parties' game.

4.1 The strategic use of cross-pressure
Here, we analyze how the parties exploit the cross-pressure e�ect to their interest. To
this aim, we assume that citizens' behavior is determined by (1)-(2), and analyze the
game where parties maximize net plurality, i.e., we focus on the set S∗∗.

Since, by (1), citizens with cross-pressure do not vote (unless they run for o�ce),
it seems natural to think that the optimal list of a party should generate the highest
amount of cross-pressure to the people on the other faction. This quite intuitive idea,
however, falls short in some cases. The reason being that it says nothing about the
special status of the representatives. The parties thus have to take into account these
two aspects if they aim to win the election.

In order to formalize this idea and thoroughly analyze the behavior of the parties,
we need to de�ne some concepts. For expositional reasons, we de�ne them exclusively
for party A. The covering of a list lA ∈ LA, F (lA), consists of those citizens of NB

linked to at least one citizen of lA.
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F (lA) =
⋃

a∈lA
f(a).

The maximal covering for party A, mA, is the maximal number of citizens in NB than
can be covered by a list in LA, i.e.,

mA = maxlA∈LA
|F (lA)|.

Hence, the set of lists of maximal covering for party A is

Lm
A = {lA ∈ LA | |F (lA)| = mA}.

The de�nitions of F (lB), mB and Lm
B for party B are completely analogous. Last, for

each (lA, lB) ∈ LA×LB, we de�ne the set of covered representatives of a party as those
citizens in its list who are linked to at least one citizen in the opposite list.

CA(lA, lB) = lA ∩ F (lB) and CB(lA, lB) = lB ∩ F (lA).

With these de�nitions at hand, we say that s ∈ S∗∗ is an equilibrium in maximal covering
if and only if sA ∈ Lm

A and sB(sA) ∈ Lm
B .

To illustrate these concepts, consider the situation presented in Example 1 above.
Let us focus on the pair of lists {1, 5} ∈ LA and {9, 10} ∈ LB. Then F ({1, 5}) =
{6, 7}∪{10} = {6, 7, 10}, F ({9, 10}) = {2}∪{4, 5} = {2, 4, 5}; and CA({1, 5}, {9, 10}) =
{1, 5} ∩ {2, 4, 5} = {5}, CB({1, 5}, {9, 10}) = {9, 10} ∩ {6, 7, 10} = {10}. Straight-
forward calculations show that mA = mB = 4, Lm

A = {{1, 2}, {2, 4}, {2, 5}} and
Lm

B = {{7, 10}, {8, 10}}.
We are now in position to characterize the equilibrium behavior of parties.

Proposition 2. Assume (1)-(2). Then s ∈ S∗∗ if and only if
i) sA ∈ arg maxlA∈LA

|F (lA)|−|F (sB(lA))|+ |CA(lA, sB(lA))|−|CB(lA, sB(lA))| and,
ii) for all lA ∈ LA, sB(lA) ∈ arg maxlB∈LB

|F (lB)|+ |CB(lA, lB)| − |CA(lA, lB)|.
Proof. In the Appendix.

By Proposition 2, the two main forces driving the optimal behavior of parties are
clear. On the one hand, a party may bene�t from increasing the covering of its list,
as it can allow it to inhibit (more) voters of the other faction. On the other hand, a
party must take into account that it does not pay to cover representatives of the other
faction, since these citizens always vote. Ceteris paribus, a party thus prefers to have
the highest number of covered representatives in its list.

Note that in the case k = 1, the number of covered representatives in the two lists is
necessarily the same. Thus, if k = 1, the characterization of S∗∗ turns out to be much
simpler, as the following corollary shows.

Corollary 1. Assume (1)-(2) and let k = 1. Then s ∈ S∗∗ if and only if sA ∈ Lm
A and,

for each lA ∈ LA, sB(lA) ∈ Lm
B .

Proof. If k = 1, for each lA ∈ LA and lB ∈ LB, |CA(lA, lB)| = |CB(lA, lB)|. Then,
sB(lA) ∈ Lm

B . This implies that, in equilibrium, |F (sB(lA))| = mB. Then, sA ∈ Lm
A .

12



By Corollary 1, if k = 1, each s ∈ S∗∗ is an equilibrium in maximal covering.
The model thus predicts that if parties have to choose one representative each, they
optimally nominate the citizen that is better connected in the network with the other
faction. Moreover, given NA, NB and g, by Corollary 1, if k = 1, it is immediate to
obtain the (unique) equilibrium outcome in terms of which alternative gets into o�ce.
In particular, if k = 1, for each s ∈ S∗∗ we have: (i) if |NA| −mB > |NB| −mA, then
PA(s) = 1; (ii) if |NA| − mB = |NB| − mA, then PA(s) = 1/2; and (iii) otherwise,
PA(s) = 0.

However, if k ≥ 2 , the number of covered representatives in the list of party A may
di�er from that of party B. Here, as Proposition 2 shows, both, the covering of the
lists and the di�erence in the number of covered representatives, determine the optimal
strategy of parties. There is therefore no guarantee that an equilibrium in maximal
covering exists, as Example 2 bellow illustrates. The reason is that a list of no-maximal
covering may procure a favorable di�erence of covered representatives that outweighs
its smaller covering.
Example 2. Let NA = {1, ..., 8}, NB = {9, ..., 16} and g̃ be represented in Figure
2. Suppose k = 2. Then, Lm

A = {{3, 6}} and Lm
B = {{13, 16}}. Let lmA = {3, 6}

and lmB = {13, 16}. Then, F (lmA ) = {10, 11, 12, 13, 14, 15}, F (lmB ) = {3, 4, 5, 6, 7, 8}
and mA = mB = 6. We claim that sA = lmA and sB(lmA ) = lmB is not part of any
strong perfect equilibrium. First, note that CA(lmA , lmB ) = {3, 6} and CB(lmA , lmB ) =
{13}. Hence, VA(lmA , lmB ) = (NA\F (lmB )) ∪ CA(lmA , lmB ) = {1, 2, 3, 6} and VB(lmA , lmB ) =
(NB\F (lmA )) ∪ CB(lmA , lmB ) = {9, 13, 16}. Therefore |VA(lmA , lmB )| − |VB(lmA , lmB )| = 1 and,
given (7)-(8), PA(s) = 1. Consider now that party B deviates to lB = {10, 11}.
Then, F (lB) = {1, 2, 3, 4, 5}, CA(lmA , lB) = {3} and CB(lmA , lB) = {10, 11}. Hence,
VA(lmA , lB) = {3, 6, 7, 8} and VB(lmA , lB) = {9, 10, 11, 16}, then |VA(lmA , lmB )| = |VB(lmA , lB)|.
Given (1)-(2), party B �nds it pro�table to deviate to s̄B(lmA ) = lB, which implies a tie.
There is therefore no equilibrium in maximal covering.14

1 2 3 4 5

9 13

6 7 8

10 1211 14 15 16

Figure 2.
Given that, when k ≥ 2, the existence of equilibria in maximal covering is not

guaranteed, to identify an equilibrium can be an arduous task (note that |LA| =
(|NA|

k

)

and |LB| =
(|NB |

k

)
).15 In the following proposition, however, we provide lower bounds

for the covering of the optimal lists of the parties. It simpli�es the characterization of
S∗∗ and, therefore, the process of identifying the unique equilibrium outcome in terms
of which alternative gets into o�ce.

14Additionally, it can be shown that if NA = {9, ..., 16} and NB = {1, ..., 8} instead, it is the challenger
(A) the party that, in equilibrium, never proposes its list of maximal covering.

15For instance, in Example 2, |LA| = |LB | = 28. This implies that we would have to compare each
of the 28 lists of party A to each of the 28 responses of party B.
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Proposition 3. If s ∈ S∗∗, then |F (sA)| ≥ mA − 2(k − 1) and, for all lA ∈ LA,
|F (sB(lA))| ≥ mB − 2(k − 1). Moreover, there is s′ ∈ S∗∗ such that |F (s′A)| > mA −
2(k − 1) and, for each lA ∈ LA, |F (s′B(s′A))| > mB − 2(k − 1).

Proof. In the Appendix.

The �rst part of Proposition 3 says that, in order to characterize S∗∗, we can restrict
our attention to the sets {lA ∈ LA | |F (lA)| ≥ mA− 2(k− 1)} and {lB ∈ LB | |F (lB)| ≥
mB − 2(k − 1)}. Note that, the larger k, the larger the set of possible equilibrium lists;
hence, the more complex the characterization is. The second part of the proposition
provides a further step in the direction of identifying the unique equilibrium outcome in
terms of which alternative gets into o�ce. It says that we do not need to consider those
lists in LA with covering equal to mA − 2(k − 1), nor those lists in LB with covering
equal to mB − 2(k − 1).

For instance, if we aim is to characterize S∗∗ in Example 2 above, we can restrict our
attention to those lists with covering greater or equal than 4, i.e., those lA ∈ LA and
lB ∈ LB such that |F (lA)| ∈ {4, 5, 6} and |F (lB)| ∈ {4, 5, 6}. However, if we just want
to identify one equilibrium,16 we can further restrict our attention to those lA ∈ LA and
lB ∈ LB such that |F (lA)| ∈ {5, 6} and |F (lB)| ∈ {5, 6}. Making use of these bounds,
in the Appendix we obtain that, in Example 2, for each s ∈ S∗∗, P (s) = 1/2, i.e., the
equilibrium outcome is a tie.

4.2 The advantage of being the last mover
It seems natural to think that the sequential structure of our game may provide an
advantage to the last mover (the incumbent) and that it may a�ect the equilibrium
outcome. In the following, we analyze when and why such last mover advantage appears.

First, note that by Corollary 1, there is no last mover advantage in the case k = 1,
since the outcome of the game is determined by comparing |NA| −mB to |NB| −mA.
This result, however, is not generally true when k ≥ 2. In this case, the ability of the
last mover (party B) to strategically place (some of) its representatives within F (sA)
may bene�t it. In Proposition 4 we formalize this idea.

To this aim, consider a population N = X ∪ Y , X ∩ Y = ∅, and a network g :
N × N → {0, 1}. Consider the following two games. Let Game 1 be such that X =
NA and Y = NB, and let Game 2 be such that X = NB′ and Y = NA′ .17 Let
P ∗

A be the probability that, given the unique equilibrium outcome of Game 1, party
A (the challenger, supported by group X) gets into o�ce in Game 1; and let P ∗

B′ be
the probability that, given the unique equilibrium outcome of Game 2, party B′ (the
incumbent, supported by group X) gets into o�ce in Game 2.

Proposition 4. Assume (A1)-(A2). Then, P ∗
B′ ≥ P ∗

A.
16Recall that, by Proposition 1, it su�ces to identify one equilibrium to obtain the (unique) equilib-

rium outcome of the game in terms of which party gets into o�ce.
17Note that in Game 2 we denote parties as A′ and B′. This is done for notational convenience, in

order to facilitate comparisons across the two games.
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Proof. We need to consider two cases. i) If WA 6= ∅, let l ∈ WA. Then, for each
lA′ ∈ LA′ , l ∈ WB′(lA′) and, therefore, WA′ = TA′ = ∅. ii) If WA = ∅ and TA 6= ∅, let
l̂ ∈ TA. Then, for each lA′ ∈ LA′ , l̂ ∈ TB′(lA′) ∪WB′(lA′) and, therefore, WA′ = ∅.

In the following example we show that, given (A1)-(A2), if k ≥ 2, there are situations
where being the last mover is strictly better for a party than moving �rst, i.e., there
exist X, Y , k and g such that P ∗

B′ > P ∗
A.18

Example 3. Let X = {1, ..., 8}, Y = {9, ..., 16} and g̃ be represented in Figure 3.
Suppose k = 2. We consider two games: Game 1, with X = NA and Y = NB and Game
2, with X = NB′ and Y = NA′ . In Game 1, in equilibrium, B gets into o�ce. In other
words, the alternative preferred by group X (here the challenger) is never implemented
(P ∗

A = 0). However, in Game 2, in equilibrium, B′ gets, at least, a tie. In other words,
the alternative preferred by group X (now the incumbent) is implemented with positive
probability (P ∗

B′ > 0). See the Appendix for details.

52 31 4

9 12

6 7 8

10 1311 14 15 16

Figure 3.

5 Analysis for extreme values of the cross-cutting cost
In this section we relax assumptions (A1)-(A2) to consider the cases of a low and a high
cross-cutting cost. Maintaining h > d, we analyze the cases c < d and c > h+d

2 .

5.1 Low cross-cutting cost
Assume c < d < h+d

2 . We di�erentiate two cases, c > d/2 and c < d/2. We focus on
pure strategy equilibria.

Proposition 5. Let c < d < h+d
2 and d

2 < c. Then S∗ 6= ∅ if and only if, for
each (lA, lB) ∈ LA × LB, one of the following three conditions (I)-(III) holds: (I)
|VA(lA, lB)| = |VB(lA, lB)|; (II) |VA(lA, lB)| ≥ |NB|; (III) |VB(lA, lB)| ≥ |NA|.
Proof. In the Appendix.

This result relies on the fact that, if d
2 < c < d, a citizen may obtain a positive net

bene�t when he votes, even though he incurs the cross-cutting cost. It raises pivotal
considerations that citizens will have to take into account in order to decide whether
to vote. This fact will generally create cycles of pro�table deviations that may result

18Note that there are also cases where k ≥ 2 and P ∗B′ = P ∗A. For instance, the reader can check that
in the case of the network represented in Figure 2, the equilibrium outcome is a tie, regardless of the
identity of the party initially in power.
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in non-existence of equilibrium. To illustrate this idea, consider a pair of lists (lA, lB).
Suppose that, within NA, only those citizens in VA(lA, lB) vote and that, in such a
situation, party B wins the election. Then, since d > c, if the citizens in NA \VA(lA, lB)
are numerous enough, they will have incentives to (jointly) deviate to vote, so that
party A wins the election. But then, since c > d

2 , a subset of these citizens will have
further incentives to deviate (from the coalition) to abstain, so that the result is a tie
instead. In such a case, however, the remaining citizens in NA \ VA(lA, lB) would also
have incentives to abstain to save the cross-cutting cost. At this point, we are at the
initial situation where only those citizens in VA(lA, lB) vote and party B wins.

Proposition 5 thus shows that, if d
2 < c, a strong perfect equilibrium exists only

under very limited conditions. In particular, existence requires that, for each possible
pair of lists, either the number of citizens whose voting decision does not imply a cost
is the same in the two groups (in which case the equilibrium results in a tie); or that
the number of these citizens in one group is greater or equal than the total number of
citizens in the other faction (the larger faction wins o�ce). Since these requirements
are very strong, in general, equilibrium fails to exist.

Proposition 6. Let c < d < h+d
2 and c < d

2 . Then S∗ 6= ∅ if and only if either
|NA| = |NB| or, for each (lA, lB) ∈ LA × LB, one of the following two conditions (I')-
(II') holds: (I') |VA(lA, lB)| > |NB|; (II') |VB(lA, lB)| > |NA|.

The proof is omitted as it is very similar to that of Proposition 5. Proposition
6 shows that, if c < d

2 , the conditions for equilibrium existence, although restrictive,
are not so strong as in the previous case.19 For instance, note that when NA and NB

are of the same size, there always exists a strong perfect equilibrium (in which parties
propose any pair of lists, all nominees accept to run and all citizens vote). In contrast,
if |NA| 6= |NB|, the equilibrium requirements are stronger and, in general, equilibrium
fails to exist. Note, however, that if the requirements are satis�ed, in equilibrium, the
larger faction wins o�ce.

5.2 High cross-cutting cost
Assume c > h+d

2 > d. We di�erentiate two cases, c > h + d and c < h + d.
Let c > h+d. Then, if s ∈ S∗, for each (lA, lB) ∈ LA×LB such that lB ∩F (lA) 6= ∅,

rB(lA, lB) = 0 and, therefore, the challenger gets into o�ce. Hence, in equilibrium, for
each lA ∈ LA, the incumbent is "restricted" to choose sB(lA) ⊆ NB\F (lA). This further
implies that, for each lA ∈ LA, both CA(lA, sB(lA)) and CB(lA, sB(lA)) are empty. This
fact rules out the last mover advantage observed under assumptions (A1)-(A2). In
contrast, the current restrictions on parameters may provide an advantage to the �rst
mover, as the choice of lA restricts the set of lists "available" to party B. On the other
hand, if s ∈ S∗, for each (lA, lB) ∈ LA×LB such that lB ∩F (lA) = ∅, party A (B) wins
o�ce if |VA(lA, lB)| > |VB(lA, lB)| (|VB(lA, lB)| > |VA(lA, lB)|).

19Note that when c < d
2
, no citizen has incentives to deviate to abstain if his preferred alternative is

tying. This is in contrast to the previous case.
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Now let c < h+d. Then, if s ∈ S∗, for each (lA, lB) ∈ LA×LB such that lB∩F (lA) 6=
∅, there are two possibilities: (i) if lB ∈ WB(lA), then rB(lA, lB) = 1 and party B stays
in power and; (ii) if lB /∈ WB(lA), then rB(lA, lB) = 0 and the challenger gets into o�ce.
Hence, the choice of lA still imposes a restriction on the lists available to party B, since no
covered citizen in B �nds it pro�table to run for o�ce unless PB(s) = 1. Therefore, only
if WA = TA = ∅ party B conserves the last mover advantage observed under (A1)-(A2).
In contrast, if TA 6= ∅, and analogously to the case c > h+d, there may be an advantage
to the �rst mover, which, by choosing sA ∈ TA, can get into o�ce with a probability of
1.20 On the other hand, if s ∈ S∗, for each (lA, lB) ∈ LA×LB such that lB ∩F (lA) = ∅,
party A (B) wins o�ce if |VA(lA, lB)| > |VB(lA, lB)| (|VB(lA, lB)| > |VA(lA, lB)|).

Finally, note that, although we do not prove it formally, if c > h+d
2 > d, S∗ 6= ∅.

6 Discussion
There is evidence showing that people whose networks involve political disagreement
tend to participate less in politics (Lazarsfeld et al. (1944), Simmel (1955) and, more
recently, Mutz (2002, 2006)). However, to the best of our knowledge, no model of voter
turnout incorporates this fact. This paper is intended to be a �rst step in this direction.
To this aim, we propose a model of voting in small networks and analyze how parties
strategically create cross-pressure to serve their own interests as well as its e�ects on
voting outcomes. The results of this paper, however, depend on certain key features of
the voting game. This section contains a discussion on the importance and implications
of these assumptions for our results.

The assumption of an undirected network
In the paper we assume that citizens are linked through an undirected network. This
means that for each i, j ∈ N , g(i, j) = g(j, i). The model thus represents situations
where, if two citizens are friends, in�uence �ows in both directions. Consider now a
slightly di�erent version of the model in which citizens are linked through a directed
network, i.e., pressure only �ows in one direction. In this case, the general rule that an
equilibrium in maximal covering does not necessarily exist extends to the case k = 1.
To see it, consider k = 1. Here, the number of covered representatives in the two parties
is not necessarily the same. Hence, if the parties maximize net plurality, they have to
consider both the covering of a list and the number of covered representatives.21 Thus,
the list of maximal covering is not necessarily optimal. This is always the case when
the network is directed, independently of k.

The assumption of common knowledge and a small network
In the paper we consider that the preferences of the citizens and the structure of friend-
ship relationships are common knowledge. The model thus �ts most clearly voting

20Note that, in such a case, for each lB ∈ LB , if lB ∩ F (sA) 6= ∅, then rB(sA, lB) = 0.
21 If the network is undirected, however, the number of covered representative in the two parties is

always the same (provided k = 1).
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situations where the number of people involved is not too large (a small network). The
point is whether we can say something about turnout in large elections. We consider
that the main force driving our results (the incentives of parties to strategically create
cross-pressure to serve their own interest) would still be present in a large election. In
this case, however, we conjecture that parties would count on local associations, unions,
churches, etc., to exert their in�uence; rather than directly delegating on representatives.
In this sense, we consider that our results on the behavior of parties would apply, at the
local level, to a model of large elections. Additionally, we also consider that traditional
variables such as money, candidates' endorsement, valence, etc., play a crucial role in
the analysis of large elections. As a result, the outcome of a large election would be
determined by the interplay between all these variables and the cross-pressures exerted
by the parties on the local communities.

The assumption that if a citizen does not accept to be in a list, the game
�nishes
In the paper we consider that, in the �rst two stages of the game, the parties propose
their lists of representatives. By so doing, the parties can strategically create cross-
pressure to serve their own interests. Thus, the model we analyze is game-theoretic in
the �rst two stages and decision-theoretic in the last stage.

In the �rst two stages it is assumed that if at least one of the nominees does not
accept to run for o�ce, the game �nishes. The reader can think of this situation as a
non contested election in which the only alternative available is the party that is able
to form a list. For simplicity we assume that in this case there is no election and that
such party gets into o�ce. However, the result would not change if we considered that
an election takes place in that case.

Last, consider a slightly modi�ed version of our game in which the parties are al-
lowed to propose a new list if the previous one is not accepted. Assume that this process
continues until either a list is formed, or the party exhausts all its possible lists; and
that, in the latter case, the game �nishes (the other alternative is implemented). In this
new version of the game, there are two possibilities. First, at some stage of the process
the party is able to form a list to run for o�ce. In such a case, in our original game,
the party will also be able to run for o�ce. Second, the party exhausts all its possible
lists and is not able to run for o�ce. In such a case, in our original game, the party
will neither be able to run for o�ce. Hence, the game we analyze can be interpreted as
a reduced form of a more general game in which parties can repeatedly propose a new
list if the previous one is turned down.

The assumption of a particular and �xed cross-cutting cost
In the paper we consider that a citizen i incurs the cross-cutting cost if at least one of
i's friends runs for o�ce for the alternative i does not favor and i either runs for o�ce or
votes. Thus, this model applies to situations in which the bene�t of holding o�ce is high
enough, which justi�es that the citizens in the lists have incentives to exert pressure on
the friends that do not support their "political" careers.

Additionally, our results follow from a particular assumption about the cross-cutting
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cost: the cross-cutting cost c is independent of the number of friends that prefer the
other alternative. We make this assumption for analytical convenience, as it allow us to
isolate from pivotal considerations that would complicate and obscure the analysis of the
e�ects of cross-pressure on voting outcomes. To illustrate this complexity, suppose we
consider that c is a function of the number (or relative number) of friends with a di�erent
ideology. In this case, di�erent citizens may incur di�erent levels of cross-cutting cost.
Hence, for a given network, there may be citizens who incur a cross-cutting cost but
still get a positive net bene�t if they vote. These citizens will �nd it pro�table to vote
just if their vote is pivotal. This kind of considerations are analogous to those already
observed in the case of a low cross-cutting cost, (cf. Section 5.1), and likewise, may
imply non-existence of equilibrium.

Nevertheless, we consider that to better understand how cross-pressures a�ect voting
outcomes, it would be helpful to introduce some heterogeneity in the formulation of the
cross-cutting cost; for example, to make the cost di�erent depending on whether a voter
runs for o�ce or just votes. This and other extensions are left for future work.
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Appendix
A Examples
Example 2 (Cont.) Consider the situation presented in Figure 2 (Section 4), where
|NA| = |NB| = 8 and mA = mB = 6. Let L∗A = {lA ∈ LA | |F (lA)| > 4} and
L∗B = {lB ∈ LB | |F (lB)| > 4}. By Proposition 3, there is s ∈ S∗∗ where sA ∈ L∗A and,
for each lA ∈ LA, sB(lA) ∈ L∗B. In Table 1 below, we obtain s ∈ S∗∗, i.e., the (unique)
equilibrium outcome in terms of which alternative gets into o�ce.

055225{2,3,5,7,8}{11,16}

-154215{2,3,4,5,6}{11,13}

055225{1,3,4,7,8}{10,16}

-154215{1,3,4,5,6}{10,13}

-154215{1,2,3,4,5}{10,11}

044115{1,3,4,5,6}{9,13}

-154226

5

{3,4,5,6,7,8}{13,16}

{10,11,12,13,16}{3,7}

055225{1,3,4,7,8}{10,16}

-154215{1,2,3,4,5}{10,11}

044115{1,3,4,5,6}{9,13}

-154226

5

{3,4,5,6,7,8}{13,16}

{10,11,12,13,16}{3,8}

055225{2,3,5,7,8}{11,16}

-154215{2,3,4,5,6}{11,13}

-154215{1,3,4,5,6}{10,13}

033005{2,3,5,7,8}{11,16}

044115{2,3,4,5,6}{11,13}

044115{1,3,4,7,8}{10,16}

055225{1,3,4,5,6}{10,13}

044115{1,2,3,4,5}{10,11}

055225{1,3,4,5,6}{9,13}

-143116

5

{3,4,5,6,7,8}{13,16}

{9,10,13,14,15}{1,6}

044115{2,3,5,7,8}{11,16}

-154215{2,3,4,5,6}{11,13}

145125{1,3,4,7,8}{10,16}

055225{1,3, 4,5,6}{10,13}

055225{1,2,3,4,5}{10,11}

055225{1,3,4,5,6}{9,13}

-143116

5

{3,4,5,6,7,8}{13,16}

{9,10,11,12,13}{1,3}

134115{2,3,5,7,8}{11,16}

145225{2,3,4,5,6}{11,13}

134115{1,3,4,7,8}{10,16}

145225{1,3,4,5,6}{10,13}

044215{1,2,3,4,5}{10,11}

235125{1,3,4,5,6}{9,13}

134126

6

{3,4,5,6,7,8}{13,16}

{10,11,12,13,14,15}{3,6}

|VA|-|VB||VB||VA||CB||CA||F(lB)||F(lA)|F(lB)lBF(lA)lA

Table 1.

20



There is a row for each (lA, lB) ∈ L∗A×L∗B, where we obtain |VA(lA, lB)|−|VB(lA, lB)|.22
Given conditions (1)-(3), we shade: i) for each lA ∈ L∗A, the best response(s) sB(lA)
(3rd column) and the associated |VA(lA, sB(lA))| − |VB(lA, sB(lA))| (last column); and
ii) the optimal list sA for party A (1st column). In bold we show the equilibrium path
(sA, sB(sA)). Since |VA(sA, sB(sA))| − |VB(sA, sB(sA))| = 0, by Proposition 1, for each
s′ ∈ S∗, PA(s′) = 1/2.

Example 3 (Cont.) Consider Figure 3 (Section 4), with X = {1, 2, ..., 8} and Y =
{9, 10, ..., 16}. First consider Game 1, i.e., X = NA and Y = NB. Note that mA =
mB = 6. In Table 2 we show that, for each lA ∈ LA such that |F (lA)| > 4, there is
lB ∈ LB with |F (lB)| > 4 such that |VA(lA, lB)| < |VB(lA, lB)|. Hence, by Propositions
1 and 3, P ∗

A = 0.

5

5

5

5

5

5

5

5

6

|F(lA)|

2

1

2

2

0

1

1

2

2

|CB|

2

1

2

2

0

1

1

1

1

|CA|

6

6

6

6

6

6

6

6

6

|F(lB)|

{2,3,4,5,6,7}

{1,3,4,5,6,7}

{1,3,4,5,6,7}

{1,3,4,5,6,7}

{1,3,4,5,6,7}

{1,3,4,5,6,7}

{1,3,4,5,6,7}

{2,3,4,5,6,7}

{2,3,4,5,6,7}

F(lB)

5

4

5

5

3

4

4

5

4

|VB|

4

3

4

4

2

3

3

3

3

|VA|

-1

-1

-1

-1

-1

-1

-1

-2

-1

|VA|-|VB|

{11,14}

{9,14}

{9,14}

{9,14}

{9,14}

{9,14}

{9,14}

{11,14}

{11,14}

lB

{10,11,12,13,14}

{9,11,13,15,16}

{9,11,12,13,14}

{9,10,11,13,14}

{10,11,12,15,16}

{10,11,12,13,14}

{9,10,11,12,13}

{9,10,11,13,14}

{10,11,13,14,15,16}

F(lA)

{4,5}

{3,8}

{3,5}

{3,4}

{2,8}

{2,4}

{2,3}

{1,4}

{4,8}

lA

Table 2.

Consider now Game 2, i.e., X = NB′ and Y = NA′ . In Table 3 we show that, for
each lA′ ∈ LA′ such that |F (lA′)| > 4, there is lB′ ∈ LB′ with |F (lB′)| > 4 such that
|VA′(lA′ , lB′)| ≤ |VB′(lA′ , lB′)|. Hence, by Propositions 1 and 3, P ∗

B′ > 0.

5

5

5

5

5

6

6

|F(lA’)|

2

2

1

1

1

2

1

|CB’|

2

2

2

1

2

1

1

|CA’|

6

6

6

6

6

5

6

|F(lB’)|

{10,11,13,14,15,16}

{10,11,13,14,15,16}

{10,11,13,14,15,16}

{10,11,13,14,15,16}

{10,11,13,14,15,16}

{9,10,11,12,13}

{10,11,13,14,15,16}

F(lB’)

5

5

4

4

4

4

3

|VB’|

4

4

4

3

4

4

3

|VA’|

-1

-1

0

-1

0

0

0

|VA’|-|VB’|

{4,8}

{4,8}

{4,8}

{4,8}

{4,8}

{2,3}

{4,8}

lB’

{4,5,6,7,8}

{4,5,6,7,8}

{3,4,5,6,7}

{2,4,5,6,7}

{2,4,5,6,7}

{2,3,4,5,6,7}

{1,3,4,5,6,7}

F(lA’)

{14,16}

{14,15}

{13,14}

{12,14}

{10,14}

{11,14}

{9,14}

lA’

Table 3.
22Note that |VA(lA, lB)| = |NA|−|F (lB)|+|CA(lA, lB)| and |VB(lA, lB)| = |NB |−|F (lA)|+|CB(lA, lB)|.
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B Proofs
Proof of Lemma 1.
In equilibrium, for each i ∈ N\(VA(lA, lB) ∪ VB(lA, lB)), vi(lA, lB) = 0 since, by (A1),
vi(lA, lB) = 1 is strictly dominated. The outcome of the election is thus determined
by the votes of the citizens in VA(lA, lB) and VB(lA, lB). Let us de�ne D = {j ∈
VA(lA, lB) ∪ VB(lA, lB) | vj(lA, lB) = 0}.

i) Consider |VA(lA, lB)| > |VB(lA, lB)|. First, suppose ∑
a∈NA

va(lA, lB) > |VB(lA, lB)|.
In this case, party A wins the election and each a ∈ VA(lA, lB) obtains a strictly pos-
itive payo� (either d, (d + h) or (d + h) − c). Hence, no a ∈ VA(lA, lB) has incen-
tives to be part of a deviating coalition: by deviating, a can neither save the cross-
cutting cost, nor increase the probability that A gets into o�ce. Second, suppose∑

a∈NA
va(lA, lB) < |VB(lA, lB)|. In this case, if

∑
b∈NB

vb(lA, lB) ≤ ∑
a∈NA

va(lA, lB),
the coalition D ∩ VB(lA, lB) bene�ts from deviating to vote; otherwise, the coalition
D ∩ VA(lA, lB) bene�ts from deviating to vote. Hence, if |VA(lA, lB)| > |VB(lA, lB)|,
s is an equilibrium if and only

∑
a∈NA

va(lA, lB) > |VB(lA, lB)| and, for each i ∈
N\(VA(lA, lB) ∪ VB(lA, lB)), vi(lA, lB) = 0.

ii) Analogous to case i).
iii) Consider |VA(lA, lB)| = |VB(lA, lB)|. First, suppose that for each j ∈ VA(lA, lB)∪

VB(lA, lB), vj(lA, lB) = 1. The election outcome is a tie and each j ∈ VA(lA, lB) ∪
VB(lA, lB) obtains a strictly positive payo� (either 1

2d, 1
2(d+h) or 1

2(d+h)− c). Hence,
no subset of VA(lA, lB) ∪ VB(lA, lB) has incentives to form a deviating coalition: by
deviating, a player can neither save the cross-cutting cost, nor increase the probability
that his party gets into o�ce. Second, suppose that for some j ∈ VA(lA, lB)∪VB(lA, lB),
vj(lA, lB) = 0. In this case, if

∑
b∈NB

vb(lA, lB) ≤ ∑
a∈NA

va(lA, lB), the coalition D ∩
VB(lA, lB) bene�ts from deviating to vote; otherwise, the coalition D∩VA(lA, lB) bene�ts
from deviating to vote. Hence, if |VA(lA, lB)| = |VB(lA, lB)|, s is an equilibrium if
and only if, for each j ∈ VA(lA, lB) ∪ VB(lA, lB), vj(lA, lB) = 1 and, for each i ∈
N\(VA(lA, lB) ∪ VB(lA, lB)), vi(lA, lB) = 0.

Proof of Lemma 2.
Part i) Given (lA, lB) ∈ LA×LB, �rst consider |VB(lA, lB)| ≥ |VA(lA, lB)| and rB(lA, lB) =
1. In this case, by Lemma 1, B either wins or ties the election and each b ∈ lB ob-
tains, at least, h+d

2 − c > 0; whereas if a coalition in lB deviates, each b ∈ lB ob-
tains 0. Now consider |VB(lA, lB)| ≥ |VA(lA, lB)| and rB(lA, lB) = 0. In this case, lB
does not form and each b ∈ lB obtains payo� 0; whereas if each b ∈ lB deviates to
rb(lA, lB) = 1, by Lemma 1, each of them gets a strictly positive payo� of at least
h+d

2 −c. Hence, if |VB(lA, lB)| ≥ |VA(lA, lB)|, s is an equilibrium (of the subgame where,
given (lA, lB) ∈ LA × LB, nominees in lB decide whether to run for o�ce) if and only
if rB(lA, lB) = 1. Second, consider |VB(lA, lB)| < |VA(lA, lB)|, rB(lA, lB) = 0 and there
is b′ ∈ lB such that lA ∩ F (b′) 6= ∅. In this case, the payo� to each b ∈ lB is 0; whereas
if each b ∈ lB deviates to rb(lA, lB) = 1, by Lemma 1, the payo� to b′ ∈ lB is −c.
Now consider |VB(lA, lB)| < |VA(lA, lB)|, rB(lA, lB) = 1 and there is b′ ∈ lB such that
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lA ∩ F (b′) 6= ∅. In this case, by Lemma 1, b′ obtains payo� −c; whereas if b′ devi-
ates, he obtains 0. Hence, if |VB(lA, lB)| < |VA(lA, lB)| and there is b′ ∈ lB such that
lA ∩ F (b′) 6= ∅, s is an equilibrium (of the subgame where, given (lA, lB) ∈ LA × LB,
nominees in lB decide whether to run for o�ce) if and only if rB(lA, lB) = 0.

Given lA ∈ LA, by Lemma 1 and part i), the proof of part ii) is immediate.

Proof of Proposition 2.
For each (lA, lB) ∈ LA×LB, VA(lA, lB) = (NA\F (lB))∪lA and VB(lA, lB) = (NB\F (lA))∪
lB. Therefore, VA(lA, lB) = |NA| − |F (lB)| + |CA(lA, lB)| and |VB(lA, lB)| = |NB| −
|F (lA)|+ |CB(lA, lB)|. Hence, for each lA ∈ LA, arg maxlB∈LB

|VB(lA, lB)| − |VA(lA, lB)|
coincides with arg maxlB∈LB

|F (lB)| + |CB(lA, lB)| − |CA(lA, lB)|. Moreover, for each
lA ∈ LA, let sB(lA) ∈ LB. Then, arg maxlA∈LA

|VA(lA, sB(lA))| − |VB(lA, sB(lA))| coin-
cides with arg maxlA∈LA

|F (lA)| − |F (sB(lA))|+ |CA(lA, lB)|− |CB(lA, lB)|. Since, by
de�nition, s ∈ S∗∗ if and only if (1)-(3) hold, the proof follows.

Proof of Proposition 3.
First, we prove that, if s ∈ S∗∗, for all lA ∈ LA, |F (sB(lA))| ≥ mB − 2(k − 1).
Note that, for each (lA, lB) ∈ LA × LB, i) both |CA(lA, lB)| and |CB(lA, lB)| are in
{1, ..., k} and ii) |CA(lA, lB)| = 0 if and only if |CB(lA, lB)| = 0. Hence |CB(lA, lB)| −
|CA(lA, lB)| ∈ {−(k − 1), ..., k − 1}. Let lmB ∈ Lm

B . For each lA ∈ LA, by Proposition
2, |F (sB(lA))|+ |CB(lA, sB(lA))| − |CA(lA, sB(lA))| ≥ mB + |CB(lA, lmB )| − |CA(lA, lmB )|.
Hence, (|CB(lA, sB(lA))| − |CA(lA, sB(lA))|) − (|CB(lA, lmB )| − |CA(lA, lmB )|) ≤ 2(k − 1)
and, therefore, |F (sB(lA))| ≥ mB − 2(k − 1).

Second, we prove that, if s ∈ S∗∗, |F (sA)| ≥ mA − 2(k − 1). Let lmA ∈ Lm
A . By

Proposition 2, (|F (sB(lmA ))| + |CB(lmA , sB(lmA ))| − |CA(lmA , sB(lmA ))|) − (|F (sB(sA))| +
|CB(sA, sB(sA))| − |CA(sA, sB(sA))|) ≥ mA − |F (sA)|. Since, for each lA ∈ LA,
|CB(lA, sB(sA))|− |CA(lA, sB(sA))| ∈ {−k+1, ..., k−1}, |F (sB(lmA ))|+|CB(lmA , sB(lmA ))|−
|CA(lmA , sB(lmA )| ≤ mB +(k−1) and, by Proposition 2, |F (sB(sA))|+ |CB(sA, sB(sA))|−
|CA(sA, sB(sA))| ≥ mB−(k−1). Hence, (|F (sB(lmA ))|+|CB(lmA , sB(lmA ))|−|CA(lmA , sB(lmA ))|)−
(|F (sB(sA))|+|CB(sA, sB(sA))|−|CA(sA, sB(sA))|) ≤ 2(k−1) and, therefore, 2(k−1) ≥
mA − |F (sA)|. This completes the proof of the �rst part of the proposition.

Now, we prove that there is s′ ∈ S∗∗ such that |F (s′A)| > mA−2(k−1) and, for each
lA ∈ LA, |F (s′B(s′A))| > mB − 2(k − 1). Let s ∈ S∗∗. Then, |F (sA)| ≥ mA − 2(k − 1)
and, for each lA ∈ LA, |F (sB(lA))| ≥ mB − 2(k − 1). Let lmA ∈ Lm

A and lmB ∈ Lm
B . For

each a ∈ NA, b ∈ NB, lA ∈ LA and lB ∈ LB, we de�ne s′ ∈ S as follows:

r′a(lA) = ra(lA) r′b(lA, lB)) = rb(lA, lB)) v′a(lA, lB) = va(lA, lB) v′b(lA, lB) = vb(lA, lB)

s′A =
{

sA if |F (sA)| > mA − 2(k − 1)
lmA if |F (sA)| = mA − 2(k − 1).

s′B(lA) =
{

sB(lA) if |F (sB(lA))| > mB − 2(k − 1)
lmB if |F (sB(lA))| = mB − 2(k − 1).

Note that s′ satis�es (1)-(2). We claim that s′ satis�es (3).
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Given lA ∈ LA, there are two possibilities. i) |F (sB(lA))| > mB − 2(k − 1). Then
s′B(lA) = sB(lA) ∈ arg maxlB∈LB

|VB(lA, lB)|−|VA(lA, lB)|. ii) |F (sB(lA))| = mB−2(k−
1). Then, by Proposition 2, sB(lA) ∈ arg maxlB∈LB

|F (lB)|+ |CB(lA, lB)|− |CA(lA, lB)|.
Moreover, (|CB(lA, sB(lA))|−|CA(lA, sB(lA))|)−(|CB(lA, lmB )|−|CA(lA, lmB )|) ≤ 2(k−1).
Hence, s′B(lA) = lmB ∈ arg maxlB∈LB

|F (lB)|+ |CB(lA, lB)| − |CA(lA, lB)|. Therefore, for
each lA ∈ LA, s′B(lA) satis�es (3).

Regarding s′A, there are two possibilities. i) |F (sA)| > mA − 2(k − 1). Then
s′A = sA ∈ arg maxlA∈LA

|VA(lA, sB(sA))| − |VB(lA, sB(sA))|. Since, for each lA ∈ LA,
|VB(lA, sB(lA))| − |VA(lA, sB(lA))| = |VB(lA, s′B(lA))| − |VA(lA, s′B(lA))|, s′A satis�es
(9). ii) |F (sA)| = mA − 2(k − 1). For each lA ∈ LA, let K(lA) = |F (sB(lA))| +
|CB(lA, sB(lA))|−|CA(lA, sB(lA))| = |F (s′B(lA))|+|CB(lA, s′B(lA))|−|CA(lA, s′B(lA))|.23
In the �rst part of the proposition, we proved that 2(k − 1) ≥ K(lmA ) − K(sA) ≥
mA − |F (sA)|. Since 2(k − 1) = mA − |F (sA)|, K(lmA ) −K(sA) = mA − |F (sA)|, i.e.,
mA −K(lmA ) = |F (sA)| −K(sA). Since s′A = lmA , the claim follows.

Proof of Proposition 5.
(Necessity) Assume there is (l′A, l′B) ∈ LA × LB such that neither (I), (II) nor (III)
holds. Then |VB(l′A, l′B)| 6= |VA(l′A, l′B)|, |NB| > |VA(l′A, l′B)| and |NA| > |VB(l′A, l′B)|. We
claim that there is no strong Nash equilibrium in the subgame where A and B propose l′A
and l′B, and all agents in l′A and l′B accept to run for o�ce. Assume, for a contradiction,
that there is vi(l′A, l′B)i∈N that is a strong Nash equilibrium in the subgame. There are
3 possibilities:

i)
∑

b∈NB
vb(l′A, l′B) >

∑
a∈NA

va(l′A, l′B). Then B wins the election. We �rst claim
that, for each b ∈ NB\VB(l′A, l′B), vb(l′A, l′B) = 0. Assume not, i.e., there is b̂ ∈
NB\VB(l′A, l′B) such that vb̂(l

′
A, l′B) = 1. Then, the payo� to b is d − c. However, if

b̂ deviates to abstain, he gets at least d/2, which, since d > c > d/2, exceeds d − c, a
contradiction. Hence, |NA| > |VB(l′A, l′B)| ≥ ∑

b∈NB
vb(l′A, l′B). Since d > c, the coalition

formed by all a ∈ NA such that va(l′A, l′B) = 0 has incentives to deviate to vote and,
therefore, make A win the election, a contradiction.

ii)
∑

a∈NA
va(l′A, l′B) >

∑
b∈NB

vb(l′A, l′B). Then A wins the election. Analogously
to the previous case, the coalition formed by all b ∈ NB such that vb(l′A, l′B) = 0 has
incentives to deviate, a contradiction.

iii)
∑

b∈NB
vb(l′A, l′B) =

∑
a∈NA

va(l′A, l′B). Then there is a tie. We �rst claim
that, for each i ∈ N\(VB(l′A, l′B) ∪ VA(l′A, l′B)), vi(l′A, l′B) = 0. Assume not, i.e.,
there is ı̂ ∈ N\(VB(l′A, l′B) ∪ VA(l′A, l′B)) such that vı̂(l′A, l′B) = 1. Then, the pay-
o� to ı̂ is d/2 − c < 0. However, if ı̂ deviates to abstain, he gets 0, a contradic-
tion. Hence min{|VB(l′A, l′B)|, |VA(l′A, l′B)|} ≥ ∑

b∈NB
vb(l′A, l′B) =

∑
a∈NA

va(l′A, l′B).
Since |VB(l′A, l′B)| 6= |VA(l′A, l′B)|, there are two possibilities: First, if |VB(l′A, l′B)| >

|VA(l′A, l′B)|, |VB(l′A, l′B)| >
∑

b∈NB
vb(l′A, l′B). Hence, there is b̂ ∈ VB(l′A, l′B) such that

vb̂(l
′
A, l′B) = 0. Clearly, b̂ has incentives to deviate to vote, since by deviating B wins

the election (recall that the voting decision does not imply any cost for citizens in
23Recall that, for each lA ∈ LA, both sB(lA) and s′B(lA) are in arg maxlB∈LB |F (lB)|+ |CB(lA, lB)|−

|CA(lA, lB)|.
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VB(l′A, l′B) ∪ VA(l′A, l′B)), a contradiction. Analogously, if |VA(l′A, l′B)| > |VB(l′A, l′B)|,
|VA(l′A, l′B)| >

∑
a∈NA

va(l′A, l′B) and there is â ∈ VA(l′A, l′B) such that vâ(l′A, l′B) = 0
and, therefore, â has incentives to deviate, a contradiction.

This proves that there is no strong Nash equilibrium in the subgame and, therefore,
S∗ = ∅.
(Su�ciency) Assume that, for each (lA, lB) ∈ LA × LB, either (I), (II) or (III) holds.
We claim that if s ∈ S satis�es (1)-(3), s is a strong perfect equilibrium of the game.24
We prove it by backward induction.

Stage three. Consider (lA, lB) ∈ LA × LB. First, suppose (I) holds: |VA(lA, lB)| =
|VB(lA, lB)|. By (1), there is a tie. Each i ∈ N \(VA(lA, lB)∪VB(lA, lB)) obtains a payo�
of 1

2d > 0; and each j ∈ VA(lA, lB) ∪ VB(lA, lB) obtains a strictly positive payo� (either
1
2d, 1

2(d+h) or 1
2(d+h)−c). Hence, no i ∈ N \(VA(lA, lB)∪VB(lA, lB)) has incentives to

be part of a deviating coalition: by deviating, i obtains, at most, d− c, which is strictly
lower than 1

2d (since c > 1
2d). Similarly, no j ∈ VA(lA, lB) ∪ VB(lA, lB) has incentives

to be part of a deviating coalition: by deviating, j can neither save the cross-cutting
cost, nor increase the probability that his party wins o�ce. Second, suppose (II) holds:
|VA(lA, lB)| ≥ |NB|. By (1), A wins the election. Each a′ ∈ N \ VA(lA, lB) obtains a
payo� of d; and each a ∈ VA(lA, lB) obtains a strictly positive payo� (either d, d + h
or d + h− c). As 1

2d < c, no a ∈ NA has incentives to be part of a deviating coalition.
Additionally, no coalition in NB has incentives to deviate: they are not numerous enough
to alter the outcome of the election. Case (III) is analogous to case (II).

Stage two. Part i) Consider (lA, lB) ∈ LA × LB. First, suppose |VB(lA, lB)| ≥
|VA(lA, lB)|. By (2), rB(lA, lB) = 1 and, by (1), party B either wins or ties the election.
Each b ∈ lB obtains, at least, (h+d)/2−c > 0; whereas if a coalition in lB deviates, each
b ∈ lB obtains 0. Second, suppose |VB(lA, lB)| < |VA(lA, lB)|. By (2), rB(lA, lB) = 0
and party A gets into o�ce. Each b ∈ lB obtains 0; whereas if all b ∈ lB deviate to
rb(lA, lB) = 1, there is an election and, by (1), party B loses. Part ii) Consider lA ∈ LA.
Given (1)-(2), it is immediate to see that the behavior that (3) prescribes for party B
is optimal.

Stage one. The proof that s is a strong perfect equilibrium for the challenger stage
follows analogous arguments to those used in stage two.
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