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Abstract

We study a bargaining mechanism that implements the Nash rationing solution
of Mariotti and Villar (International Journal of Game Theory, 2005). The bargaining
mechanism is an n-person non-cooperative game of perfect information. In each period,
one player makes a proposal from a set of feasible alternatives. Even with only two
players, there are generally multiple subgame perfect equilibrium outcomes. We show
that as the probability of exogenous breakdown does to zero, the limit of any convergent
sequence of subgame perfect equilibrium outcomes is a Nash rationing solutions of the
underlining rationing problem. However, not every Nash rationing solution can be a
limit of subgame perfect equilibrium outcomes.
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1 Introduction

A rationing problem describes a situation in which a given amount of a divisible good must

be allocated among a group of players, while there is not enough quantity to satisfy their

claims. Bankruptcy problems and cost sharing problems are the best known examples of

these situations. The standard formulation of a rationing problem is a triple (N; t; x); where

N is a set of �nite agents, t is a positive real number that represents the amount of resources

to be divided among the agents, and x = (xi)i2N is an n-vector inRn+ that speci�es the agents�

claims, such
P

i2N xi > t. The main advantage of this formulation is that all primitives of

the problem are observed. In particular, preferences are not explicitly considered. Therefore,

once a solution to the problem is accepted, there is no di¢ culty in implementing it. On the

other hand, the lack of an explicit reference to preferences is unsatisfactory, since it stands

to reason that a notion of fairness may depend on preferences. It also deviates from the

bulk of social choice theory, and a rationing problem is a speci�c social choice problem.

To overcome these di¢ culties, Mariotti and Villar (2005) have proposed and axiomatized a

rationing solution (called the Nash Rationing Solution, or NRS) in a framework of cardinal

utility information.1 How can a planner who would like to ration players according to a Nash

rationing solution, but does not know their preferences, accomplish his goal? In this paper

we study this issue of implementation.

We propose a bargaining mechanism similar to the �alternating o¤er�bargaining games

that requires unanimous agreements,2 with an exogenous probability of breakdown as in

Binmore, Rubinstein and Wolinsky (1986). This bargaining mechanism implements a Nash

rationing solution in stationary subgame perfect equilibrium (SPE) in the limit as the prob-

ability of breakdown tends to zero. There are (potentially) in�nitely many periods, and one

player makes a proposal in a set of feasible alternatives. If the proposal is accepted unan-

imously by the other players, then the game ends. Otherwise, the game may breakdown

1See also Mariotti and Villar (2006)
2See, for example, Rubinstein (1982), Herrero (1985), Haller (1986), Jun (1987), and Osborne and Ru-

binstein (1990).
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with certain probability. The peculiarity of our mechanism, compared to standard bilat-

eral/multilateral bargaining models, lies in the payo¤s allocated to the players in the case

of exogenous breakdown after any standing o¤er is rejected. In our mechanism, the players

(the proposing player and the responding players) do not receive their �disagreement payo¤�

that are resulted from perpetual disagreement. Instead, every responding player receives his

largest possible utility, namely that associated with receiving their claims in full, while the

proposing player receives the residual. In other words, the payo¤s associated with the break-

down depend on the identity of the proposer. Of course, if the game does not breakdown,

the bargaining will proceed to the following papers where the same process will repeated

with a new proposing player.

We show that this bargaining mechanism always has at least one stationary subgame

perfect equilibrium for all possible values of breakdown probability. Due to the nature of a

rationing problem, the issues involved in rationing problems resembles non-convex bargaining

problems (Herrero, 1989). Even with only two players, there could be multiple stationary

subgame perfect equilibrium outcomes. With more than two players, it is well known that

there are generally multiple non-stationary subgame perfect equilibrium outcomes in games

that require unanimous agreements. Hence, we concentrate on stationary subgame perfect

equilibrium outcomes in this game. We show that as the breakdown probability goes to zero,

any convergent sequence of stationary subgame perfect equilibrium outcomes converges to a

Nash rationing solution to the underlining problem. Similar to implement Nash bargaining

solution in Binmore, Rubinstein and Wolinsky (1986), our result implies that at least one

Nash rationing solution can be implemented by stationary subgame perfect equilibrium in the

limit as the probability of breakdown goes to zero. We provide an example to demonstrate,

however, that not all Nash rationing solution can be the limit of stationary subgame perfect

equilibrium outcomes. Our bargaining mechanism for rationing problems provides a simple

way of equilibrium selection for Nash rationing solutions.

The game studied in this paper requires unanimous agreement. Multilateral bargaining
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models that require unanimous agreements often have multiple equilibrium outcomes. It

has been shown that when partial/conditional agreements are allowed, many variations of

this kind of model will have a unique subgame perfect equilibrium outcome.3 However,

since a rationing problem resembles a non-convex bargaining problem, even if we allow

for partial/conditional agreements, the game would continue to have multiple stationary

subgame perfect equilibrium outcomes. Recently, Miyagawa (2002) provides a simple four-

stage game that implements a large class of two-person bargaining solutions in subgame

perfect equilibrium. However, the solution that can be implemented are those that optimize

a monotonic and quasi-concave function of players�utilities. As we will discuss later, a Nash

rationing solution may not maximize such a function. Consequently, one may not use a

similar mechanism to implement Nash rationing solutions.

The rest of this paper is organized as follows. In Section 2, we present rationing problems

and introduce the Nash rationing solutions. In Section 3, we provide a bargaining mecha-

nism for a rationing problem, and establish the existence of a stationary subgame perfect

equilibrium in this mechanism. The main result is presented in Section 4: as the probability

of exogenous breakdown goes to zero, any limit of convergent stationary subgame perfect

equilibrium outcomes is a Nash rationing solution to the underlining rationing problem. In

Section 5, we provide an example where some NRS cannot be a limit of stationary subgame

perfect equilibrium outcomes.

2 The Nash Rationing Solution (NRS)

A rationing problem for a set N of players, with jN j = n, is formulated as a pair (S; c), where

S � Rn is the set of feasible payo¤s (expressed as von Neumann Morgenstern utilities) to

the n players and c 2 Rn represents their claims. Assume that:

i) S is convex and comprehensive;

ii) c =2 S (the claims are not feasible);
3See, for example, Chae and Yang (1988, 1994), Krishna and Serrano (1996), Huang (2002), Suh and

Wen (2006).
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iii) c >> s for some s 2 S.4

We make one further regularity assumption. For all i 2 N :

(iv)

P (S) \ fs 2 Rjs�i � c�ig 6= ;; (1)

where P (S) is the Pareto boundary of S, i.e.,

P (S) = fs 2 S j s0 >> s =) s0 =2 Sg:

Condition (1) requires that the Pareto boundary of S cuts all axes emanating from c. Let �

be the set of all rationing problems satisfying the above assumptions.

Let Sc = fs 2 Sj s � cg. We look for allocations that are both e¢ cient and do not

exceed any agent�s claim. That is, we look for points in the set P c(S) de�ned as follows:

P c(S) = P (S) \ Sc

The Nash Rationing Solution (NRS) (Mariotti and Villar, 2005) associates with each prob-

lem (S; c) 2 � the set of points (called NRS points) s� 2 P c(S) which have the following

properties: there exists p� 2int � (the interior of the unit simplex) such that

p�(c� s�) � p�(c� s) for all s 2 S; (2)

p�i (ci � s�i ) = p�j(cj � s�j) for all i 6= j 2 N: (3)

Since S is convex, (2) implies that p� must be the also the norm vector of a supporting

hyperplane to S at s�. The second property (3) imposes additional �equity�constraints, so

that even if there are multiple tangent hyperplanes, p� is uniquely determined for every s�.

Note, however, that a rationing problem may have multiple Nash rationing solutions.

In the rest of this section, we present two properties of NRS that will be useful in

this paper to visualize and interpret the results. First, observe that an NRS s� is the

centre of gravity of the polyhedron determined by the portion of the supporting hyperplane

p� (c� x) = p� (c� s�) contained in the negative orthant with origin c.
4The convention for vector inequalities is: �; >; >>, and for subsets we use � to denote weak inclusion.
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Lemma 1 Let si be the intersection point of the supporting hyperplane of S at s� with the

ith axis emanating from c. Then we have

(c� s�) =
X
i

1

n

�
c� si

�
: (4)

Proof. Note �rst that si can be de�ned by

p�
�
c� si

�
= p�i

�
ci � sii

�
= p� (c� s�) for all i 2 N: (5)

so that

p�i =
p�j(cj � s�j)
(ci � s�i )

for all i 6= j

(by (3)) into (5), we obtain that for all i 6= j,

p� (c� s�) =
p�j(cj � s�j)
(ci � s�i )

�
ci � sii

�
;

) (ci � s�i ) =
p�j(cj � s�j)
p� (c� s�)

�
ci � sii

�
;

)
X
j2N
(ci � s�i ) =

X
j2N

p�j(cj � s�j)
p� (c� s�)

�
ci � sii

�
;

) (ci � s�i ) =
1

n

�
ci � sii

�
;

, (c� s�) =
X
i

1

n

�
c� si

�
as claimed.

Given any rationing problem (S; c), we de�ne that for all i 2 N ,

fi(s�i) = max si s.t. (si; s�i) 2 S:

The closeness and convexity of S implies that fi(�) is weakly monotonic, concave, and contin-

uous. With loss of generality, we normalize the problem so that c = 0 and ri = fi(c�i) = �1.

Under such normalization, the most relevant part of feasible set will be S \ [0; 1]n, as illus-

trated in Figure 1.
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Figure 1: A normalized rationing problem.

For a normalized rationing problem (S; c), s� 2 S is a Nash rationing solution (NRS) if

and only if there exists p� 2 � such that

p�s� � p�s for all s 2 S; (6)

p�i s
�
i = p�js

�
j for all i 6= j 2 N: (7)

Note that all Nash rationing solutions must be in S \ [0; 1]n.

3 A Bargaining Mechanism

Consider the following bargaining mechanism with in�nite horizon where players take turns

in making proposals. In period t = kN + i for k 2 K (non-negative integers) and i 2 N ,

player i proposes a feasible alternative si 2 S. Then the other players simultaneously

decide whether to accept or to reject player i�s proposal si 2 S. If player i�s proposal is

accepted unanimously, then it will be implemented immediately. Otherwise, with probability

� 2 (0; 1), the mechanism proceeds to the next period t + 1, in which player i + 1 proposes
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(de�ne n + 1 = 1); and with probability 1 � � 2 (0; 1), the mechanism is terminated

exogenously. In the latter case, every responding player j 6= i receives his full claim cj = 0,

and the proposing player i receives the residual ri = fi(c�i) = �1.

The non-cooperative game described above closely resembles the multilateral bargaining

game of Haller (1986), that generalizes the bilateral bargaining model of Rubinstein (1982).

The key feature in this mechanism is, however, the allocation in the case of exogenous

termination depends on the identity of the proposing player in the current period. From

the setup of the problem, this game is also related to the bargaining game with non-convex

feasible set of Herrero (1989). This bargaining mechanism is a non-cooperative game of

perfect information. Histories and strategies are de�ned as usual. After any �nite history

(no agreement has reached and the game has not been terminated), a strategy pro�le speci�es

a proposal by the proposing player, and responding players�votes to every possible proposal.

Players�preferences are represented by their von Neumann Morgenstern utility functions

with no time discounting.

As in multilateral bargaining games with non-convex feasible sets, there are multiple sub-

game perfect equilibrium outcomes. In this paper, we are interested in stationary subgame

perfect equilibrium (SSPE) outcomes. A stationary strategy pro�le can be simply described

by a list of n feasible allocations fs1; : : : ; sng � S, such that player i always proposes si 2 S

whenever he proposes, and accept player j�s proposal if and only if his payo¤ in the proposal

is not less than sji for all j 6= i. A subgame perfect equilibrium is a SSPE if its strategy pro�le

is stationary. Our next proposition provides a set of necessary and su¢ cient conditions for

such a stationary strategy pro�le to be a SSPE.

Proposition 2 The stationary strategy pro�le hs1; : : : ; sni constitutes a SSPE if and only

if, for all i; j 2 N ,

sii = fi(s
i
�i) and sij = �

hj�ii � sjj; (8)
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where

hj � ii =
�
j � i; if j � i � 0;
N + j � i; otherwise.

Proof. According to the mechanism, hj � ii is the number of periods that player j will

propose after player i�s proposal is rejected in the current period. By (8), sij is player j�s

expected continuation payo¤ after player i�s proposal is rejected. Note that after player i�s

proposal is rejected, player j�s continuation payo¤ is

(1� �)0 + �si+1j = �
�
(1� �)0 + �si+2j

�
= � � � = �hj�iisjj:

Therefore, it is sequentially rational for player j to accept player i�s proposal if and only if

player j�s payo¤ is not less than sij.

Now we show that whenever player i proposes, player i will propose si by (8), rather

than demand more than sii. Suppose that player i deviates from such a stationary strategy

pro�le by demanding more than sii. It is then necessary to o¤er less to some other players so

that such a proposal will be rejected. According to the mechanism, after player i�s proposal

is rejected, his expected continuation payo¤ will be

(1� �)ri + psi+1i (9)

On the other hand, if player i proposes si as speci�ed by the strategy pro�le, he will receive

sii = fi(s
i
�i) = fi

�
(1� �)0�i + �si+1�i

�
� (1� �)fi (0�i) + �fi

�
si+1�i

�
(10)

due to the concavity of fi(�). The fact that si+1 = (si+1i ; si+1�i ) 2 P 0(S) implies that si+1i �

fi
�
si+1�i

�
. (9) and (10) then imply that player i will propose si whenever he proposes, which

concludes this proof.

Our next proposition ensures the existence of a solution to the equation system of (8),

and hence the existence of a SSPE in this mechanism. In addition, the result also shows

that in any SSPE, every player receives a negative payo¤. In other words, nobody receives

his full claim in any SSPE.
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Proposition 3 Equation system (8) admits, at least, one solution. Moreover, for any solu-

tion fs1; : : : ; sng of (8), we have sii < 0 for all i 2 N .

Proof. Since fi(�), for all i 2 N , is continuous and maps any point in [�1; 0]n�1 into

[�1; 0],

F (x) �

0BBB@
f1 (�x2; �

2x3; :::; �
n�1xn)

f2 (�
n�1x1; �x3; :::; �

n�2xn)
...
fn (�x1; �

2x2; :::; �
n�1xn�1)

1CCCA
is continuous mapping that maps from [�1; 0]n into itself. Brower�s �xed point theorem then

implies that there exists a �xed point x� = F (x�) 2 [�1; 0]n. Let sii = x�i and s
j
i = �

hi�ji � sii
for all i 6= j 2 N . It is straightforward that fs1; : : : ; sng is a solution to equation system (8).

We now prove that sii < 0 for all i 2 N by contradiction. Note that (0; : : : ; 0) =2 S implies

that (0; : : : ; 0) cannot be a solution to (8). Without loss of generality, suppose that x�1 = 0

and x�2 < 0. Then s
i
1 = 0 for all i 2 N by construction. Note that

s1 = (0; �x�2; : : : ; �
n�1x�n) � (0; x�2; : : : ; �n�2x�n) = s2:

The last inequality implies that if player 2 proposes s1 2 S instead of s2 2 S, s1 2 S will be

accepted by all other players and player 2 he will receive �x�2. Since x
�
2 < 0 and � 2 (0; 1),

we have �x�2 > x
�
2, which is contradictory for fs1; : : : ; sng being the equilibrium proposals.

For convenience, a SSPE can be represented by vector (s11; : : : ; s
n
n) and, by Proposition

2, the corresponding equilibrium proposals are

�
s1 � � � sn

�
=

0BBB@
s11 �n�1s11 � � � �s11
�s22 s22 �2s22
...

. . .
...

�n�1snn �n�2snn � � � snn

1CCCA : (11)

We write a set of equilibrium proposals as a n� n matrix for later reference.
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4 Implementation

Even when n = 2, there could be multiple SSPE outcomes. For example, consider a normal-

ized rationing problem (S; 0), where

S =
�
(s1; s2) 2 R2� : s2 � �1� 3s1; s1 � �1� 3s2

	
:

For su¢ ciently large � 2 (0; 1), there are three stationary equilibria:

x1 � 1
3+3�

� 1
1+�

� 1
3�+1

x2 � 1
1+�

� 1
3+3�

� 1
3�+1

Note that as �! 1, these three SSPE outcomes converges to the three Nash rationing so-

lutions of this rationing problem, namely,
�
�1
6
;�1

2

�
,
�
�1
2
;�1

6

�
and

�
�1
4
;�1

4

�
. This example

demonstrates two important facts: First, for a rationing problem, there could be multiple

SSPE outcomes. In fact, there can be even continuum stationary subgame perfect equilib-

rium outcomes if the Pareto frontier of S coincides part of a rectangular hyperbola. Second,

as � goes to one, the limit of any convergent sequence of stationary subgame equilibrium

outcomes is a Nash rationing solution of the underlining rationing problem.

To order to present these results formally, let '(�) � S denote the set of SSPEs outcomes

(player 1�s proposals) in the bargaining mechanism with continuation probability � 2 (0; 1),

and �(1) to be the set of NRSs to the normalized rationing problem (S; c). One may consider

'(�) : (0; 1] 7! S as a correspondence. Our main result asserts that correspondence '(�) is

left upper hemi continuous at � = 1. In other words, any limit of SSPE outcomes is a NRS.

Proposition 4 If s1(�) 2 '(�) converges as �! 1, i.e., lim�!1 s
1(�) = s�, then s� 2 �(1).

Proof. For any � 2 (0; 1), let fs1; : : : ; sng be a set of equilibrium proposals (that depend

on �). First, note that these n equilibrium proposals are linearly independent since the
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determinant of (11) is���������
s11 �n�1s11 � � � �s11
�s22 s22 �2s22
...

. . .
...

�n�1snn �n�2snn � � � snn

��������� =
nY
i=1

sii �

���������
1 �n�1 � � � �
� 1 �2

...
. . .

...
�n�1 �n�2 � � � 1

���������
(multiply the last row by �k and
substract it from the k-th row)

=
nY
i=1

sii �

���������
1� �n 0 � � � 0
� 1 0
...

. . .
...

�n�1 �n�2 � � � 1

���������
= (1� �n)n

nY
i=1

sii 6= 0;

due to the second part of Proposition 3. Given that fs1; : : : ; sng are linearly independent in

Rn, they span a unique hyperplane. Denote the normalized norm vector the such a unique

hyperplane by p 2 �. Since the unit simplex� is compact, without loss of generality, assume

that p ! p� 2 � for (any sequence) � ! 1. By construction, we have that for all i 2 �,

si ! s� as �! 1. Since both si and si+1 are on the hyperplane with norm vector p, we have

p � (si � si+1) = (1� �n�1)pisii + (�� 1)
X
j 6=i

pjs
i+1
j = 0

) 1� �n�1
1� � pis

i
i =

X
j 6=i

pjs
i+1
j : (12)

As �! 1, by the L�hospital rule, (12) becomes

(n� 1)p�i s�i =
X
j 6=i

p�js
�
j ) pis

i
i =

nX
j=1

p�js
�
j :

Therefore, p�i s
�
i = p

�
js
�
j for all i 6= j.

5 Concluding Remarks

To conclude, we provide an example where the SSPE correspondence '(�) is not left lower

hemi continuous at � = 1. Consider a normalized rationing problem (S; c), where

S =

�
(s1; s2) 2 R2� : s1 � �1� 2s2; s2 � �1�

3

2
s1

�
:
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Figure 2: A rationing problem with two NRSs and one SSPE.

Note that there are two Nash rationing solutions:
�
�1
2
;�1

4

�
and

�
�1
3
;�1

2

�
. This rationing

problem is illustrated in Figure 2.

For all � 2 (0; 1), the bargaining mechanism has a unique NRS. Depending on the value

of �, equilibrium proposals may be on the two linear segments of the Pareto frontier of S, or

the same linear segment. Recall that s11 < �s
1
1 = s

2
1 and s

2
2 < �s

2
2 = s

1
2, there are three cases

to consider.

Case 1: Suppose fs1; s2g is a SSPE, where s1 and s2 are on the two linear segments. Then

we must have

s11 = �1� 2�s22 and s22 = �1�
3

2
�s21;

which yield that s11 =
1�2�
3�2�1 and s

2
2 =

2�3�
6�2�2 . Note that s

1 and s2 are on the two linear

segments if and only if

1� 2�
3�2 � 1 � �

1

2
and

2� 3�
6�2 � 2 � �

1

4
;

which are true if and only if � 2
�
0; 1

3

�
.

Case 2: Suppose fs1; s2g is a SSPE, where s1 and s2 are on the �rst linear segment. Then

we must have

s11 = �1� 2�s22 and �s11 = �1� 2s22;

13



which yield that s11 = � 1
�+1

and s22 = � 1
2�+2

. Note that s1 and s2 are on the �rst linear

segment if and only

� 1

�+ 1
� �1

2
and � 1

2�+ 2
� �1

4
:

However, the second inequality is no true for all � 2 (0; 1), which means that Case 2

is not possible.

Case 3: Suppose fs1; s2g is a SSPE, where s1 and s2 are on the second linear segment.

Then we must have

s22 = �1�
3

2
�s11 and �s22 = �1�

3

2
s11;

which yield that s11 = � 2
3�+3

and s22 = � 1
�+1
. Note that s1 and s2 are on the second

linear segment if and only

� 2

3�+ 3
� �1

2
and � 1

�+ 1
� �1

4
;

which are true if and only if � 2
�
1
3
; 1
�
.

To summarize, the bargaining mechanism for the ratting problem in this example has a

unique SSPE outcome, and as � ! 1, such a unique SSPE outcome converge to the NRS�
�1
3
;�1

2

�
. Although

�
�1
2
;�1

4

�
is also a NRS of this problem, it cannot be the limit of SSPE

outcomes of the bargaining mechanism. In other words, the reverse of Proposition 4 does

not hold in general.
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