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1 Introduction

We introduce productivity risk in Diamond’s [1] formulation of Mirrlees’s [5] optimal

taxation model with quasi-linear utility. Such a risk makes income uncertain when

effort is assumed to be chosen before the realization of the productivity shock. Under

multiplicative shocks to productivity, we show that the optimal marginal tax rate can be

approximated, with any arbitrarily high level of accuracy, by the solution of a Cauchy-

Euler differential equation. This solution takes the simple form of a weighted sum of

power functions. We give sufficient conditions such that the approximated marginal tax

rate is either an increasing or a U-shaped function of income. In particular, increasing

marginal tax rates obtain if the distribution of the productivity shocks has a large enough

kurtosis and if one imposes that marginal tax rates should be positive (respectively

negative) for large (respectively small) incomes. Finally, we show that with income risk,

marginal tax rates generally do not vanish either under a Utilitarian criterion or at the

top and bottom of the income distribution.

As in Diamond [1] and Piketty [7], we assume quasi-linear utility (which is assumed

away by most papers in the literature on new dynamic optimal taxation that is reviewed

by Golosov et al. [2] and Kocherlakota [3]). In contrast to the approach of the problem

proposed in Mirrlees [6], we do not assume affine taxation and we characterize incentive-

compatible tax schedules. We also extend the analysis to incorporate risk aversion.
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2 The Model

Continuum of households with private information on their type ω ∈ [ω,ω], with ω > 0.

Each agent has quasi-linear utility c − v(l), where c > 0 is consumption and l > 0 is

effort at work, with v (l) > 0 and v (l) > 0.

Household’s effective productivity is εω, that is, the product of two components. In-

terpretation: ω reflects exogenous “skill” while the random variable ε is an ex-post pro-

ductivity disturbance that has (small enough) support [ε, ε] with unit mean and ε ≥ 0,

and the distribution of which does not depend on effort (“luck”),. In other words, there is

some uncertainty on how markets reward effort. Observed income ỹ ≡ εωl > 0 depends

both on skill and on luck. Therefore, agents differ both ex-ante, as they have different

skills, and ex-post, because they may experience different realizations of the productivity

shock. Alternatively, ε can be interpreted as a forecasting error.

Densities and cumulative distributions: f(ω) and F (ω) for skill, g(ε) and G(ε) for

productivity shock. Both are continuous. We assume that ε
ε εdG(ε) = 1.

After-tax income equals consumption c = ỹ − t[ỹ], where t[ỹ] is the tax schedule that

is set by the government and taken as given by each household.

Each type-ω household chooses effort l so as to maximize expected utility, defined as:

V ≡
ε

ε
{εωl − t[εωl]− v(l)}dG(ε).

FOC of this problem is :

v (l) = ω[1−
ε

ε
εt [εωl]dG(ε)]. (1)
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Equation (1) defines optimal effort l(ω) and, therefore, consumption is c(ω, ε) ≡ εy(ω)−

t[εy(ω)], with y(ω) ≡ ωl(ω). Also V (ω) ≡ ε
ε {εωl(ω)− t[εωl(ω)]− v(l(ω))}dG(ε) for all

ω ∈ [ω,ω]. Note that the second-order conditions are:

v (l) + ω2
ε

ε
ε2t [εωl]dG(ε) ≥ 0, (2)

for all types ω. We prove, in Proposition 3.2 to be presented later on, that the optimal

tax schedule satisfies conditions (2).

Government does observe neither effort nor skill. However, agents report their income

to the government, whose objective is to design an incentive-compatible tax schedule

that maximizes social welfare from an ex-ante point of view, that is:

ω

ω
W [

ε

ε
{c(ω, ε)− v(l(ω))}dG(ε)]dF (ω), (3)

where W [x] > 0 > W [x] is a social welfare function that exhibits inequality aversion.

Timing: household learns his type ω; government proposes tax schedule; household

chooses labor effort, taking into account taxes; productivity shocks are realized and

post-tax income distributed.

2.1 Incentive-Compatible Tax Schedules

Define:

V̂ (ω ,ω) ≡
ε

ε
{c(ω , ε)− v(y(ω )

ω
)}dG(ε)

as the expected utility of a type-ω household when he reports a type ω to the government.

Therefore, one has that V (ω) = V̂ (ω,ω) by definition. By the Revelation Principle,
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incentive-compatible tax schedules ensure both truth-telling and optimal (second-best)

effort.

Lemma 2.1 (Incentive-Compatibility Constraints)

Suppose that effort disutility is strictly increasing and strictly convex, that is, v (l) > 0

and v (l) > 0 for all l > 0. Then any incentive-compatible tax schedule satisfies the

following first-order conditions:

V (ω) = l(ω)v (l(ω))/ω, for all types ω ∈ [ω,ω]. (4)

If, in addition, y (ω) > 0 for all ω ∈ [ω,ω], then the truth-telling second-order conditions

hold.

Proof: Under the Extended Revelation Principle (see Laffont and Martimort [4, p. 274]),

we can restrict the analysis to mechanisms that are truth-telling, that is, such that the

following condition is met:

ω = argmax
ω
V̂ (ω ,ω) (5)

where V̂ (ω ,ω) ≡ ε
ε {c(ω , ε)− v(y(ω )/ω)}dG(ε).

FOC of problem in equation (5) is ∂V
∂ω (ω,ω) = 0, that is:

dω
ε

ε
c(ω , ε)dG(ε) = dω v(

y(ω )

ω
)

at ω = ω, where the notation dx stands for the total derivative with respect to x. This

can be rewritten as:

ε

ε
dωc(ω, ε)dG(ε) = v (l(ω))[l (ω) + l(ω)/ω]
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But taking the derivative of V (ω) with respect to ω yields:

V (ω) =
ε

ε
dωc(ω, ε)dG(ε)− l (ω)v (l(ω))

or, combining with the latter equality, equation (4) in the lemma.

SOC of problem in (5) is ∂2V
∂ω ∂ω (ω,ω) ≥ 0, that is:

y (ω)

ω2
[v (l) + v (l)

y(ω)

ω
] ≥ 0. (6)

Under the assumptions that both v (l) > 0 and v (l) > 0 for all l > 0, and y (ω) > 0

for all ω ∈ [ω,ω], condition (6) is met. It is well known that under the assumptions of

both linear consumption utility and increasing-convex disutility from effort, the Spence-

Mirrlees condition is met. To get this result, define expected utility as a function of the

type, before-tax income, and disposable income, that is:

Ṽ (ω, y, c) =
ε

ε
{c(·)− v(y(·)

ω
)}dG(ε).

Then one has that ∂cṼ (·) = 1 so that ∂ω(∂yṼ (·)/∂cṼ (·)) = ∂2ωyṼ (·), where:

∂2ωyṼ (·) =
1

ω2
[v (l) + v (l)

y(ω)

ω
] > 0

when v (l) > 0 and v (l) > 0, so that the Spence-Mirrlees condition holds. Therefore,

our assumptions on v(l) implies both that the Spence-Mirrlees condition is met and that

y (ω) > 0 for all ω ∈ [ω,ω] is the SOC (6) of the incentive problem. 2

2.2 Optimal Marginal Tax Rates

This section derives, by following closely Diamond [1, pp. 93-94], the optimal marginal

tax rates.
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Proposition 2.1 (Optimal Marginal Tax Rates)

Under the assumptions of Lemma 2.1, optimal marginal tax rates are characterized by

the following conditions:

ε
ε εt [εωl(ω)]dG(ε)

1− ε
ε εt [εωl(ω)]dG(ε)

= {1− F (ω)
ωf(ω)

}{1− D(ω)
D(ω)

}{ 1
l
+ 1}, (7)

for all types ω ∈ [ω,ω], where D(ω) ≡ [ ω
ω W [V (ω)]f(ω)dω]/[1 − F (ω)], and l is the

elasticity of labor supply with respect to the net wage.

Proof: The problem that the government faces is to maximize social welfare (3) un-

der the incentive constraints (4). We further impose that budget be balanced, that is,

ω
ω

ε
ε t[εωl(ω)]dG(ε)dF (ω) = 0. This budget constraint can be written, using the defini-

tion of expected utility V (ω) = ε
ε {εωl(ω)−t[εωl(ω)]}dG(ε)−v(l(ω)), with ε

ε εdG(ε) = 1,

as:

ω

ω
{y(ω)− v(l(ω))− V (ω)}dF (ω) = 0.

The problem is then to:

maximize
ω

ω
W [V (ω)]dF (ω) (8)

subject to the incentive constraints:

V (ω) = l(ω)v (l(ω))/ω, for all types ω ∈ [ω,ω], (9)

and the balanced-budget requirement:

ω

ω
{y(ω)− v(l(ω))− V (ω)}dF (ω) = 0. (10)



8

Define λ(ω) and μ as the multiplier of, respectively, (9) and (10). Forming the Hamilto-

nian:

H(l(ω), V (ω)) ≡W [V (ω)]f(ω) + λ(ω)[l(ω)v (l(ω))/ω] + μ[y(ω)− v(l(ω))− V (ω)]f(ω),

(11)

and using Pontryagin’s Principle, one gets the following first-order conditions. First,

∂l(ω)H(l(ω), V (ω)) = 0 is:

λ(ω)[v (ω) + l(ω)v (ω)]/ω + μf(ω)[ω − v (l(ω))] = 0. (12)

Second, −∂V (ω)H(l(ω), V (ω)) = λ (ω) is:

f(ω)(μ−W [V (ω)]) = λ (ω). (13)

But ω
ω λ (ω)dF (ω) = λ(ω)− λ(ω) = 0. Therefore, (13) can be rewritten as:

μ =
ω

ω
W [V (ω)]f(ω)dω. (14)

Moreover, ω
ω λ (ω)dF (ω) = −λ(ω) or, using (13) and (14):

λ(ω) =
ω

ω
W [V (ω)]f(ω)dω − μ[1− F (ω)].

The latter equality can be written, by defining a new function:

D(ω) ≡ [
ω

ω
W [V (ω)]f(ω)dω]/[1− F (ω)],

so that μ = D(ω), as:

λ(ω) = [1− F (ω)][D(ω)−D(ω)] (15)

Note then that μ = D(ω), which, if combined with (15), allows to write (12) as:

ω − v (l(ω))
v (l(ω))

= {1− F (ω)
f(ω)

}{1− D(ω)
D(ω)

}{ 1
l
+ 1}, (16)
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where l denotes the elasticity of labor supply with respect to the net wage. Recalling

equation (1), one derives that:

ω − v (l(ω))
v (l(ω))

=

ε
ε εt [εωl(ω)]dG(ε)

1− ε
ε εt [εωl(ω)]dG(ε)

. (17)

Finally, using the latter relation, equation (16) is written in the following form, which

characterizes optimal marginal tax rates:

ε
ε εt [εωl(ω)]dG(ε)

1− ε
ε εt [εωl(ω)]dG(ε)

= {1− F (ω)
ωf(ω)

}{1− D(ω)
D(ω)

}{ 1
l
+ 1}, (18)

as stated in equation (7) of the proposition. 2

Equation (7) can be rewritten as:

ε

ε
εt [εωl(ω)]dG(ε) =

Λ

1 + Λ
, (19)

where Λ ≡ {1−F (ω)ωf(ω) }{1− D(ω)
D(ω)}{ 1l +1} is the very same term that appears in Diamond’s

[1] characterization of optimal marginal tax rates when there is no income risk. In

particular, if the planner adopts a Utilitarian criterion, then Λ = 0 and all agents face a

zero marginal tax rate in the absence of productivity risk. The next section shows that

this implication does not generally hold when risk is introduced.

3 Income Risk and Optimal Marginal Tax Rates

3.1 Approximating the Optimal Marginal Tax Rates

In this section, we provide a way to compute and approximate the integral term that

appears in the left-hand side of equation (7). This integral is obviously the sum of the
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two terms: the average marginal tax rate and the covariance between the random shock

and the marginal rate. It turns out to be more convenient to keep the integral and to

define h(ε) ≡ εt [εy]. If h is assumed to be analytic on [ε, ε] (as we show below to be the

case), then a Taylor expansion around the unit mean gives us that:

h(ε) =
∞

n=0

h(n)(1)
(ε− 1)n
n!

for all ε ∈ [ε, ε] (20)

where h(n)(x) ≡ dnh(x)/dxn denotes the n-th order derivative. From the definition of h,

we get that h(n)(1) = nyn−1t(n)[y] + ynt(n+1)[y], so that equation (20) is:

h(ε) =
∞

n=0

{nyn−1t(n)[y] + ynt(n+1)[y]}(ε− 1)
n

n!
. (21)

Therefore, we conclude that:

ε

ε
εt [εy]dG(ε) =

∞

n=0

{nyn−1t(n)[y] + ynt(n+1)[y]}μn
n!
, (22)

where μn ≡ ε
ε (ε− 1)ndG(ε) is the n-th central moment of the probability distribution

associated with G, with μ0 = 1 and μ1 = 0. Consequently, the characterization of

optimal marginal tax rates in equation (7) can conveniently be written as:

∞

n=0

{nyn−1t(n)[y] + ynt(n+1)[y]}μn
n!
=

Λ

1 + Λ

or, equivalently:

∞

n=0

{ynt(n+1)[y]}{μn + μn+1
n!

} = Λ

1 + Λ
. (23)

We have therefore proved the following statement.

Proposition 3.1 (Optimal Marginal Tax Rates II)

Under the assumptions of Proposition 2.1, the optimal marginal tax rates in equation
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(7) are equivalently characterized by:

∞

n=0

{ynt(n+1)[y]}{μn + μn+1
n!

} = Λ

1 + Λ
, (24)

where Λ ≡ {1−F (ω)ωf(ω) }{1 − D(ω)
D(ω)}{ 1l + 1} and μn ≡

ε
ε (ε− 1)ndG(ε) is the n-th central

moment of the income shock distribution G, with μ0 = 1 and μ1 = 0.

Now we take advantage of the characterization in equation (24) of Proposition 3.1 to

compute an approximation of marginal tax rates that allows us to derive analytically the

entire tax function. To this end, we state the following:

Definition 3.1 (n-th Order Approximation)

Define x(y) ≡ t [y]. Then given any integer n ≥ 1, an n-th order approximation of

ε
ε εt [εωl(ω)]dG(ε) is given by

n
i=0{yix(i)(y)}{μi + μi+1}/i!, with μn+1 = 0.

Then the solution of n
i=0{yix(i)(y)}{μi + μi+1}/i! = Λ/(1 + Λ), with μn+1 = 0, defines

an n-approximate optimal marginal tax rate function.

Finally, we are led to the following main result:

Theorem 3.1 (n-Approximate Optimal Marginal Tax Rates)

Under the assumptions of Proposition 2.1, an n-approximate optimal marginal tax func-

tion is the solution of the following Cauchy-Euler differential equation:

n

i=0

{yix(i)(y)}{μi + μi+1
i!

} = Λ

1 + Λ
, with μn+1 = 0. (25)

If, in addition, Λ is constant for all ω ∈ [ω,ω], then the n-approximate function is given
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by:

t [y] =
n

i=1

αiy
γi +

Λ

1 + Λ
, (26)

where the αi’s are real numbers and the γi’s are the real roots of the following n-th order

polynomial:

p(γ) ≡ 1 +
n

i=1

{μi + μi+1
i!

}{
i

j=1

γ + 1− j}, with μn+1 = 0. (27)

Proof: From Definition 3.1, we know that an n-th order approximation of equation (7)

is:

n

i=0

{yix(i)(y)}{μi + μi+1
i!

} = Λ

1 + Λ
, with μn+1 = 0, (28)

which is an n-th order Cauchy-Euler differential equation (that is, it involves the sum

over i = 0, 1, · · · , n of terms that are of the form βiy
ix(i)(y), where the βi’s are real

numbers). It is well known that the solutions of such differential equations are obtained

by looking first at the associated, homogeneous equation and by guessing that x(y) = yγ ,

which, once plugged into equation (28), gives:

yγ[1 +
n

i=1

{μi + μi+1
i!

}{
i

j=1

γ + 1− j}] = 0, with μn+1 = 0. (29)

Then if y > 0, the solution is known when we know the roots of the n-th order polynomial

p(γ) ≡ 1+ n
i=1{μi+μi+1i! }{ i

j=1 γ+1− j}, with μn+1 = 0. If the γi’s are real roots of p,

then the solution of the nonhomogeneous equation (28) is obtained by summing the solu-

tion to the homogeneous counterpart and a particular solution, which is easily found here

to be the constant Λ/(1+Λ). Then the solution is x(y) = t [y] = n
i=1 αiy

γi+Λ/(1+Λ),

as expressed in equation (26). 2
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Finally, the next proposition proves that the n-approximate tax schedule satisfies the

SOC in (2).

Proposition 3.2

Under the assumptions of Theorem 3.1, the second-order conditions of effort maximiza-

tion are met.

Proof: Equations (26) imply that t [y] = n
i=1 αiγiy

γi−1. Therefore, SOC (2) can be

written as:

v (l) +
n

i=1

αiγiω
γi+1lγi−1

ε

ε
εγi+1dG(ε) ≥ 0 (30)

for all types ω. To prove that the above inequality is satisfied under our assumptions,

we now prove that the second term in the left-hand side of (30) vanishes. To that end,

we take a 4-th order expansion of εγ+1 (which is an analytic function of ε) around the

unit mean and we get that:

ε

ε
εγ+1dG(ε) = 1 + (γ + 1)

n

i=1

{ μi+1
i+ 1!

}{
i

j=1

γ + 1− j}. (31)

Finally, developing and identifying terms shows that 1+(γ+1) n
i=1{μi+1i+1! }{ i

j=1 γ+1−j}

indeed equals the polynomial p(γ) defined in (27). Because the γi’s involved in (30) are

roots of p, then one has that ε
ε ε

γi+1dG(ε) = 0 for all i. Therefore, this implies that

condition (30) is met under our assumption that v (l) > 0 for all l > 0. 2
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3.2 Increasing and U-shaped Patterns of Optimal Marginal Tax Rates

So as to underline the effect of income risk, we now take the example of a Utilitarian

planner, which implies that Λ = 0, as is well known (e.g. Salanié [9, p. 95]). When there

is no risk (i.e. ε = 1), equation (7) (or, for that matter, equation (24) with μn = 0 for all

n ≥ 1) indicates that all agents uniformly face a zero marginal tax rate. We now show

that this conclusion does not generally hold in the presence of risk. In particular, we

consider a 4-th order approximation, which is acceptable provided that the support [ε, ε]

is small enough. We show that under mild assumptions on the signs of the marginal tax

rates at both extremes of the income distribution, the shape of the marginal tax rate is

expected to be either increasing (that is, progressive) or U-shaped.

Two reasons account for choosing a 4-th order approximation. Most importantly, the

marginal tax rate then depends on the first four central moments of the shock distribu-

tion, so that the discussion is cast in terms of the variance, skewness and kurtosis. For

better approximations, the involved higher-order moments are less easily interpreted. In

addition, it is well known (from the Abel-Ruffini theorem), that there is no “simple”

formula for n-th order polynomial roots when n ≥ 5. In contrast, restricting the analysis

to n = 4 gives rise to a quartic equation for which formulas do exist.

Proposition 3.3 (A 4-th Order Approximation with Utilitarian Criterion)

Assume that the planner uses a Utilitarian criterion (so that Λ = 0) and consider,

following Theorem 3.1, a 4-th order approximation. Then:

p(γ) =
μ4
24
γ4 + (

μ3
6
− μ4
12
)γ3 + (

μ2
2
− μ4
24
)γ2 + (

μ2
2
− μ3
6
+
μ4
12
)γ + 1 (32)
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If the kurtosis μ4/μ
2
2 of the income shock distribution is large enough, then p(γ) has two

negative real roots and two positive real roots.

It follows that t [y] = 4
i=1 αiy

γi is a 4-approximate optimal marginal tax rate function,

where the αi’s are real numbers and the γi’s are the real roots of p(γ).

Proof: The polynomial p(γ) = μ4
24γ

4 + (μ36 − μ4
12 )γ

3 + (μ22 − μ4
24 )γ

2 + (μ22 − μ3
6 +

μ4
12 )γ + 1

is easily obtained, from equation (27), by developing and arranging terms. The roots of

p(γ) are shown to tend to −1, 0, 1 and 2 when μ4 tends to ∞ while the other moments

μ2 and μ3 are held constant. Because the product of the root is given by 24/μ4 (by the

Viète’s formula), which is positive, by continuity p(γ) has four real roots, two positive

and two negative, when μ4 is large enough. Given the variance μ2, this means that the

kurtosis μ4/μ
2
2 has to be large enough. Then the resulting function t [y] =

n
i=1 αiy

γi

solves the corresponding 4-th order Cauchy-Euler differential equation and is therefore

a 4-approximate optimal marginal tax rate function. 2

The foregoing proposition shows that if the distribution of productivity shocks is lep-

tokurtic, with high kurtosis and “fat tails”, then p has two pairs of positive and negative

real roots. This result applies to distributions that are symmetric (μ3 = 0) or asymmet-

ric (μ3 = 0) so that it is independent of the sign of the skewness μ3/μ
3/2
2 . We show next

that under additional mild assumptions, the resulting pattern of marginal tax rates is

either U-shaped or progressive. What remains to be determined in the formula given

in Proposition 3.3 (or, for that matter, in (26)) are the αi’s. It seems reasonable to

make further assumptions on the signs of the marginal tax rates that are acceptable by
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society at both extremes of the income distribution. First of all, let us suppose that

the marginal tax rate should be non-negative at “large” levels of income. If we define

and order (without loss of generality) the positive roots of p as γ1 > γ2 > 0, then this

implies that α1 and α2 cannot be both negative. In particular, a sufficient condition for

limy→∞ 2
i=1 αiy

γi > 0 is that both α1 > 0, α2 > 0. The latter assumption is stronger

than needed and it accordingly reflects the more demanding requirement that marginal

tax rates should be positive not only in the limit, but also at large levels of income. Sym-

metrically, assume that the marginal tax rate should be non-positive at “small” levels

of income. Then if 0 > γ3 > γ4 are the negative roots of p, one cannot have α3 and

α4 both positive. However, imposing α3 < 0 and α4 < 0 is sufficient for this purpose.

Such a stronger condition is interpreted as the fact that marginal tax rates should be

non-positive when income is in a right neighborhood of zero, and not only in the limit,

when income tends to zero. We can summarize these rather elementary observations in

the following statement.

Proposition 3.4 (Increasing Optimal Marginal Tax Rates)

Under the assumptions of Proposition 3.3, let γ1 > γ2 > 0 > γ3 > γ4 be the roots of

p(γ). Moreover, assume that the arginal tax rates are imposed to be positive (respectively

negative) for large enough (respectively small enough) incomes, that is, α1 > 0, α2 > 0,

α3 < 0, α4 < 0. Then the 4-approximate optimal marginal tax rate t [y] =
4
i=1 αiy

γi is

strictly increasing for all levels of income y > 0.

Proof: It is immediate to show that t [y] > 0 for all y > 0 under the assumptions of the

proposition. In addition, it is straightforward to show the marginal tax rate is positive
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(respectively negative) when y tends to∞ (respectively to 0) only if α1 > 0 (respectively

α4 < 0). Finally, the thresholds above (respectively below) which the marginal tax rate

is positive (respectively negative) is shown to decrease with α2 (respectively α3). 2

It is easy to generalize the above result to the case where Λ is positive and constant

for all ω ∈ [ω,ω]. In that case, the theory would predict that, absent risk, agents face

a flat pattern of marginal tax rates. However, adding risk dramatically changes the

conclusions. In particular, income risk implies that increasing marginal tax rates, as

observed in many countries, may well approximate the optimal tax schedule.

If the conditions in Proposition 3.4 are not satisfied, then U-shaped patterns may arise,

as we now show.

[TO BE WRITTEN]

3.3 Top and Bottom n-Approximate Optimal Marginal Tax Rates

It is well known that, in the absence of risk, zero marginal tax rates obtain at both

extremes of the skill distribution [ω,ω]. To see this, consider (7). One has that Λ ≡

{1−F (ω)ωf(ω) }{1 − D(ω)
D(ω)}{ 1l + 1)} is zero when either ω = ω (because the second bracketed

term in the expression of Λ equals zero) or ω = ω (because the first term in parentheses

vanishes). Therefore, one concludes from (7) that the marginal tax rate is then zero

when there is no risk. However, with income risk the marginal tax rates generally do not

vanish at the top and bottom of the type distribution. This is the case, for instance, in

the example of section 3.2, where a large kurtosis implies that the marginal rates at the
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minimum and maximum incomes are not zero.

Corollary 3.1 (Top and Bottom Optimal Marginal Tax Rates)

Under the assumptions of Proposition 3.3, the 4-approximate marginal tax rate is non-

zero both at the top and at the bottom of the income distribution.

It is evidently possible to generalize the above result to the case of any n-th order

approximation.

[TO BE WRITTEN]

3.4 Income Risk and The Empirical Distribution of Marginal Tax Rates

It is maybe most interesting to examine the implications of our main result when

applied to the interior of the skill distribution (that is, when Λ > 0). It is then useful

to compare our results with the sufficient conditions for increasing marginal tax rates

that are provided in Diamond [1]. A main implication of our results is that increasing

marginal tax rates are expected to obtain under weaker conditions when the “social

insurance” role of income taxation is introduced in the Mirrlees [5] model, in agreement

with intuition.

For instance, one could interpret our model as best describing the middle and upper

parts of the income distribution, rather than the lower part because optimal labor supply

may be zero at low γ’s. In comparison with Diamond [1], our result suggests that the

marginal tax rate curve is predicted, in the model with risk, both to slope up above
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a lower threshold value and to have higher values above the threshold. Saez [8] has

estimated such a threshold in the model without risk and he has found it to be about

$75, 000 on a yearly basis. In view of our results, it remains to be seen if the presence of

risk makes the threshold closer to what we actually observe. Another important question

is whether, in the presence of risk, increasing marginal tax rates would still obtain, under

a Pareto skill distribution and a weighted utilitarian social welfare function, when the

labor supply elasticity is not constant or, more generally, when Λ is not constant.

[TO BE WRITTEN]

4 Extension: Risk Aversion

In this section, we ask whether our main result is robust with respect to the introduc-

tion of risk aversion. We focus on the following utility functions: either u[c − v(l)] or

u[c] − v(l), where u is increasing and concave. The former case incorporates no income

effects while the latter allows for income effects.

[TO BE WRITTEN]
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[9] Salanié, B. (2003). The economics of taxation. Cambridge: MIT Press.


