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Abstract

It is well known that many social decision procedures are manip-
ulable through strategic behavior. Typically, the decision procedures
considered in the literature are social choice correspondences. In this
paper we investigate the problem of constructing a social welfare func-
tion that is non-manipulable. In this context, individuals attempt to
manipulate a social ordering as opposed to a social choice.

Using techniques from an ordinal version of fuzzy set theory, we
introduce a class of ordinally fuzzy binary relations of which exact bi-
nary relations are a special case. Operating within this family enables
us to prove an impossibility theorem. This theorem states that all
non-manipulable social welfare functions are dictatorial, provided that
they are not constant. This theorem generalizes the one in Perote-
Peña and Piggins [Perote-Peña, J., Piggins, A., 2007. Strategy-proof
fuzzy aggregation rules. J. Math. Econ. vol 43, p564-p580].

1 Introduction

The fact that many social decision procedures are manipulable through strate-
gic behavior is now well understood in the literature. Typically, the social
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decision procedures considered in the literature have been social choice cor-
respondences. A social choice correspondence selects a nonempty subset of
the feasible set of alternatives at each profile of individual preferences. If
these chosen subsets contain exactly one element, then we obtain the special
case of a social choice function.

In this paper, we investigate the problem of constructing a social welfare
function that is non-manipulable. In this context, individuals attempt to
manipulate a social ordering as opposed to a social choice.1

In order to illustrate the importance of strategic behavior in this setting,
consider the following example. Imagine that an academic department wishes
to appoint a new member, in order to fill a vacant position. Five candidates
have been interviewed for the position and each member of the department
has been asked to rank them. In accordance with an established procedure,
the chair of the department aggregates these individual rankings using the
Borda rule and then uses this aggregate ranking to determine who is to receive
the offer of appointment. Imagine that the chair makes the initial offer to the
candidate who emerges at the top of this aggregate ranking (ties are broken
by employing a device that gives each candidate an equal probability of being
selected). If the top-ranked candidate rejects the offer then the chair either
offers the position to the other tied candidate(s), or moves down the list to
the second-placed candidate. This process continues until someone accepts
the position.

When placing the candidates in order, each member of the department
has no idea as to which of the candidates would accept the position in the
event of it being offered to them. For instance, a candidate might decline
the position if he or she has already received a better offer elsewhere. This
means that it is not just the candidate(s) at the top of the aggregate ordering
that matters to the individual department member, but the entire ordering
itself becomes relevant.

Naturally, an individual member of the department could behave strate-
gically in such circumstances and submit an insincere ranking as opposed to
a sincere one. This is done in the hope that the aggregate ranking which
emerges from such strategic behaviour is “closer” to the member’s truthful
ranking than would otherwise be the case. Therefore, studying the manipu-
lability of social welfare functions is important in its own right. This is the
problem we analyze in this paper.

1There has been hardly any treatment of manipulation in the context of social welfare
functions. Exceptions are Pattanaik (1973) and Bossert and Storcken (1992).
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1.1 Preferences

An important feature of the paper is the assumption we make about pref-
erences. Using techniques from an ordinal version of fuzzy set theory, we
introduce a class of ordinally fuzzy binary relations (OFBRs) of which ex-
act binary relations are a special case. We use these OFBRs to represent
preferences, both individual and social. The assumption that preferences
are represented by OFBRs gives us some mathematical generality. However,
it can also be given an independent philosophical motivation. In order to
illustrate this, let us return to our original example.

Suppose that a member of our hypothetical department is comparing two
possible candidates, and what she cares about is how they fare with respect
to teaching and research. Imagine that one of the candidates (candidate A)
is better at research than the other (candidate B). To complicate matters,
imagine that candidate A is worse at teaching than candidate B. How would
our department member place these two candidates in order? Often it is
hard to say, but not always.

For instance, imagine that candidate A is much better at research than
candidate B and only slightly worse at teaching. In such cases, it seems
reasonable to suppose that our department member would place A above B
in her ranking. The reason for this is that most members of an academic
department would probably be willing to trade-off slightly inferior teaching
quality in order to acquire a colleague who is significantly better at research.

Unfortunately, things are not always as straightforward as this. For in-
stance, what if candidate A is much worse at teaching than candidate B? In
cases like this, it might be extremely difficult for our department member to
place the two candidates in a clear order. She might feel that to some extent
candidate A is better than candidate B. At the same time however, she
might also feel that to some extent candidate B is better than candidate A.
These conflicting feelings may be difficult to integrate into a clear expression
of preference or indifference.

In such cases we could perhaps describe our department member’s pref-
erences as vague. Fuzzy binary relations are a natural mathematical device
for representing preferences like these. To see why, recall that in our example
the department member feels that to some extent candidate A is better than
candidate B, and yet at the same time he or she also feels that to some extent
candidate B is better than candidate A. In the version of fuzzy set theory
that we use in this paper, which derives from Goguen (1967), these “extents”
are elements of a set L of which there are at least two members. Importantly,
in Goguen’s theory the elements of L are ordered (possibly incompletely) by
a binary relation ". A special case of this framework is the standard version
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of fuzzy set theory. In the standard version L is taken to be [0, 1] and the
elements of L are ordered by ≥.

An OFBR defined on a set of alternatives X is a function f : X×X → L.
If the semantic concept the fuzzy relation f represents is (weak) preference
then f(x, y) can be interpreted as the degree of confidence that “x is at least
as good as y”. This is not the only possible interpretation of f(x, y). It can
be interpreted as the degree of truth of the sentence “x is at least as good as
y”.

1.2 Outline of the paper

This paper is a contribution to the literature on social choice with fuzzy
preferences.2 This literature has been motivated by the idea that fuzziness
can have a “smoothing” effect on preference aggregation and so perhaps the
famous impossibility results of Arrow (1951) and others can be avoided. Un-
fortunately, this is not always the case.3 In fact, in this paper a very strong
concept of dictatorship emerges.

We investigate the structure of social welfare functions which, for every
permissible profile of fuzzy individual preferences, specify a fuzzy social pref-
erence. We show that all social welfare functions that are non-manipulable
and not constant must be dictatorial. This means that there is an individual
whose fuzzy preferences determine the entire fuzzy social ranking at every
profile in the domain of the social welfare function. To prove this theorem,
we show that all social welfare functions that are non-manipulable and not
constant must satisfy counterparts of independence of irrelevant alternatives
and the Pareto condition.

Of course, this result is a fuzzy version of the Gibbard-Satterthwaite
theorem but in the context of social welfare functions.4 A proof of this
theorem first appeared in Perote-Peña and Piggins (2007). However, in that
paper L was assumed to be [0, 1]. That proof involved an unnecessarily

2A comprehensive survey of the growing literature is Salles (1998). The papers that are
closest to this one are Barrett, Pattanaik and Salles (1992) and Basu, Deb and Pattanaik
(1992). Both of these papers consider “ordinal” approaches to fuzziness. The former paper
deals with social choice theory explicitly.

3Barrett, Pattanaik and Salles (1986), Dutta (1987), Banerjee (1994), Richardson
(1998) and Dasgupta and Deb (1999). Results using lattice theory have been obtained by
Leclerc (1984, 1991) and Leclerc and Monjardet (1995).

4Gibbard (1973) and Satterthwaite (1975). An important precursor to the present
study in the case of exact preferences is Pattanaik (1973). To the best of our knowledge,
the only other papers that consider the manipulability problem in a fuzzy framework are
Tang (1994), Abdelaziz, Figueira and Meddeb (2008), Côrte-Real (2007) and Perote-Peña
and Piggins (2007a, 2007b).
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complicated argument involving vectors. This paper contains a new proof of
this theorem which is considerably simpler than the original. Some features of
the original proof are retained, but the complicated vector argument has been
replaced. Finally, at the end of the paper, we consider a way of circumventing
our impossibility theorem.

What is responsible for the impossibility theorem? The requirement that
the social welfare function should not be constant is mild. It requires that,
for each pair of social alternatives, two profiles exist in the domain of the
social welfare function which produce different social values in {0, 1} for this
pair. This is reminiscent of the standard non-imposition axiom in social
choice theory. This condition rules out social welfare functions which assign
constant values to pairs of alternatives, irrespective of individual preferences.

Given this, one can suspect that the theorem derives from our non-
manipulation condition and the assumption we make about the transitivity
of fuzzy preferences. Let us deal with non-manipulation first. On first im-
pressions, it does seem desirable for social welfare functions to be immune
to preference misrepresentation. Indeed, this normative position seems to be
implicitly accepted in the large literature on strategy-proof social choice.5 If
we accept this normative position, then obviously we need some way of pro-
hibiting profitable misrepresentation within the framework of social welfare
functions. How do we accomplish this?

The condition we employ can be described as follows. Take any pair of
alternatives (a, b) and any fuzzy preference profile in which you truthfully
report your preferences. At this profile you are confident to some degree
that “a is at least as good as b”. However, imagine that at this profile the
social welfare function assigns a larger social degree of confidence to (a, b)
than the one you happen to hold. Then, if the social welfare function is non-
manipulable, whenever you misrepresent your preferences the social degree
assigned to (a, b) will either rise, or remain constant. Conversely, if the
social degree assigned to (a, b) is smaller than your individual (a, b) value,
whenever you misrepresent your preferences the social degree assigned to
(a, b) will either fall, or remain constant.

Loosely speaking, what this means is as follows. Whenever someone uni-
laterally switches from telling the truth to lying, the fuzzy social ranking
moves “at least as far away” from their truthful ranking as was initially the
case. In other words, whenever someone misrepresents their preferences, the
“distance” between their truthful ranking and the social ranking (weakly)
increases. In such circumstances, individuals do not gain by misrepresenting

5A contrary view is expressed by Dowding and van Hees (2006). An introduction to
the literature is Barberà (2001).
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their preferences. We say that a social welfare function is non-manipulable
if and only if it satisfies this property.

Obviously there may be other ways of formulating a non-manipulation
condition within the framework of social welfare functions, but this one
strikes us as a natural place to start. Weaker conditions are possible, but in-
evitably they would be more controversial as conditions of non-manipulation

We now deal with transitivity. As with all papers that deal with fuzzy
preferences, the way the transitivity condition is formulated is crucial. In
this paper, our fuzzy preferences (both individual and social) are assumed
to satisfy “max-min” transitivity. This is probably the most widely used
transitivity assumption in the literature on fuzzy relations, although it is
somewhat controversial.6 It is certainly the case that weaker transitivity
conditions exist. However, we are aware of no experimental evidence which
shows that people with fuzzy preferences do not satisfy max-min transitivity.
In the absence of such evidence, we feel that this condition cannot simply
be dismissed out of hand. This fact, combined with its status as the most
widely used condition in the literature, means that max-min transitivity is a
natural place to start.

With these arguments in mind, it is worth emphasising that our objective
in this paper is to establish a baseline impossibility theorem which can serve
as a useful benchmark for future work.

2 The model

Environment

Let A be a set of social alternatives with #A ≥ 3. Let N = {1, ..., n}, n ≥ 2,
be a finite set of individuals.

Preferences

A fuzzy binary relation (FBR) over A × A is a function f : A × A → [0, 1].
An exact binary relation over A is an FBR g such that g(A × A) ⊆ {0, 1}.

Let T denote the set of all FBRs over A.
Let H be the set of all r ∈ T which satisfy the following two conditions.

(i) For all (a, b) ∈ A, r(a, b) + r(b, a) ≥ 1.
(ii) For all distinct a, b, c ∈ A, r(a, c) ≥ min {r(a, b), r(b, c)}.

The FBRs in H will be interpreted as fuzzy weak preference relations.
Thus if ri ∈ H is interpreted as the fuzzy weak preference relation of indi-

6Barrett and Pattanaik (1989) and Dasgupta and Deb (1996, 2001).
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vidual i, then ri(a, b) is to be interpreted as the degree to which individual i
is confident that “a is at least as good as b”.7

Property (i) is the fuzzy counterpart of the traditional completeness con-
dition, whereas property (ii) is the familiar max-min transitivity condition.
Notice that within H are all (exact) complete and transitive weak prefer-
ence relations. This is one reason why the fuzzy approach to preferences is
popular. It generalizes the traditional theory.

Social welfare function

A social welfare function (SWF) is a function Ψ : Hn → H .
Intuitively, an SWF specifies a fuzzy social weak preference relation given

an n-tuple of fuzzy individual weak preference relations (one for each indi-
vidual). The elements of Hn are indicated by (r1, ..., rn), (r

′

1, ..., r
′

n), etc. We
write r = Ψ(r1, ..., rn), r

′

= Ψ(r
′

1, ..., r
′

n) and so on (where Ψ is the SWF).
We write r(a, b) to denote the restriction of r to (a, b), and r

′

(a, b) to denote
the restriction of r

′

to (a, b) and so on.

Manipulation

We denote by (r1, .., r
′

i, .., rn) ∈ Hn the profile obtained from (r1, .., ri, .., rn)
when individual i replaces ri ∈ H with r

′

i ∈ H .
We write r−i ⊗ r

′

i = Ψ(r1, .., r
′

i, .., rn) and r−i ⊗ r
′

i{a, b} denotes the re-
striction of r−i ⊗ r

′

i to (a, b). Similarly, r−i−j ⊗ r
′

i ⊗ r
′

j = Ψ(r1, .., r
′

i, .., r
′

j, ..rn)

and r−i−j ⊗ r
′

i ⊗ r
′

j{a, b} denotes the restriction of r−i−j ⊗ r
′

i ⊗ r
′

j to (a, b).
An SWF Ψ is non-manipulable if and only if it satisfies the following

property.
(NM) For all (a, b) ∈ A, all (r1, ..., rn) ∈ Hn, all i ∈ N and all r′i ∈ H , both
(i) and (ii) hold.
(i) r(a, b) < ri(a, b) → r−i ⊗ r

′

i{a, b} ≤ r(a, b).
(ii) r(a, b) > ri(a, b) → r−i ⊗ r

′

i{a, b} ≥ r(a, b).
To clarify the nature of this condition, consider Figure 1.

7It is possible to factor out of a fuzzy weak preference relation a fuzzy strict preference
relation, and a fuzzy indifference relation. There are several ways of doing this (Dasgupa
and Deb, 2001). However, this issue does not arise in this paper. All of our results require
the fuzzy weak preference relation only.
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

 















Figure 1: An illustration of the NM condition.

In Figure 1, we restrict attention to the ordered pair (a, b) and the ordered
pair (b, a). Individual j’s fuzzy preferences are denoted by the vector (rj(a, b),
rj(b, a)). Social preferences are denoted by the vector (r(a, b), r(b, a)). If
individual j misrepresents his preferences, then the new vector of social values
(r∗(a, b), r∗(b, a)) is constrained to lie in Ω.

Finally, we need a condition that eliminates trivially non-manipulable
SWFs.

An SWF Ψ is not constant if and only if it satisfies the following property.
(NC) For all (a, b) ∈ A, there exists (r1, ..., rn), (r

′

1, ..., r
′

n) ∈ Hn such that
r(a, b) = 0 and r

′

(a, b) = 1.
As stated earlier, this condition is mild. It stipulates that, for each pair

of social alternatives, two profiles exist in the domain of the social welfare
function which produce different social values in {0, 1} for this pair. This
condition rules out social welfare functions which assign constant values to
pairs of alternatives, irrespective of individual preferences.

Let P denote the set of all subsets of N . A non-empty subset of N is called
a coalition. Given a coalition C = {i1, ..., im}, and given (r1, ..., rn) ∈ Hn,
rC(a, b) denotes (ri1(a, b), ..., rim(a, b)) ∈ [0, 1]m.
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Note that rN(a, b) denotes (ri1(a, b), ..., rin(a, b)) ∈ [0, 1]n. So given N =
{1, ..., n}, ri1(a, b) in the vector rN(a, b) denotes individual 1’s fuzzy prefer-
ence over (a, b), rin(a, b) in the vector rN(a, b) denotes individual n’s fuzzy
preference over (a, b) and so on.

We write rC(a, b) ≥ r
′

C(a, b) if ri(a, b) ≥ r
′

i(a, b) for all i ∈ C.
We now introduce some other properties that SWFs might satisfy.
An SWF Ψ is Arrow-like if and only if it satisfies the following two prop-

erties.
(IIA) For all (r1, ..., rn), (r

′

1, ..., r
′

n) ∈ Hn, and all (a, b) ∈ A,

rN(a, b) = r
′

N(a, b) implies r(a, b) = r
′

(a, b).

(PC) For all (r1, ..., rn) ∈ Hn, and all (a, b) ∈ A,

max
i∈N

{rN(a, b)} ≥ r(a, b) ≥ min
i∈N

{rN(a, b)}.

Of course, IIA is our version of Arrow’s (1951) independence of irrelevant
alternatives condition but in the framework of fuzzy aggregation. Similarly,
PC is our version of the Pareto condition.8

An SWF Ψ is neutral if and only if it satisfies the following property. For
all (r1, ..., rn), (r

′

1, ..., r
′

n) ∈ Hn, and all (a, b), (c, d) ∈ A,

rN(a, b) = r
′

N(c, d) implies r(a, b) = r
′

(c, d).

In order to explain this condition, let Ψ be a neutral SWF. Take any
(r1, ..., rn) ∈ Hn and any (a, b) ∈ A. At this profile we have rN(a, b) ∈ [0, 1]n.
In addition, assume that at this profile we also have rN(c, d) = rN(a, b) for
some (c, d) ∈ A. In other words, each individual’s (c, d) value is identical to
their (a, b) value. Then, since Ψ is neutral, we have r(a, b) = r(c, d). This
means that the social value assigned by Ψ to (c, d) is identical to the value
assigned to (a, b). Furthermore, if rN(a, b) = rN(c, d) at some other profile
(r1, ..., rn) ∈ Hn then we have r(a, b) = r(c, d) as well. In other words,
neutrality is both an intra-profile condition and an inter-profile condition.
Loosely speaking, neutrality means that the names of the alternatives do not
matter.

An SWF Ψ is dictatorial if and only if there exists an individual i ∈ N
such that for all (a, b) ∈ A, and for every (r1, ..., rn) ∈ Hn, ri(a, b) = r(a, b).

In order to explain this condition, let Ψ be a dictatorial SWF. Then there
is an individual (the dictator) who can impose on society his fuzzy preferences
at every profile in the domain of the social welfare function.

8Some authors like García-Lapresta and Llamazares (2001) call this condition “com-
pensative”.
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3 The theorem

We now state and prove our theorem.
Any non-manipulable SWF that is not constant is dictatorial.
The proof of this theorem involves a number of steps.
Let Ψ be a non-manipulable SWF that is not constant. Then Ψ is Arrow-

like.
Let Ψ be a non-manipulable SWF that is NC. We start by proving that

Ψ must satisfy IIA. Assume, by way of contradiction, that Ψ does not satisfy
IIA. Therefore, ∃(a, b) ∈ A and ∃(r1, ..., rn), (r

′

1, ..., r
′

n) ∈ Hn with rj(a, b) =
r
′

j(a, b) ∀j ∈ N such that r(a, b) ,= r
′

(a, b). Consider the following sequence
of fuzzy preference profiles:

R
(0) = (r1, ..., rn),

R
(1) = (r′1, r2, .., rn),

R
(2) = (r′1, r

′

2, r3, .., rn),

...

R
(n) = (r′1, ..., r

′

n).

Assume, without loss of generality, that r(a, b) = k and r
′

(a, b) = k′ with
k′ > k. First of all, compare r−1 ⊗ r

′

1{a, b} with r(a, b). There are two
possibilities.

Case 1. r−1 ⊗ r
′

1{a, b} ,= k. If k < r−1 ⊗ r
′

1{a, b} ≤ r1(a, b) or k >
r−1 ⊗ r

′

1{a, b} ≥ r1(a, b) then NM is violated in the move from R(0) to R(1).
Similarly, if k ≤ r1(a, b) < r−1 ⊗ r

′

1{a, b} then NM is violated either in the
move from R(0) to R(1) or in the move from R(1) to R(0). If k ≥ r1(a, b) >
r−1 ⊗ r

′

1{a, b} then NM is violated either in the move from R(0) to R(1) or
in the move from R(1) to R(0). Finally, if r1(a, b) > k > r−1 ⊗ r

′

1{a, b} or
r1(a, b) < k < r−1 ⊗ r

′

1{a, b} then NM is violated in the move from R(1) to
R(0). The only case remaining is Case 2.

Case 2. k = r−1 ⊗ r
′

1{a, b}.
We now proceed to move from R(1) to R(2) by changing the fuzzy pref-

erences of individual 2. However, we can treat this case in exactly the same
manner as the move from R(0) to R(1) and so r−1−2 ⊗ r

′

1 ⊗ r
′

2{a, b} = k. Re-
peating this argument for each individual ensures that when we reach R(n)

we have r
′

(a, b) = k which contradicts the assumption that r
′

(a, b) = k′ > k.
Therefore, Ψ satisfies IIA.
We now prove that Ψ satisfies PC.
First of all, we prove that Ψ satisfies the following property.
(*) For all (r1, ..., rn), (r

′

1, ..., r
′

n) ∈ Hn and every (a, b) ∈ A, (i) if rN (a, b) =
0n then r(a, b) = 0 and (ii) if r

′

N(a, b) = 1n then r
′

(a, b) = 1.
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To see that (*) holds note that NC implies that there exists (r1, ..., rn) ∈
Hn such that r(a, b) = 0. Let (r∗1, ..., r

∗

n) ∈ Hn denote a profile such that
r∗N (a, b) = 0n. If rN(a, b) = 0n then (i) of (*) holds immediately by IIA.
Assume that r∗N(a, b) ,= rN(a, b). Therefore, ∃Q ⊆ N such that rj(a, b) ,= 0
for all j ∈ Q. Let q ∈ Q and note that r−q ⊗ r∗q{a, b} = 0. If not, then NM is
violated in the move from (r1, .., rq, .., rn) ∈ Hn to (r1, .., r

∗

q , .., rn) ∈ Hn. If
Q\{q} is non-empty then let z ∈ Q\{q} and note that r−q−z⊗r∗q ⊗r∗z{a, b} =
0. If not, then NM is violated in the move from (r1, .., r

∗

q , rz, .., rn) ∈ Hn to
(r1, .., r

∗

q , r
∗

z , .., rn) ∈ Hn. Simply repeating this argument for the remaining
members of Q ensures that r∗(a, b) = 0. Since (r∗1, ..., r

∗

n) ∈ Hn is arbitrary,
part (i) of (*) is proved.

The proof of part (ii) of (*) is similar and therefore is omitted. We now
prove that Ψ satisfies PC.

We prove by contradiction. Assume that ∃(a, b) ∈ A, ∃(r̂1, ..., r̂n) ∈ Hn

such that r̂(a, b) < mini∈N {r̂N(a, b)}. Note that if r̂N(a, b) = 1n then (*)
implies that r̂(a, b) = 1 which contradicts the assumption that r̂(a, b) <
mini∈N {r̂N(a, b)}. So assume that r̂N(a, b) ,= 1n.

Consider any preference profile (r∗1, ..., r
∗

n) ∈ Hn such that r∗i (a, b) = 1 for
all i ∈ N .

Consider the following sequence of fuzzy preference profiles:

G
(0) = (r̂1, ..., r̂n),

G
(1) = (r∗1, r̂2, .., r̂n),

G
(2) = (r∗1, r

∗

2, r̂3, .., r̂n),

...

G
(n) = (r∗1, ..., r

∗

n).

Consider G(1). If r̂−1⊗r∗1{a, b} > r̂(a, b) then NM is violated in the move
from G(0) to G(1). If r̂−1⊗r∗1{a, b} < r̂(a, b) then NM is violated in the move
from G(1) to G(0). Therefore, r̂−1 ⊗ r∗1{a, b} = r̂(a, b).

We can repeat this argument as we move from G(1) to G(2) and so r̂−1−2⊗
r∗1 ⊗ r∗2{a, b} = r̂(a, b). Again, repeating this argument for each individual
ensures that when we reach G(n) we have r∗(a, b) = r̂(a, b). However, this
contradicts (*) and so r̂(a, b) ≥ mini∈N {r̂N(a, b)}.

In order to complete the proof that Ψ satisfies PC, assume that ∃(a, b) ∈
A, ∃(r1, ..., rn) ∈ Hn such that r(a, b) > maxi∈N {rN(a, b)}. Note that
if rN(a, b) = 0n then (*) implies that r(a, b) = 0 which contradicts the
assumption that r(a, b) > maxi∈N {rN(a, b)}. So assume that rN (a, b) ,= 0n.

Consider any preference profile (r∗∗1 , ..., r∗∗n ) ∈ Hn such that r∗∗i (a, b) = 0
for all i ∈ N .
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Consider the following sequence of fuzzy preference profiles:

H
(0) = (r1, ..., rn),

H
(1) = (r∗∗1 , r2, .., rn),

H
(2) = (r∗∗1 , r∗∗2 , r3, .., rn),

...

H
(n) = (r∗∗1 , ..., r∗∗n ).

Consider H(1). If r−1 ⊗ r∗∗1 {a, b} < r(a, b) then NM is violated in the
move from H(0) to H(1). If r−1 ⊗ r∗∗1 {a, b} > r(a, b) then NM is violated in
the move from H(1) to H(0). Therefore, r−1 ⊗ r∗∗1 {a, b} = r(a, b).

We can repeat this argument as we move from H(1) to H(2) and so r−1−2⊗
r∗∗1 ⊗ r∗∗2 {a, b} = r(a, b). Again, repeating this argument for each individual
ensures that when we reach H(n) we have r∗∗(a, b) = r(a, b). However, this
contradicts (*) and so r(a, b) ≤ maxi∈N {rN(a, b)}.

Therefore, Ψ satisfies PC.
We have proved that Ψ is Arrow-like.
In what follows wn denotes the vector with w ∈ [0, 1] in all n places.
An Arrow-like SWF Ψ is neutral.
Case 1: If (a, b) = (c, d) then the result follows immediately from the fact

that Ψ is Arrovian. Case 2: (a, b), (a, d) ∈ A. Take (r1, ..., rn) ∈ Hn such
that rN(b, d) = 1n. Then PC implies that r(b, d) = 1. Since r is max-min
transitive, we have r(a, d) ≥ min {r(a, b), r(b, d)}. Therefore, r(a, d) ≥ min
{r(a, b), 1} and so r(a, d) ≥ r(a, b).

In addition, since rN(b, d) = 1n and individual preferences are max-min
transitive, it follows that rN(a, d) ≥ rN(a, b).

Select a profile (r1, ..., rn) ∈ Hn such that rN(b, d) = 1n and rN(d, b) = 1n.
From the argument above we know that r(a, d) ≥ r(a, b) and rN(a, d) ≥
rN(a, b). However, an identical argument shows that r(a, b) ≥ r(a, d) and
rN(a, b) ≥ rN(a, d). Therefore, it must be the case that r(a, b) = r(a, d) and
rN(a, b) = rN (a, d).

Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all profiles
(r1, ..., rn) ∈ Hn such that rN(b, d) = 1n and rN (d, b) = 1n. Let F n denote
the set of such profiles. Take any profile (r̂1, ..., r̂n) ∈ Hn such that r̂N(a, b) =
r̂N (a, d). Then there exists a profile (r

′

1, ..., r
′

n) ∈ F n such that r̂N(a, b) =
r̂N (a, d) = r

′

N(a, b) = r
′

N(a, d). IIA implies that r̂(a, b) = r̂(a, d) = r
′

(a, b) =
r
′

(a, d).
Take any pair of distinct profiles (r

′′

1 , ..., r
′′

n), (r∗1, ..., r
∗

n) ∈ Hn such that
r
′′

N (a, b) = r∗N(a, d). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ F n such

12



that r
′′

N(a, b) = r∗N(a, d) = r∗∗N (a, b) = r∗∗N (a, d). IIA implies that r
′′

(a, b) =
r∗(a, d) = r∗∗(a, b) = r∗∗(a, d).

Case 3: (a, b), (c, b) ∈ A. Take (r1, ..., rn) ∈ Hn such that rN(a, c) = 1n.
Then PC implies that r(a, c) = 1. Since r is max-min transitive, we have
r(a, b) ≥ min {r(a, c), r(c, b)}. Therefore, r(a, b) ≥ min {1, r(c, b)} and so
r(a, b) ≥ r(c, b).

In addition, since rN (a, c) = 1n and individual preferences are max-min
transitive, it follows that rN(a, b) ≥ rN(c, b).

Select a profile (r1, ..., rn) ∈ Hn such that rN (a, c) = 1n and rN(c, a) = 1n.
From the argument above we know that r(a, b) ≥ r(c, b) and rN(a, b) ≥
rN(c, b). However, an identical argument shows that r(c, b) ≥ r(a, b) and
rN(c, b) ≥ rN(a, b). Therefore, it must be the case that r(a, b) = r(c, b) and
rN(a, b) = rN (c, b).

Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all profiles
(r1, ..., rn) ∈ Hn such that rN (a, c) = 1n and rN(c, a) = 1n. Let Gn denote
the set of such profiles. Take any profile (r̂1, ..., r̂n) ∈ Hn such that r̂N(a, b) =
r̂N (c, b). Then there exists a profile (r

′

1, ..., r
′

n) ∈ Gn such that r̂N(a, b) =
r̂N (c, b) = r

′

N (a, b) = r
′

N (c, b). IIA implies that r̂(a, b) = r̂(c, b) = r
′

(a, b) =
r
′

(c, b).
Take any pair of distinct profiles (r

′′

1 , ..., r
′′

n), (r∗1, ..., r
∗

n) ∈ Hn such that
r
′′

N (a, b) = r∗N(c, b). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ Gn such
that r

′′

N(a, b) = r∗N(c, b) = r∗∗N (a, b) = r∗∗N (c, b). IIA implies that r
′′

(a, b) =
r∗(c, b) = r∗∗(a, b) = r∗∗(c, b).

Case 4: (a, b), (c, d) ∈ A with a, b, c, d distinct. Take (r1, ..., rn) ∈ Hn

such that rN(b, d) = rN(d, b) = rN(a, c) = rN(c, a) = 1n. Then PC im-
plies that r(d, b) = 1. Since r is max-min transitive, we have r(a, b) ≥ min
{r(a, d), r(d, b)}. Therefore, r(a, b) ≥ min {r(a, d), 1} and so r(a, b) ≥ r(a, d).
However, an identical argument shows that r(a, d) ≥ r(a, b) and so r(a, b) =
r(a, d).

In addition, since rN(d, b) = rN(b, d) = 1n and individual preferences are
max-min transitive, it follows that rN(a, b) = rN(a, d).

We can repeat this argument to show that r(a, d) = r(c, d) and rN(a, d) =
rN (c, d). Since (r1, ..., rn) ∈ Hn is arbitrary, this condition holds for all
profiles (r1, ..., rn) ∈ Hn such that rN(b, d) = rN (d, b) = rN(a, c) = rN(c, a) =
1n. Let Jn denote the set of such profiles.

Take any profile (r̂1, ..., r̂n) ∈ Hn such that r̂N (a, b) = r̂N(c, d). Then
there exists a profile (r

′

1, ..., r
′

n) ∈ Jn such that r̂N (a, b) = r̂N(c, d) = r
′

N(a, b)
= r

′

N(c, d). IIA implies that r̂(a, b) = r̂(c, d) = r
′

(a, b) = r
′

(c, d).
Take any pair of distinct profiles (r

′′

1 , ..., r
′′

n), (r∗1, ..., r
∗

n) ∈ Hn such that
r
′′

N (a, b) = r∗N(c, d). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ Jn such that
r
′′

N (a, b) = r∗N(c, d) = r∗∗N (a, b) = r∗∗N (c, d). IIA implies that r
′′

(a, b) =
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r∗(c, d) = r∗∗(a, b) = r∗∗(c, d).
Case 5: (a, b), (b, a) ∈ A. Take any profile (r1, ..., rn) ∈ Hn such that

rN (a, b) = rN(a, c) = rN(b, c) = rN(b, a). Cases (2) and (3) imply that
r(a, b) = r(a, c) = r(b, c) = r(b, a). Let W n denote the set of such profiles.
Take any profile (r1, ..., rn) ∈ Hn such that rN(a, b) = rN(b, a). Then there
exists a profile (r

′

1, ..., r
′

n) ∈ W n such that rN (a, b) = rN(b, a) = r
′

N (a, b) =
r
′

N (b, a). IIA implies that r(a, b) = r(b, a) = r
′

(a, b) = r
′

(b, a).
Take any pair of distinct profiles (r

′′

1 , ..., r
′′

n), (r∗1, ..., r
∗

n) ∈ Hn such that
r
′′

N (a, b) = r∗N(b, a). Then there exists a profile (r∗∗1 , ..., r∗∗n ) ∈ W n such
that r

′′

N(a, b) = r∗N(b, a) = r∗∗N (a, b) = r∗∗N (b, a). IIA implies that r
′′

(a, b) =
r∗(b, a) = r∗∗(a, b) = r∗∗(b, a).

Given that Ψ is neutral we can complete the proof in the following way.
Take any (a, b) ∈ A. Take a profile (r1, ..., rn) ∈ Hn such that rN (a, b) =
0n. By PC it must be the case that r(a, b) = 0. Take some other profile
(r∗1, ..., r

∗

n) ∈ Hn such that r∗N(a, b) = 1. By PC it must be the case that
r∗(a, b) = 1.

Consider the following sequence of fuzzy preference profiles:

W
(0) = (r1, ..., rn),

W
(1) = (r∗1, r2, .., rn),

W
(2) = (r∗1, r

∗

2, r3, .., rn),

...

W
(n) = (r∗1, ..., r

∗

n).

At some profile in this sequence, say W(2), the social value assigned to
(a, b) must rise from zero to a value strictly greater than zero. By PC, the
latest this can happen is when we reach W(n). We shall assume, without loss
of generality, that this happens at W(2) when individual 2 raises his or her
(a, b) value from 0 to 1.

Now consider the profile W(α) = (r∗1, r2, r
∗

3, .., r
∗

n). We claim that the
value of (a, b) at this profile is 0. To see this note that, by assumption, the
value of (a, b) at W(1) is zero. We can construct a profile (r̂1, ..., r̂n) ∈ Hn

in which individuals have the following preferences over three alternatives
a, b and c. Individual preferences over (a, b) at this profile are the same as
they are over (a, b) at W(α). Individual preferences over (a, c) at this profile
are the same as they are over (a, b) at W(1). Finally, individual preferences
over (b, c) at this profile are the same as they are over (a, b) at W(2). We
write aRb ←→ r̂(a, b) = 1 and aPb ←→ aRb ∧ r̂(b, a) = 0. Therefore at
(r̂1, ..., r̂n) ∈ Hn individuals hold the following preferences:

Individual 1: aRbRc
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Individual 2: bRcPa
Everyone else: cPaRb.
Neutrality implies that r̂(a, b) is identical to the value (a, b) takes at W(α).

Similarly, it implies that r̂(b, c) = s > 0 and that r̂(a, c) = 0. Note that by
max-min transitivity r̂(a, c) ≥ min {r̂(a, b), s} and so r̂(a, b) = 0. Therefore,
the value (a, b) takes at W(α) is zero. At W(α) individual 2 assigns the value
0 to (a, b) but everyone else assigns the value 1. Despite this, the social value
of (a, b) is 0. Neutrality implies that this will remain the case whenever these
preferences are replicated over any other pair of distinct social alternatives
at any profile.

Now consider any profile W(αα) = (r1, ..., rn) ∈ Hn in which individual 2
assigns the value 0 to some pair of distinct social alternatives. Furthermore,
at this profile, individual 1 assigns the value t1 to this pair, individual 3
assigns the value t3 to this pair, and so on with t1, t3, ..., tn ∈ [0, 1]. The NM
condition implies that the social value assigned to this pair must remain at
0 for all t1, t3, ..., tn ∈ [0, 1].

Let us now return to W(α). To recall, individual 2 assigns the value 0
to (a, b) at this profile but everyone else assigns the value 1. Despite this,
the social value of (a, b) is 0. Completeness implies that, at this profile,
individual 2 must assign the value 1 to (b, a) and so must society. This is
true irrespective of everyone else’s (b, a) value. Neutrality implies that any
profile W(ββ) = (r̂1, ..., r̂n) ∈ Hn in which individual 2 assigns the value 1 to
some pair of distinct social alternatives, and in which individual 1 assigns the
value t∗1 to this pair, individual 3 assigns the value t∗3 to this pair, and so on
with t∗1, t

∗

3, ..., t
∗

n ∈ [0, 1], must be consistent with the social welfare function
assigning a value of 1 to this pair.

To see that individual 2 is a dictator, fix some ordered pair (a, b). By the
above argument, whenever individual 2 assigns a value of 1 to this pair then
so must society, irrespective of everyone else’s (a, b) value. Imagine now that
individual 2 lowers his or her (a, b) value to some value in [0, 1). If this value
is 0 then the social value of (a, b) must be 0 due to the argument above about
W(αα). Imagine that individual 2 selects a value v where 1 > v > 0. If the
social value of (a, b) exceeds v then individual 2 can profitably misrepresent
by lowering his or her value to 0. If the social value of (a, b) is below v
then individual 2 can profitably misrepresent by raising his or her value to
1. Neither of these things can happen and so the social value must be equal
to v.

We have proved that individual 2 can impose his (a, b) preferences on
society at every profile in the domain of the social welfare function Ψ. Since
Ψ is neutral individual 2 is a dictator.
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4 A possibility theorem

One way of circumventing the impossibility theorem is to relax the assump-
tion that social preferences are transitive. This is actually Fishburn’s position
expressed in Fishburn (1970). Fishburn argues that the concept of a social
welfare function is untenable since it assumes social transitivity. Fishburn
claims in this article that he has yet to see a convincing argument made
for social transitivity. For Fishburn, transitivity is a much less appealing
assumption than Arrow’s “independence of irrelevant alternatives”.

Following Fishburn’s lead, we can state a possibility result under the
assumption that social preferences are not transitive.

There exists a function Φ : Hn → T which is non-manipulable, not
constant and not dictatorial.

Imagine that the number of individuals is odd. Define the function Φ :
Hn → T as follows. For all (a, b) ∈ A, all (r1, ..., rn) ∈ Hn, r(a, b) =
mediani∈N {ri(a, b)}. If the number of individuals is even then define the
function Φ : Hn → T as follows. For all (a, b) ∈ A, all (r1, ..., rn) ∈ Hn,
r(a, b) = maxi∈N {ri(a, b)}. Both of these functions are non-manipulable and
they are not constant. Moreover, neither is dictatorial.
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