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Abstract

Social interactions are at the essence of societies and explain the gathering of in-

dividuals in villages, agglomerations, or cities. We study the emergence of multiple

agglomerations as resulting from the interplay between spatial interaction exter-

nalities and competition in the land market. As opposed to Beckmann’s original

framework (1976), agents get dispersed across several cities distributed along a cir-

cle. Spatial equilibrium configurations involve a high degree of spatial symmetry, in

terms of city size and location, and can be Pareto-ranked.

Keywords: social interaction, multiple agglomerations, spatial economy.

1 Introduction

A major source of spatial heterogeneity stems from non-market interactions. Social inter-

actions through face-to-face contacts are at the essence of our societies and explain the

gathering of individuals in villages, agglomerations, or cities. They translate a psycholog-

ical need for maintaining relationships with one another, and favor a constant exchange

of ideas; see Krugman (1991), Glaeser and Scheinkman (2003), and Fujita and Thisse
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(2002). In this paper we address the issue of the emergence of multiple agglomerations as

the result of the interplay between social interactions and competition in the land market.

The present paper builds on Beckmann’s (1976) model. This model provides a simple

rationale for the spatial agglomeration of agents as the result of spatial interaction ex-

ternalities. Agents are distributed along some geographical space and benefit from social

interactions with all the other agents. These social interactions provide individual benefits

while entailing an individual cost as each one must access to distant agents. Moreover the

return of spatial interactions is also balanced by a cost of residence since agents compete

for land space. When the benefit of social interactions is larger than the commuting and

residence costs, agents prefer to be located close together, which leads to the formation of

agglomerations. In his original work, Beckmann considered the case of a one-dimensional

spatial economy modelled along a line segment. The resulting equilibrium consists in

a uni-modal symmetric - bell-shaped - spatial distribution, where agents agglomerate

around the city centre, see Fujita and Thisse (2002).

We revisit Beckmann (1976)’s framework along a line segment and extend it to the

case of a spatial economy extending along a circumference. While the modelling along a

line segment seems appropriate to describe the internal structure of cities, the formulation

along a circumference provides a natural framework to analyze the interaction between

multiple agglomerations. Circular spatial frameworks have been studied in ‘racetrack

economy’ models in the context of the new economic geography literature, e.g. Fujita et

al. (1999), Mossay (2003), or Picard and Tabuchi (2003). Yet, because of the complexity

of market interactions, this strand of literature only characterizes the ‘flat-earth’ spatial

equilibrium corresponding to a uniform spatial distribution of agents. In this paper,

because our social interaction model has a much simpler structure, we are able to fully

characterize the set of spatial equilibria.

Our results are the following. First we determine the equilibrium and first-best spa-

tial distributions of agents along a line segment. In accordance to Fujita and Thisse

(2002), the first-best distribution is more concentrated than the equilibrium one; see also

Tabuchi (1986). At equilibrium agents choose a too large lot size because they do not

internalize other agents’ preferences when making their own lot choice. We show that the
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implementation of the first-best distribution does not require the use of spatial transfers.

Furthermore, social interactions generate the emergence of a single city, meaning that

multiple cities can’t be sustained in equilibrium along a line.

Second we provide a full characterization of spatial equilibria emerging along a circular

geographical space. In equilibrium, cities are identical and equally-spaced: cities share the

same spatial structure and are separated by equal-size empty hinterlands. We also show

that equilibrium configurations can only involve an odd number of cities. Furthermore

spatial equilibria can be Pareto-ranked. The total welfare of the spatial economy decreases

with the number of cities so that the one-city configuration Pareto dominates all the other

configurations. As in the open line framework, the first-best distribution corresponds to

a single city that is more concentrated than the equilibrium distribution.

Our paper deals with the endogenous formation of multiple-centre configurations. Like

in Fujita and Ogawa (1982), multiplicity of equilibria arise. In order to derive their results,

Fujita and Ogawa had to simplify their analysis. An important issue is to know whether

their qualitative results (e.g., multiplicity of equilibria) are sensitive to such simplifica-

tions. Here, because of the linear structure of the model, we are able to perform a full

general equilibrium analysis, and therefore to confirm that mutiple-centre configurations

emerge in equilibrium.

We present the model of social interactions in Section 2. We derive the spatial equilib-

rium and the first-best distributions of the model along an open line in Section 3. Section

4 characterizes spatial equilibria along a circumference. Section 5 ranks these various

equilibria and compares them with the socially optimal distribution. Section 6 is devoted

to the stability of spatial equilibria.

2 The Model

In this section we present the economic environment. A unit-mass of agents is distributed

along a one-dimensional geographical space according to the density λ(x) with
R
λ(x)dx =

1. Agents travel along the one-dimensional road and benefit from social contacts with

other agents. The social utility that an agent in location x derives from interacting with
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other agents is given by

S(x) = A−
Z

λ(y)T (x− y)dy (1)

The first term A denotes the total return from interacting with other agents. The second

term reflects the cost of trips when accessing to distant agents. We consider the case of a

linear cost function T (x) = 2τ |x|, where τ measures the intensity of travel costs. In our

model each agent interacts with all the other agents so that S(x) ≥ 0, for any location

x. The surplus S(x) can be interpreted in a certain and uncertain context. Indeed, it can

be interpreted literally as the utility derived by an individual who plans to interact with

all other agents with probability 1. It can also be interpreted as the expected utility of

an individual who plans to interact with a subset of agents whom location and identity

are not known at the time of the residence choice. Such an interpretation fits the case of

shopkeepers, sellers, etc., the case of workers who expect to have several jobs at different

locations during their lifetime, and the case of employers who do not have a good idea of

the future workers’ residences.

In each location x, the residential area is longitudinal to the main road. It is a strip of

land space equal to 1, which is connected by its edge to the main road. Agents in location

x consume a composite good z and land space s(x). Their utility is given by

V (x) = S (x) + z − β

2s(x)

where S(x) is the social utility and β reflects the preference for land. The budget con-

straint faced by agents is

z +R(x)s(x) = Y

where Y is the income and R(x) denotes the land rent in x. By using this budget

constraint, the utility derived in location x can rewritten as

V (x) = S (x)− β

2s(x)
− s(x)R(x) + Y

This formulation of the utility function differs from Beckmann’s formulation in one

respect only: we consider an hyperbolic preference for land rather than the logarithmic
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preference used by Beckmann. This will allow us to simplify considerably the characteri-

zation of equilibria.

Landlords raise the land rent until no worker moves. Let V ∗ be an equilibrium utility

of workers. The bid rent function is given by

Ψ(x) = max
s

S (x)− β/(2s) + Y − V ∗

s

which yields the optimal land consumption s∗(x) as satisfying β/(2s∗(x)) = s∗Ψ∗(x)

= (S∗ (x) + Y − V ∗) /2. At the residential equilibrium, R∗(x) = Ψ∗(x) so that s∗R∗(x) =

β/(2s∗(x)). The indirect utility can then be written as V (x) = S (x)−β/s∗(x)+Y . Since

the total land space is equal to 1 at each location x, the individual land consumption

s∗(x) corresponds to 1/λ(x), so that the indirect utility can be written in term of the

population density λ(x)

V (x) = S (x)− βλ(x) + Y (2)

This means that the residents’ utility at location x linearly increases with the social return

S(x) and linearly decreases with the residential density λ(x). Utility decreases with the

residential density because agents compete for land space and thus face higher land prices

in more populated areas. The present paper takes advantage of this linear structure to

fully characterize spatial equilibria and the optimal spatial distribution. In what follows

we assume without much loss of generality that land has no other use than residence so

that the opportunity cost of land is zero.

3 Spatial equilibrium along a Line Segment

In this section we formulate the spatial model of social interactions along a line segment

as studied in Beckmann (1976) and Fujita Thisse (2003, Chapter 6).

3.1 Spatial equilibrium

A distribution of agents λ(.) constitutes a spatial equilibrium if agents have no incentive

to relocate. In other words, λ(x) is a spatial equilibrium if V (x) = V when λ(x) > 0 and

V (x) < V when λ(x) = 0. In equilibrium we should have that V 0(x) = V 00(x) = 0 for
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all x where λ(x) > 0. In this paper, any area with a positive population is referred to as

a city. As in Beckmann (1976) and Fujita and Thisse (2002) we characterize the spatial

distribution along a line segment. In addition to this, we show that spatial equilibrium

implies the emergence of a single city.

First let us consider a single city located along the interval [−b, b], b > 0. By the

differentiating the social utility (1) with respect to x, we have that

S0(x) = 2τ

Z −b

x

λ(y)dy − 2τ
Z x

b

λ(y)dy

S00(x) = −2τ λ(x)− 2τ λ(x) = −4τ λ(x)

Because of linear travel costs, S00(x) reduces to a linear function of λ. Hence, from relation

(2) a necessary condition for equilibrium is V 00(x) = S00 (x)− βλ00(x) = 0, which leads to

λ00(x) + δ2λ(x) = 0 where δ2 ≡ 4τ/β (3)

The solution to this differential equation is given by

λ(x) = c cos δ (x− xo) (4)

where c and xo are constants to be determined. Because R∗(±b) = (λ(±b))2 β/2 = 0 and

because
R
λ(x)dx = 1, the equilibrium spatial structure of the city and the boundary are

given by

λ∗(x) =
δ

2
cos δx and b∗ =

π

2δ

This describes the spatial the structure of a single city. We must also ensure that each

agent is willing to interact with all the other agents so that S(x) > 0 for all x in (−b∗, b∗).

We need that A >
R b
−b λ

∗(y)T (y − b)dy or equivalently A > τπ/δ.

An important issue is whether multiple cities can co-exist in equilibrium. The answer

turns out to be negative. To show this, consider a set of cities possibly separated by

empty hinterlands. Let the supports of the M ≥ 2 cities be the closed intervals [am, bm],

m = 1, 2, 3, ..., M, with bm < am+1. Indeed, within each city, Equation (3) holds and

R∗(am) = R∗(bm) = 0, so that λ(x) can be written as λm(x) = cm cos[δ(x − xm)], ∀x ∈

[am, bm], with xm = (bm − am)/2. From Equations (1) and (2), we get

V (x) = A− 2τ
MX

m=1

Z bm

am

λ(y) |x− y| dy − βλ(x)
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V 0(x) = −2τ
∙
1−

Z bm

am

λm(y)dy

¸
−2τ

Z x

am

λm(y)dy+2τ

Z bm

x

λm(y)dy−βλ0m(x), ∀x ∈ (am, bm)

When a resident relocates to her right, she looses access to the residents to her left either

in other cities (first term) or in her own city (second term) while she gains a better access

to the residents to her right within her city (third term) and faces an increase in land

rent (resp. a decrease in land rent) if x ∈ (am, xm), (resp. x ∈ (xm, bm)), (last term). In

particular, at the centre of city M , λ0M(xM) = 0 and

V 0(xM) = −2τ
∙
1−

Z bM

aM

λM(y)dy

¸
= −2τ(1− LM) < 0

where LM denotes the population in city M . Therefore, residents in city M have always

an incentive to move leftward, and no spatial configuration with M ≥ 2 cities can’t be

sustained in equilibrium.

We have the following Proposition.

Proposition 1 If A > τπ/δ, the spatial equilibrium along a line segment is unique and

involves a single city.

The distribution is symmetric with respect to location x = 0 and concave. This result

is similar to Beckmann’s result except that here the city structure is nowhere convex

because of our hyperbolic preference for residential space. Note that the equilibrium

utility level in the city is given by

V ∗ = V ∗(x = 0) = A−
Z b

−b
λ∗(y)T (y)dy − βλ∗(0) = A− π − 2

δ
− 1
2
βδ

This means that the equilibrium utility level decreases with the travel cost τ and increases

with the preference for residential space β provided that τ < π/2− 1.

3.2 First-best Spatial Distribution

In this subsection we determine the first-best distribution of agents as opposed to the

equilibrium distribution analyzed so far. The utilitarian planner compensates agents

with lump sump transfers r(x) and the utility function is assumed to be transferable so

that U(x) = V (x) + r(x). The planner maximizes the total welfare

max
λ(.)

W =
R b
−bU(x)λ(x)dx
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subject to the budget balance
R b
−br(x)λ(x)dx = 0, and [−b, b] denotes the support of

the optimal city. Because of the budget balance, the total welfare is independent of the

transfer distribution and is equal to W =
R b
−bV (x)λ(x)dx. In Appendix A.1, we show

that the first-best distribution satisfies the following relation

S(x)− βλ(x) = A/2 (5)

This relationship implies that at the optimum, V (x) is constant and equal to A/2.

Since U(x) = A/2 + r(x), the planner does not need any redistributive instrument to

guarantee the equal treatment of residents at the socially optimal spatial distribution.

The transfers r(x) are useless instruments for the planner and can be set to zero.

Furthermore, the first-best distribution is also characterized by V 0(x) = V 00(x) =

0. This leads to the same general solution as in relation (4), λFB(x) = c cos δx where

δ2 = 4τ/β, where c is a constant to be determined. Since the city has to host the total

population,
R
λ(x)dx = 1, we have that

cFB =
1

2

δ

sin δb

Since the utility level S(x) − βλ(x) is equal to A/2 for any x, the boundary bFBof the

first-best city has to solve

δb+ cot δb = A/(δβ) (6)

This equation has a unique solution when b ∈ (0, π/δ). Yet we must ensure that each

agent interacts with all the others, that is, A > T (2b) = 4τb ⇐⇒ A/(δβ) > δb. Under

this restriction, the unique solution b belongs to the interval (0, π/(2δ)). Therefore, we get

bFB < b∗ = π/(2δ). The first-best city has a narrower support than the equilibrium city.

Because the first-best and the equilibrium cities host the same number of residents, the

density of residents must be larger at the first-best (cFB > c∗). Finally, because the first-

best and the equilibrium distributions are cosine functions with same spatial frequency δ,

the borders of the first-best city must be densely populated (λ(bFB) > 0 = λ(b∗)).

Proposition 2 The first-best city can be implemented without the use of spatial trans-

fers and has a narrower support than that of the equilibrium distribution (λFB(x) =

cFB cos δx, with cFB > c∗ and bFB > b∗).
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4 Spatial Equilibrium along a Circle

In this section we consider the spatial interactions taking place along a circular geograph-

ical space. Because agents may access to other agents by travelling to the right or to the

left, they will be sensitive to the fact that other agents may be located in the opposite

location along the circumference. Our main result is that spatial equilibria may involve

multiple cities. Yet, the equilibrium characterization is more difficult to obtain along

the circumference than along the line segment. A major contribution of this paper is to

provide a full characterization of multiple agglomerations in equilibrium.

To obtain this result, we proceed in several steps. As in previous section, we first

derive a necessary equilibrium condition (Lemma 1). This condition expresses the trade-

off between the residence cost and the accessing cost to other agents. We then derive

another necessary equilibrium condition (Lemma 2) which simply states that an equilib-

rium distribution is of made of pieces, each of which corresponds to the cosine function as

determined in previous section. Then we show that in equilibrium cities can’t face each

other along the circumference (Lemma 3), which subsequently implies that no equilibrium

with an even number of cities, can exist (Lemma 4). Finally we show that in equilibrium

cities are equally populated and equally-spaced along the circumference (Lemma 5). All

those results are summarized in Proposition 3. Whereas it may be intuitive that these

spatial distributions constitute equilibria, it is far from obvious a priori to exclude other

asymmetric patterns in terms of size or location. Proofs are relegated to Appendix B.

We discuss spatial configurations involving cities separated by empty hinterlands. M

denotes the total number of cities and [am, bm] the support of city m so that the support

of λ can be written as supp λ =
SM

m=1[am, bm]. Let H be the set of empty hinterlands,

i.e. ’empty’ locations where λ(x) = 0. Thus, H = [0, 1]/supp λ. At equilibrium we must

have that V (x) = V ∗, ∀x ∈suppλ and V (x) < V ∗, ∀x ∈ H.

Consider some agent located in city k so that x ∈ [ak, bk]. We define P+(x) (resp.

P−(x)) as the population that is located at a clockwise (resp. counterclockwise) distance

from x smaller than 1/2. This means that P+(x) and P−(x) divide the total population

into that at the right and that at the left of x.
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Lemma 1 In equilibrium P+(x)− P−(x) = λ0(x)[β/(2τ)], ∀x ∈ supp λ.

This condition expresses the equilibrium trade-off between the residence cost and the

accessing cost: an increase in residence cost must be compensated by a better access to

distant agents. So as to illustrate Lemma 1, suppose that λ0(x) < 0, so that by moving

to his right, an agent enjoys a lower residence cost. Lemma 1 says that this gain in terms

of residence cost is balanced by a larger accessing cost. This means that the population

that the agent gets closer to, that is the population at his right (P+), is less numerous

that the population he gets further away from, that is the population at his left (P−).

The marginal cost of residence by moving to the right or to the left corresponds to the

marginal gain of accessing to agents.

Differentiating once more the indirect utility yields another necessary condition V 00(x) =

0. Each piece of the equilibrium distribution is determined by a spatial structure similar

to the one given by expression (4).

This city structure is summarized in the following Lemma.

Lemma 2 Suppose that λ(x)λ(x+1/2) = 0 for every location x ∈ [ak, bk], k = 1, ...,M.

Then, an equilibrium distribution is given by λ(x) = ck cos δ(x − xk) where δ2 =

4τ/β, δ(bk − ak) = π, xk = (bk − ak)/2, and ck is a positive constant.

Therefore, the shape of cities is given by the same cosine function as in the case of

a line segment. Lemma 2 applies when λ(x)λ(x + 1/2) = 0, that is when cities do not

face each other along the circumference, meaning that if location x is inhabited then

location x + 1/2 should not be inhabited. As an illustration, let us show that a spatial

configuration consisting of 2 symmetric cities as determined by Lemma 2, located at the

North and the South of the circumference (x = 0 and x = 1/2) can’t be sustained in

equilibrium. The supports of these cities are [−b, b] and [1/2− b, 1/2 + b]. By applying

Lemma 1 in locations x and x+ 1/2, we get

λ0(x) + λ0(x+ 1/2) =
2τ

β

£
P+(x)− P−(x) + P+(x+ 1/2)− P−(x+ 1/2)

¤
This expression is equal to 0 given that P+(x) = P−(x+1/2) and P−(x) = P+(x+1/2),

which leads to an inconsistency given that in our example, λ0(x) = λ0(x + 1/2) 6= 0 if
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x 6= 0. The above condition says that if λ0(x) > 0 then λ0(x + 1/2) < 0. The following

lemma generalizes this result to the case of any admissible spatial distribution.

Lemma 3 Generically there exists no spatial equilibrium - except the uniform distribu-

tion - that involves cities facing each other along the circumference, that is @ x s.t.

λ(x)λ(x+ 1/2) 6= 0.

An implication of this Lemma is that the spatial equilibrium distribution involves

either empty hinterlands or a uniform distribution of agents (the flat earth distribution).

Note that spatial distributions corresponding to c cos δx, ∀x ∈ [0, 1], are equilibria to the

extent that δ−1 is a multiple of the perimeter of the circumference, that is δ−1 ∈ N+.

These equilibria are clearly not generic. If we omit these non-generic equilibria, the

uniform distribution is the only spatial distribution with no hinterland.

It turns out that a consequence of Lemma 3 is to exclude the possibility of having an

even number of cities. As an illustration, let us explain the argument for a configuration

involving an even number of identical cities. By Lemma 3, we know that these cities can’t

be located symmetrically along the circumference. By applying Lemma 1 at the centre

xm of a city, we get that P+(xm) = P−(xm) because the land rent gradient is nil at the

centre (λ0(xm) = 0). This means that the populations at the right and the left of the city

centre xm are equal, which is inconsistent with our example since one side of the city will

involve an even number of cities while the other side will involve an odd number of cities,

given that the total number of cities is even. In this illustration, the argument applies

because cities are of equal size. The following Lemma extends this argument to spatial

distributions involving cities of different size.

Lemma 4 Amy non-uniform spatial equilibrium displays an odd number of cities.

What is left to be determined is the size of cities and their location along the cir-

cumference. In Appendix B, we apply the argument used in Lemma 4 to pairs of cities

located on opposite sides of the circumference. It can then be shown that such pairs of

cities have an identical population size at equilibrium. By inference, all cities must have

the same size. Furthermore, once cities have an identical size, it is easy to understand
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why they should be equally-spaced along the circle. It is because any asymmetry in the

location of these cities would necessarily confer an advantage to residents of some city and

a disavantage to residents of some other city, thus precluding equilibrium. We summarize

our results in the following Proposition.

Proposition 3 Any non-uniform spatial equilibrium configuration displays an odd num-

ber of identical equally-spaced cities.

In contrast to Beckmann’s result, multiple-city configurations do emerge along a circu-

lar geographical space. They imply the existence of empty hinterlands and a high degree of

spatial symmetry in terms of size and location. According to Proposition 3, configurations

with an even number of cities are excluded.

5 Pareto-Ranking of Equilibria and Optimum

In this section we rank spatial equilibria involving many cities and the uniform distribution

of agents in the sense of Pareto. We then compare the Pareto dominating equilibrium

with the first-best distribution. Proofs are relegated to Appendix C.

Consider a spatial equilibrium with an odd number M of identical equally-spaced

cities. With no loss of generality, we assume that the first city is located at x = 0. In

equilibrium, the support of cities should be fit the unit perimeter of the circumference

(2Mπ/δ < 1), so that the maximum number of cities is given by Mmax = int(δ/(2π)).

On the other hand, since the total population is 1, we have that M
R π

2δ

− π
2δ
c cos (δx) dx = 1,

meaning that c = δ/(2M). These two last conditions put a boundMmax on the admissible

number of cities and relate the size c of a city to the total number of cities M .

In equilibrium the utility is the same for all residents and can be identified to the

utility of the resident located at x = 0, which is given by

V ∗(M) = A− βλ(a1 +
π

2δ
)−

XM

i=1

Z ai+
π
δ

ai

T (a1 +
π

2δ
, y)λ(y)dy

where ai corresponds to the left-border of city i. Developments given in Appendix C.1
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lead to

V ∗(M) = A− τ
π − 2
δM| {z }

Cost of accessing to his own city

− τ
M2 − 1
2M2| {z }

Cost of accessing to other cities

− 2τ

δM|{z}
Residence cost

The first term represents the benefit of social interaction, the second one the agent’s

travel cost to other agents in their own city, the third one the travel cost to agents in

other cities, and the last one the land rent. It can be shown that V ∗(M) is a decreasing

function in the admissible interval [1, δ/(2π)].

Proposition 4 If δ > 2π (resp. δ < 2π), then the Pareto dominating spatial configu-

ration involves a single city. Otherwise it corresponds to the uniform distribution

(flat earth).

Spatial equilibria can be ranked in the sense of Pareto: the smaller the number of

cities, the larger the total welfare of the equilibrium distribution. Of course, when no city

can fit the unit perimeter, then the only possible equilibrium is the flat earth distribution,

λ(x) = 1.

We now determine the first-best distribution of residents along the circumference.

Proposition 5 When δ > π (resp. δ < π), the optimal spatial configuration corresponds

to a single city (resp. the uniform spatial distribution of agents).

As in Beckmann’s framework, the social optimum involves a single city which is more

concentrated than the equilibrium distribution. Of course, this occurs provided that the

optimal city can fit the unit perimeter. Otherwise, the first-best corresponds to the

uniform distribution of agents. While an increase of the travelling cost τ favours the

optinal agglomeration, an increase of the preference for residential space β favors the

optimal uniform distribution of residents.

6 Conclusion

We have studied a spatial model of social interactions. We have shown that in Beckmann’s

framework -that is, along a line segment- only a single city emerges. On the other hand,
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along a circle, our model leads to the endogenous formation of multiple-centre configura-

tions. Because of the linear structure of the model, we are able to perform a full general

equilibrium analysis and to characterize equilibrium configurations. Cities are identical

and equally-spaced along the circle. The smaller the number of cities, the larger the total

welfare of the spatial economy. The first-best distribution corresponds to a single city

which is more concentrated than the equilibrium city.

Appendix

Appendix A: Proof of S(x)− βλ(x) = A/2

Proof. Total welfare can successively be expressed as

W =
R a
−a[A−

R a
−aλ(y)T (x− y)dy − βλ(x)]λ(x)dx

=
R a
−a
£
Aλ(x)− βλ(x)2

¤
dx−

R a
−a
R a
−aT (x− y)λ(y)λ(x)dydx

Consider any infinitesimally small variation eλ(x) around the optimal solution λ(x). Then
the variation of the functional W is given by variation of the first term in the above

integral R a
−aA

eλ(x)− 2βeλ(x)λ(x)dx
and by variation of the second term in that integral

R a
−a
R a
−a

h
T (x− y)eλ(y)λ(x) + T (x− y)λ(y)eλ(x)i dydx

=
R a
−a
R a
−aT (x− y)eλ(y)λ(x) dydx +

R a
−a
R a
−aT (x− y)λ(y)eλ(x) dydx

=
R a
−a
R a
−aT (y − x)eλ(x)λ(y) dxdy + R a−aR a−aT (x− y)λ(y)eλ(x) dxdy

=
R a
−a
R a
−a [T (y − x) + T (x− y)] eλ(x)λ(y) dydx

=
R a
−a
R a
−a2T (x− y)λ(y)dy eλ(x)dx

where we substitute x for y in the first term in the second equality and where we use

symmetry of T (x) in the last equality. Hence the variation of the objective W is equal to

fW =
R a
−a

nh
Aeλ(x)− 2βeλ(x)λ(x)i− R a−a2T (x− y)λ(y))dyeλ(x)o dx
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At the optimum, fW must be equal to zero for any eλ(x) around the optimal λ(x). This
implies that A− 2βλ(x) −

R a
−a2T (x− y)λ(y)dy = 0. By using the definition of S(x), we

get finally get S(x)− βλ(x) = A/2.

Appendix B.1: Proof of Lemma 1

Proof. Let us define I+k (resp. I−k ) to be set of indices of cities that are located at a

clockwise (resp. counterclockwise) distance from interval k inferior to 1/2. We consider

an agent located at x ∈ [ak, bk]. When x + 1/2 /∈ H, we denote by jk the interval index

to which x+ 1/2 belongs to. The utility of an agent located in city k can be written as

V (x) = A− 2τ [
P

i∈I+k

R bi
ai
(y − x)λ(y)dy +

P
i∈I−k

R bi
ai
(1− (y − x))λ(y)dy]

− 2τ [
R x
ak
(x− y)λ(y)dy +

R bk
x
(y − x)λ(y)dy]− βλ(x)

− 2τχsuppλ(x+ 1/2)
hR x+1/2

ajk
(y − x)λ(y)dy +

R bjk
x+1/2(1− (y − x))λ(y)dy

i
where χsuppλ denotes a characteristic function so that χsuppλ(x) is equal 1, if x ∈suppλ,

and 0 otherwise. By differentiation with respect to x, we get

−2τ
P

i∈I+k

R bi
ai
(−1)λ(y)dy − 2τ

P
i∈I−k

R bi
ai
(1)λ(y)dy − 2τ

R x
ak
(1)λ(y)dy − 2τ

R bk
x
(−1)λ(y)dy

+2τχsuppλ(x+ 1/2)
hR x+1/2

ajk
λ(y)dy −

R bjk
x+1/2λ(y)dy

i
− βλ0(x) = 0

We get the stated result by writing P+(x) =
³P

i∈I+k

R bi
ai
+
R bk
x
+ χsuppλ(x+ 1/2)

R x+1/2
ajk

´
λ(y)dy

and P−(x) =
³P

i∈I−k

R bi
ai
+
R x
ak
+ χsuppλ(x+ 1/2)

R bjk
x+1/2

´
λ(y)dy.

Appendix B.2. : Proof of Lemma 2

Proof. Let us define I+k (resp. I−k ) to be set of indices of cities that are located at a

clockwise (resp. counterclockwise) distance from interval k inferior to 1/2. We consider

an agent located at x ∈ [ak, bk] such that x + 1/2 ∈ H. By the proof of Lemma 1 in

Appendix B.1 the FOC V 0(x) = 0 can be written as

−2τ
P

i∈I+k

R bi
ai
(−1)λ(y)dy − 2τ

P
i∈I−k

R bi
ai
(1)λ(y)dy

−2τ
R x
ak
(1)λ(y)dy − 2τ

R bk
x
(−1)λ(y)dy − βλ0(x) = 0
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By further differentiation we get

−2τλ(x)− 2τλ(x)− βλ
00
(x) = 0

λ00(x) + δ2λ(x) = 0

where δ2 = 4τ/β. The general solution to this differential equation is given by

λ(x) = ck cos[δ (x− xk)]

where ck and xk are constants. Note that λ(ak) and λ(bk) can’t be strictly positive. For

instance, if λ(bk) were strictly positive, then agents in location bk would have an incentive

to move to the hinterland in location bk + ε with ε > 0. By doing so they would save a

finite marginal residence cost while facing only an infinitesimal marginal accessing cost.

Therefore δ(bk − ak) = π and xk = (bk − ak)/2.

Appendix B.3: Proof of Lemma 3

In order to prove Lemma 3 we need two other Lemmas (B.1), (B.2).

Lemma B.1 If an agent were located in x ∈ [ak, bk] with x + 1/2 ∈suppλ, then the

equilibrium distribution would be given by λ(x) = C + c cos[δ0(x− xk)] where δ0
2
=

2δ2 = 8τ/β and c, C and xk are some constants.

Proof. Consider an agent located at x ∈ [ak, bk] such that x+1/2 ∈suppλ -i.e. x+1/2

does not belong to the hinterland-. From the proof of Lemma 1 in Appendix B.1, the

FOC V 0(x) = 0 can be written as

−2τ
P

i∈I+k

R bi
ai
(−1)λ(y)dy − 2τ

P
i∈I−k

R bi
ai
(1)λ(y)dy − 2τ

R x
ak
(1)λ(y)dy

−2τ
R bk
x
(−1)λ(y)dy + 2τ

hR x+1/2
ajk

λ(y)dy −
R bjk
x+1/2λ(y)dy

i
− βλ0(x) = 0

By further differentiation we get

−4τλ(x) + 4τλ(x+ 1/2)− βλ00(x) = 0

By applying Lemma 1 in locations x and x + 1/2, we have that λ0(x) + λ0(x + 1/2) = 0

so that λ(x+ 1/2) = C − λ(x), and the previous equation leads to

λ00(x) + δ0
2

λ(x) = C 0
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where δ0
2
= 2δ2 = 8τ/β, C 0 = 4τC/β. The solution general to this equation

λ(x) = C 00 + c0k cos[δ
0(x− x0k)]

where C 00, c0k and x0k are constants.

We now construct a spatial configuration with two cities that face each other along

the circumference. W.l.o.g. the two cities are centered in locations x = 0 and x = 1/2.

The large city lies in the interval [−a, a] while the small one lies on the opposite side of

the circumference in the interval [1/2 − a0, 1/2 + a0], with a > a0 > 0. Hence we have

a range (−a0, a0) in which λ(x)λ(x + 1/2) > 0 and two ranges [−a,−a0] and [a0, a] such

that λ(x) > 0 and λ(x + 1/2) = 0. Land rent are zero at the city boundaries so that

λ(a) = λ(−a) = λ(1/2− a0) = λ(1/2 + a0) = 0. Note that in the intervals (a, 1/2− a0) to

the right of the large city, and (1/2 + a0, 1− a) to the left of the large city, there may be

other cities. We characterize the shape of any candidate equilibrium distribution. In this

candidate distribution, the small city displays k bumps and the large city k + 1 bumps.

Lemma B.2 If two cities were to face each other in locations 0 and 1/2, then they would

have necessarily the following shape

λ(x) = C
h
1 + (−1)k cos δ0x

i
for x ∈ [−a0, a0]

λ(x) = 2C cos δ (x− a0) for x ∈ [−a,−a0] ∪ [a0, a0]

λ(x) = C
h
1− (−1)k cos δ0 (x− 1/2)

i
for x ∈ [1/2− a0, 1/2 + a0]

where a0 = kπ/δ0 with k ∈ N++, a = a0+π/(2δ), and C is a positive constant. Also

there would be no other city in [1/2− a, 1/2− a0] ∪ [1/2 + a0, 1/2 + a].

Proof. Since the two cities face each other in the intervals (−a0, a0) and (1/2−a0, 1/2+

a0), Lemmas B.1 gives

λ(x) = C − c cos δ0x , x ∈ (−a0, a)

λ(x) = C + c cos δ0(x− 1/2) , x ∈ (1/2− a0, 1/2 + a0)

Since λ is positive, C ≥ |c|. Since λ(1/2 ∓ a0) = 0, this gives C = |c|, and if c > 0

(resp. c < 0), then δ0a0 = (2k − 1)π (resp. δ0a0 = 2kπ), k ∈ N++. Thus the distribution
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can be written as

λ(x) = C − (−1)kC cos δ0x , x ∈ (−a0, a)

λ(x) = C + (−1)kC cos δ0(x− 1/2) , x ∈ (1/2− a0, 1/2 + a0)

with some constant C > 0 and δ0a0 = kπ, k ∈ N++.

Since in the intervals (−a,−a0) and (a0, a) the large city doesn’t face any other city,

Lemma 2 gives λ(x) = c0 cos δ(x − x0). Because V and λ are continuously differentiable,

λ(a0+) = λ(a0−) and λ0(a0+) = λ0(a0−). This implies c0 = 2C and x0 = a0. Finally, since

λ(a) = 0, we have that δ(a− a0) = π/2.

We now prove Lemma 3.

Proof. As mentioned before already, in the intervals (a, 1/2 − a0) to the right of

the larger city, and (1/2 + a0, 1 − a) to the left of the larger city, there may be other

cities. Their total population Q+ =
R 1/2−a0
a

λ(y)dy is located at the mean distance xQ+ =R 1/2−a0
a

yλ(y)dy/Q+. Similarly, in the interval (1/2+a0, 1−a) to the left of the larger city

there may be other cities that we summarize by a total population Q− located at a mean

distance xQ−. Thus (Q+, Q−, xQ+ , xQ−) are exogenous parameters whereas (a, a0) are to

be determined by equilibrium conditions.

The total population is given by the relationZ a

−a
λ∗(y)dy +

Z 1/2+a0

1/2−a0
λ∗(y)dy +Q+ +Q− = 1 (7)

We now determine the indirect utility at locations x = 0 and at x = 1/2

V (0) = A− 4τ
Z a

0

yλ∗(y)dx− 4τ
Z 1/2

1/2−a0
yλ∗(y)dx− 2τxQ+Q+ − 2τ(1− xQ−)Q

− − β λ(0)|{z}
0 or 2C

V (1/2) = A− 4τ
Z a

0

(1/2− y)λ∗(y)dx− 4τ
Z 1/2

1/2−a0
(1/2− y)λ∗(y)dx

− 2τ (1/2− xQ+)Q
+ − 2τ (xQ− − 1/2)Q− − βλ(1/2)| {z }

2C or 0

Thus, V (1/2) = V (0) implies

0 = 2

Z a

0

(2y − 1/2)λ∗(y)dx+ 2
Z 1/2

1/2−a0
(2y − 1/2)λ∗(y)dx

+ (2xQ+ − 1/2)Q+ + (−2xQ− + 3/2)Q− ∓ βc
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By using expression (7) we get

2

Z a

0

yλ∗(y)dx+ 2

Z 1/2+a0

1/20
yλ∗(y)dx+ xQ+Q

+ + xQ−Q
− = 1/4 (8)

This means that for a given configuration of cities (Q+, xQ+ , Q
−, xQ−), expressions (7) and

(8) define a system two equations with one unknown C. Because expression (7) is a sum

of
R
λ∗(y)dx and expression (8) is a sum of

R
yλ∗(y)dx they cannot be linear combinations

for any measurable set of parameters (β, τ). This system is therefore over-determined and

there exists no solution C that solves the equilibrium.

Appendix B.4: Proof of Lemma 4

Proof. By applying Lemma 1 at the centre xk of each city k, we get P+(xk)−P−(xk) = 0,

k = 1, 2, ..., n. These conditions can be written in the following matrix form⎡⎢⎢⎢⎢⎢⎢⎣
0 a12 · · · a1M

−a12 0 · · · a2M
...

...
. . .

...

−a1M −a2M · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }

A

⎡⎢⎢⎢⎢⎢⎢⎣
P1

P2
...

PM

⎤⎥⎥⎥⎥⎥⎥⎦ = 0

where aij ∈ {−1,+1} indicates whether j ∈ I−i (city j is a right-neighbor of city i) or

j ∈ I+i (city j is a left-neighbor of city i). We refer to matrix A as the ’neighboring’

matrix.

It turns out that the determinant of a matrix can be expressed as detA =
P

γ∈Γε(γ)
Q

γi
aiγi,

where γ is a permutation of {1, 2, ...,M}, Γ the set of derangements of {1, 2, ...,M}, and

ε : Γ → {−1, 1}. Given that the number of such derangements is odd when M is even

and aij ∈ {−1, 1} for j 6= i, detA corresponds to a sum of an odd number of terms equal

to −1 or +1. Therefore, whenever M is even, detA is non-zero and the only solution to

AP = 0, is P = 0. Note that when M is odd, detA = 0 because A = −AT .

Appendix B.5: Proof of Proposition 3

We firstly prove that cities are equally populated and then that they are equidistant.
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Let M be an odd number of cities that are clockwisely indexed as i = 1, 2, ...,M, let

Pi be the population of city i (or i − kM if Mk < i ≤ M(k + 1), k ∈ N ) and let #I+i
(resp. #I−i ) to number of cities that are located the right (resp. left) of the centre of city

i.

We firstly need to define a concept of symmetry in the location of cities.

Definition (Neighborhood Symmetry) Spatial distribution displays the neighbor-

hood symmetry if each city has the same number of cities on its left and on its

right: #I+i = #I
−
i = (M − 1)/2, ∀i.

We also define the pairs of cities located on opposite sides of the circumference as it

follows.

Definition (Paired Cities) Consider the centre xi of some city i. Cross the disk and

reach the symmetric location x+ 1/2 just in front. Move clockwise (resp. counter-

clockwise) to the next first city, say city j. Then cross back the disk and reach the

symmetric location of city xj+1/2. Move counterclockwise (resp. clockwise) back to

city i. If no other city is met before reaching city i, we say that cities i and j are

clockwise (resp. counterclockwise) paired.

Given this definition, we readily get the three following lemma.

Lemma B.5.1 If cities i and j are paired, then Pi = Pj.

Proof. By applying Lemma 1 at the centres of cities i and j.

Lemma B.5.2 Under neighborhood symmetry, Pi = P , ∀i.

Proof. Under neighborhood symmetry, each city can be clockwise and counterclock-

wise paired. By contradiction. Assume that some city i can’t be paired. We know that it

has (M − 1)/2 right- and left- neighbors. If it can’t be paired then one meets at least one

other city when coming back to city i in the last stage of the pairing construction. Then

apply Lemma 1 to the centre of that city. This necessarily violates the neighborhood

symmetry.
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Then each city i can be paired to cities i + M+1
2
and i + M−1

2
, and Pi = Pi+M+1

2
=

Pi+M−1
2
. This implies that Pi = Pi+1, ∀i. (Note: we need a notation for i + M+1

2
and

i+ M−1
2
)

Lemma B.5.3 Neighborhood symmetry holds.

Proof. We show that if neighborhood symmetry didn’t hold, then there would exist

a city with negative population.

Step 1. If neighborhood symmetry does not hold, then ∃i : city i can’t be paired

clockwise. This is because if neighborhood symmetry does not hold, then ∃i : the number

of right neighbors 6= number of left neighbors. Consider the clockwise pairing of cities,

but city i. At maximum, 2min(number of right neighbors, number of left neighbors)

can be paired clockwise. This means at least max(number of right neighbors, number

of left neighbors)-min(number of right neighbors, number of left neighbors) cities remain

unpaired among the M − 1 cities. This number is necessarily even. Even by taking care

of the clockwise pairing of city i, there will always remain at least a city that can’t be

paired.

Step 2. Partition cities in cities that can be paired clockwise and cities that cannot be

paired clockwise. Take two neighbor cities i (that can’t be paired clockwise ) and i + 1

(that can be paired clockwise). Apply Lemma 1 at the centre of cities i and i+ 1. Then

apply FOC1 at i + 1. This implies that Pi + Pcity paired to i+1 = 0 so that population of

some city should be negative.

It naturally follows that cities are equally populated.

Lemma B.5.4 Neighborhood symmetry holds and all cities are equally populated, Pi =

P = 1/M , ∀i.

Given this lemma we can show the following result. Let city centres are denoted by

xi, i = 1, ...,M .

Lemma B.5.5 Cities are equidistant: xi − xi−1 = 1/M .

Proof. By Lemma B.5.4, we know that Pi = P/M . The interaction costs for agents
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located in city centres are given by

i < (M − 1)/2 : Ci = 2τ{
Pk=i+(M−1)/2

k=1 |xk − xi|+
PM

k=i−(M−1)/2+M [1− (xk − xi)}

i = (M − 1)/2 : C(M−1)/2 = 2τ{
P

k 6=(M−1)/2
¯̄
xk − x(M−1)/2

¯̄
i > (M − 1)/2 : Ci = 2τ{

Pk=M
k=i−(M−1)/2+1 |xk − xi|+

Pi+(M−1)/2−M
k=1 [1− (xi − xk)]}

Because of the neighborhood symmetry and because these costs Ci should be equal -say

to C-, we have that

Ax = b

where bT = [C − (M − 1)/2, ..., C − 1, C, C + 1, ..., C + (M − 1)/2] /(2τ), and A is the

neighborhood matrix introduced in Appendix B.4.

It turns out that matrix A has rank M − 1. This is because the minor (i, i) of A is a

neighborhood matrix corresponding a configuration where city i has been removed, and

thus is of M − 1 since the determinant of a neighborhood matrix is non zero when the

number of cities is even, see Proof of Lemma 4 in Appendix B.4. Then the only solution

to Ax = b is necessarily xi − xi−1 =M−1, ∀i.

Appendix C.1: Ranking of Equilibria

Consider an equilibrium with an odd number M odd of identical equidistant cities. The

equilibrium utility is given by
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V ∗(M) = A− βλ(a1 +
π

2δ
)−

XM

i=1

Z ai+
π
δ

ai

T (a1 +
π

2δ
, y)λ(y)dy

= A− βλ(a1 +
π

2δ
)−

Z a1+
π
δ

a1

T (a1 +
π

2δ
, y)λ(y)dy

−
XM+1

2

i=2

Z ai+
π
δ

ai

T (a1 +
π

2δ
, y)λ(y)dy −

XM

i=M+1
2
+1

Z ai+
π
δ

ai

T (a1 +
π

2δ
, y)λ(y)dy

= A− βλ(a1 +
π

2δ
)− 2τ

Z a1+
π
2δ

a1

(a1 +
π

2δ
− y)λ(y)dy − 2τ

Z a1+
π
δ

a1+
π
2δ

(y − (a1 +
π

2δ
))λ(y)dy

− 2τ
XM+1

2

i=2

Z ai+
π
δ

ai

(y − (a1 +
π

2δ
))λ(y)dy − 2τ

XM

i=M+1
2
+1

Z ai+
π
δ

ai

(1− (y − (a1 +
π

2δ
)))λ(y)dy

= A− 4τ
δ2

δ

2M
− 2τ π − 2

δ2
δ

2M
− τ

M2 − 1
2M2

= A− 2τ

δM|{z}
Residence Cost

− τ
π − 2
δM| {z }

Accessing Cost within the city

− τ
M2 − 1
2M2| {z }

Accessing Cost to other cities

6.1 Appendix C.2: Proof of Proposition 4

Proof. As ∂MV ∗ = Mπ−δ
M3δ

τ , ∂MV ∗ = 0 for M = δ/π > 1 since δ > 2π. This means

that ∂MV ∗ < 0 in the interval [1, δ/(2π)]. Thus V ∗(M) decreases with M , and the

maximum of V ∗(M) is reached when M = 1. The flat-earth welfare is given by V (flat

earth) =
Z 1

0

∙
A− β −

Z 1

0

T (x, y)dy

¸
dx = A− β − τ

2
. It is always inferior to V ∗(M = 1)

when the single city is an equilibrium.

6.2 Appendix C.3: Proof of Proposition 5

We now derive the first best spatial distribution on the perimeter of the unit circumference

(Proposition 5). We assume that the opportunity cost of land is 0, so that the first best

spatial configuration solves

max
λ(.)

Z
C

∙
A−

Z
C
T (x, y)λ(y)dy − β

2
λ(x)− r(x)

¸
λ(x)dx

st.
Z
C
λ(x)dx = 1Z

C
r(x)λ(x)dx = 0
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where r(.) represents spatial transfers. The optimum can be implemented without the

use of transfers and we have that

max
λ(.)

Z
C

∙
A−

Z
C
T (x, y)λ(y)dy − β

2
λ(x)

¸
λ(x)dx

st.
Z
C
λ(x)dx = 1

The Lagrange function is

L =

Z
C

∙
A−

Z
C
T (x, y)λ(y)dy − β

2
λ(x)

¸
λ(x)dx− µ(

Z
C
λ(x)dx− 1)

The first variation gives

δL =

Z
C

∙
A− µ− βλ(x)− 2

Z
C
T (x, y)λ(y)dy

¸
δλ(x)dx = 0

Since at the optimum δL = 0, we have thatZ
C
T (x, y)λ(y)dy +

β

2
λ(x) =

A− µ

2

Since S(x)− β
2
λ(x) = A−

Z
C
T (x, y)λ(y)dy − β

2
λ(x), this leads to

S(x)− β

2
λ(x) =

A+ µ

2

It means that at the optimum V (x) = S(x) − β
2
λ(x) is constant. Compared to the

decentralized equilibrium, β/2 appears instead of β. As a consequence the optimum

corresponds then to having a single city which is more concentrated than the spatial

equilibrium involving a single city. The optimal welfare is then given by V ∗(M = 1, β/2)

V ∗(M = 1, β/2) = A− τ

2
+

τ

2
− π

τq
4τ
β/2

= A− π

2
√
2

p
τβ
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