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Consumption Complementarities in Suboptimal Economies

I – Introduction

The difficulties associated with the appraisal of the local determinacy properties of a three-
dimensional discrete time dynamical system have long deterred a more widespread use of the
associated setups in economic theory. This contribution is intended to introduce a range of
graphical methods based upon the elementary geometrical properties of a range of triangles
over the plane that ought to significantly ease the appraisal of such systems. Having brought
about a complete and easy-to-use typology of the eigenvalues moduli, it then illustrates the
regards in which, for some third-order dynamical systems, this also corresponds to a new
apparatus for assessing from a geometrical standpoint the emergence of local bifurcations.
The current contribution essentially borrows from a range of earlier ones due to Grandmont []
and Grandmont, Pintus & de Vilder []. As they reconsider the role of factors substitutability
in competitive economies, these authors have come to introduce a tractable graphical way of
assessing local uniqueness or local indeterminacy for dynamical systems of order two. Their
approach is based upon a graphical partition of the plane defined from the two coefficients
of the second-order characteristic polynomial associated with a two-dimensional dynamical
system in the neighbourhood of the steady state. Such a partition is then completed by
drawing the critical loci associated to real and complex eigenvalues with unitary modulus,
these loci featuring boundaries between stability and unstability zonas. A given economy
— a set of fundamental preferences and technological parameterisations — was then to be
understood as a point over that plane whilst the appraisal of its local dynamics summarised to
the localisation of this point. Letting one of its building parameters vary gives rise to a family
of economies, namely a curve over that plane the localisation of which provided insights about
the associated qualitative changes undergone by the dynamical properties of the economy. The
crux interest of this construction for economic theory stems from its explicit consideration of
meaningful and generic concepts without having to resort to specific parametric formulations.
Anchoring the argument on original formal developments to assess the stability properties
of three-dimensional dynamical systems, the current contribution will argue that most of the
key-features that underlay the simplicity and the convenience of the two-dimensional approach
can be recovered in the three-dimensional case.
Looking for an appraisal of unrestricted economic setpus through the reference to linear critical
loci and basic notions of plane geometry, two key difficulties however quickly emerge as being
associated with the conceivability of such an approach for a three-dimensional dynamical
system. Firstly, the intricacies of three-dimensional graphs and the intrisic subtelities of the
geometry of a three-dimensional space. Secondly, the uprise of a nonlinear critical locus that
happens to describe the occurrence of complex eigenvalues with unitary modulus — this was
one of the key-ingredients of the two-dimensional construction. The first of these issues shall
be circumvented by apprehending the original three-dimensional space — the coordinates
of which emerge from the three coefficients of the third-order characteristic polynomial —
through a collection of sections defined along a given coordinate and thus of two-dimensional
planes. Fortunately enough, such an approach also recovers linear definitions for the critical
loci and thus overcomes the second major difficulty of the appraisal of stability issues within
a three-dimensional space. A direct byproduct states as the simplicity of the typologies it
allows for the moduli of the eigenvalues and thus for the understanding of the boundaries
between unstability and stability areas within a three-dimensional dynamical system. Two
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generic ranges of threefold typologies of the number of moduli inside the unit circle indeed
happen to deserve a distinct appraisal according to whether the parameterisation of the plane
that is considered proceeds from a value that is, in absolute terms, lower or greater than one. As
for the first range of planes with a parameterisation through a coefficient of the characteristic
polynomial that is lower than one, the plane will typically be partitioned partioned between
areas with one, two or three moduli inside the unit circle. Interestingly, the ultimate 〈〈highly
stable 〉〉 occurrence with three moduli inside the unit circle reveals as being associated with
economies located within a triangle, a straightforward articulation with the insights of the two-
dimensional analysis — such a position therein depicts the occurrence of two moduli inside the
unit circle — being then available. The remaining range of planes build from parameterisations
through a coefficient of the characteristic polynomial that is greater than one and emerge as
requiring at least one modulus to be located outside the unit circle, a plane being then typically
partitioned between zonas displaying zero, one or two moduli inside the unit circle. Although
a triangle is again available, both its formal definition and its geometric understanding are
entirely distinct — they have no direct counterpart in two-dimensional analysis — since it now
delimitates a fully unstable occurrence with no modulus inside the unit circle.

The understanding of this typology is further about all that is required for a detailed appraisal
of the large range of parameterised economies entailing local properties that fall into the
current characterisation: indeed, a thorough understanding of the uniqueness, stability and
bifurcations properties of a three-dimensional dynamical system is just a matter of elementary
plane geometry techniques. Mainly and for a given family of economies, one is first to locate
the plane over which the analysis is to be undertaken and subsequently complete a geometrical
characterisation of a curve — it features the role of a fundamental preferences or technology
parameter — essentially grounded upon tools already used in a standard two-dimensional
analysis. Though such an advanced characterisation of the stability properties and of the
bifurcation set is admittedly not available for any arbitrary three-dimensional parameterised
economy — this preferences or technology parameter cannot appear in the coefficient of the
characteristic polynomial that indexes the construction of the planes — , the subsequent
examples should illustrate that the class of economies for which the current approach provides
a useful toolbox is fairly large.

A growing literature has recently been aimed at exploring the consequences of instantaneous
utilities parameterised by a direct comparison of the individual consumption to a benchmark
stock determined by the consumption of others. The basic insight builds from the postulate
according to which individual well-being is not only determined by the intrisic utility of his
own consumption but also by one’s relative standing — — positional concern, social status.
Though the origins of this proposition already appeared in Adam Smith’s writing, it was not
until the contributions of Duesenberry [] and Pollak [] that micro-theoretic foundations
were proposed for these ideas, recent empirical assessments being available in Luttmer [] and
Ravina []. These ideas have become popular in the recent period with applications in various
areas of economics: asset pricing theory and equity premium puzzles with Abel [], efficiency of
the capital accumulation process and optimal taxation with Alonso-Carrera, Caballé & Raurich
[], Liu & Turnovsky [], Turnovsky & Monteiro [], the long-run distribution of income and
wealth with Garcia-Penalosa & Turnovsky [] and finally the scope for indeterminacy in
dynamic general equilibrium economies with Alonso-Carrera, Caballé & Raurich [] and Chen
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& Hsu []. As a matter of fact and at a rough level, the literature distinguishes two forms
of consumption benchmarks: the Catching-up with the Joneses which captures the influence
of society’s past consumption choices — vide Abel [] —; the Keeping-up with the Joneses
captures the influence of the society’s current choices — — vide Gali []. Finally, whilst a
Catching-up with the Joneses for instantaneous utility features a desire to be similar to others,
the very possibility that many consumers wish to call attention to themselves cannot a priori be
dismissed. Such an observation has led Dupor & Liu [] to consider utilities displaying Running-
away from the Joneses — — as a counterpart of Keeping-up with the Joneses.Though their
focus will admittedly more relate to the branch of this literature that deals, as mentioned above,
with the scope for indeterminacy in dynamic general equilibrium economies, the purpose of
the subsequent applications to this literature of the graphical methods developed for assessing
the stability of three-dimensional discrete time dynamical systems is in no way to introduce
some new or original idea. It is rather to provide a detailed formal characterisation of the
implications on the stability properties of some benchmark environments of the introduction
of a class of assumptions that are popular in this literature. Some variations on two benchmark
setups for the analysis of intertemporal equilibria based upon capital accumulation, namely the
basic Ramsey [] model of capital accumulation and the Allais [] - Samuelson [] model of
overlapping generations amended by Diamond [] in order to account for capital accumulation,
will in turn be analysed.

The infinite-horizon environment of Ramsey is first augmented to account for past Catching-
up with the Joneses and contemporaneous Keeping-up with the Joneses arguments in the
instantaneous utility of the consumers. On a formal basis, it is to be stressed that the implied
three-dimensional discrete time dynamical system — it is associated with an intertemporal
competitive equilibrium with lagged and contemporaneous consumption spillover effects — is
somewhat particular in being based upon a pair of predetermined variables. The graphical
methods developed in the first part of the article allow to derive a range of conclusions: as
long as the contemporaneous spillover effects stemming from aggregate consumption do not
question the concavity of utility, the implications of spillover effects stemming from earlier
aggregate consumption will not question the local uniqueness of the steady state. Second
and more interestingly, it is the very conjunction of positive spillover effects stemming from
current consumption and past consumption that has the more dramatic implications on the
stability properties of the economy. Highly complicated scenarios with strong sensibilities
with respect to factors substituability but also with respect to the size of these spillovers
then indicate a natural area where the dimension of the stable manifold exceeds the number
of predetermined variables, breaks the uniqueness result and opens road for the so-called
expectations-driven fluctuations. A modified Diamond [] model of overlapping generations
is then considered, the current benchmark model also accounting for labour supply and an
extra useless asset — it is due to Benhabib & Laroque []. Whilst its original formulation
was already associated with a three-dimensional discrete dynamical system, it is currently
augmented by contemporaneous Keeping-up with the Joneses effects in the preferences of the
individuals. On a formal basis, it differs from the preceding modified version of the Ramsey
The Catching-up with the Joneses hypothesis is actually an external habit formation setup where the
consumption benchmark is an externality. This contrasts with the internal habit formation setup where
the reference is the consumer’s own past consumption.
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setup by being based upon a unique predetermined variable but also because, in being locally
associated with a characteristic polynomial for which two coefficients — out of three, against
one out of free for the Ramsey setup — explicitly depend on the bifurcation parameter, it
provides a more canonical illustration of the usefulness of the graphical methods introduced
by this contribution. The insights of the analysis essentially confirm the ones of the Ramsey
environment, pointing the Keeping-up from the Joneses assumption as a candidate to violate
the gross substitutability assumption retained on the preferences and then unequivocally
bending the economic system towards widened areas characterised by excessive dimensions
for the stable manifold.

The geometrical techniques are introduced in Section II. Section III deals with the comparison
utility model, Section IV builds upon an elaboration of the latter within the model of
overlapping generations. Some computations are provided in a final appendix.

II – A Geometric Argument for the Appraisal of Three-Dimensional

Dynamical Systems

This section will first unveil a collection of simple geometric pictures underlying the typology
of eigenvalues and the emergence of local bifurcations in discrete three-dimensional dynamical
systems.

II.1 – A Geometric Picture for the Critical Loci

Letting the equilibrium dynamics of an economy be described by a system: yt+ = G(yt),
yt ∈ R

+, steady states equilibria are the roots of ȳ − G(ȳ) = . The characterisation of the
local dynamics nearby a given steady equilibrium proceed from the appraisal of an associated
linear map zt+ = Jzt for J , DG(ȳ) the Jacobian matrix of G(·) evaluated at ȳ and
zt , yt − ȳ the deviation from the steady state. The eigenvalues of the matrix J are the
zeroes of the following third order polynomial:

P(z) = (z − z)(z − z)(z − z)()

= −z +
(
z + z + z

)
z −

(
zz + zz + zz

)
z + zzz

= −z + T z −M z + D

for T ,M and D that respectively denote the trace, the sum of the principal minors of order
two and the determinant of the Jacobian matrix J , DG(ȳ).
The locus such that the coefficients T ,M ,D satisfy P(+) =  is a plane — henceforward
refered to as the saddle-node critical plane —whose characteristic equation is given by:

−+ T −M + D = .()

Generically, a saddle-node bifurcation will occur in its neighbourhood when the triple
(T ,M ,D) crosses this plane and the uniqueness properties of the steady state will be lost.

 Vide Devaney [] or Grandmont [].
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Similarly, the locus such that the coefficients T ,M ,D satisfy P(−) =  is a plane —
henceforward refered to as the flip critical plane — whose characteristic equation is given by:

+ T + M + D = .()

Generically, a flip bifurcation will occur in its neighbourhood when the triple (T ,M ,D) crosses
this plane and two-period cycles will emerge. Lastly, when a pair of nonreal characteristic
roots exhibiting an unitary norm emerges, the remaining eigenvalue, e.g., z, sumarises
to the product of the eigenvalues D . The latter thus becomes a characteristic root, i.e.,
P(D) = . Solving, the characteristic polynomial restates as P(z) = (D − z)Q(z), for
Q(z) = z − (T − D)z + M − (T − D)D . A standard analysis of Q(·) then indicates
that the locus of coefficients T ,M and D such that two roots are complex conjugate with
unitary modulus is a ruled surface — i.e., a surface generated by straight-lines — that shall
henceforward refered to as the Poincaré-Hopf critical surface, is delimited by

∣∣T − D
∣∣ < 

and defined from letting the determinant of Q(·) undergo a value of , namely:

M − −
(
T −D

)
D = .()

Generically, a Poincaré-Hopf bifurcation will occur when the triple (T ,M ,D) crosses the
complex interior component of this surface and quasi-periodic equilibria will emerge in its
neighbourhood. The central difficulty in the appraisal of this ultimate locus through a three-
dimensional graph stems from its nonlinear shape, namely the appearance of the quadratic
expression (T − D)D in its definition. Interestingly, it is however circumvented upon the
consideration of a collection of projections indexed by D of this surface over the plane defined
by T and M . An analysis with a strong two-dimensional flavour — any of the aforementioned
critical loci can anew be represented through a straight-line or a segment — being then
conceivable in the space of the two other coefficients T and M .
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Figure 1: Benchmark case D = .
More explicitly and first introducing the benchmark case D =  on Figure 1, the set of
coefficients (T ,M ) such that P(+) =  and P(−) =  respectively boil down to the
saddle-node and flip critical lines

(
AC

)
and

(
AB

)
— the index  refers to the value of

the parameter D under which the whole picture is drawn — whilst the corresponding set for
two nonreal eigenvalues with unitary norm is depicted by the horizonal Poincaré-Hopf critical

This follows from the restriction for a negative sign for the discriminant associated to Q(·).
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segment
[
BC

]
. This gives rise to a construction familiar from the two-dimensional analysis,

namely the triangle
(
ABC

)
defined by |T | < |+ M | and |M | < .

As D is increased over R+ and as illustrated on Figure 2, the slopes of
(
ADCD

)
and

(
ADBD

)
are unmodified whilst the segment

[
BDCD

]
, of slope D , essentially follows a translated counter-

clockwise rotation.
6

-

�
�
�
�
�
�
�
�
�

@
@
@
@
@
@
@@

��
��

��
��

��
��

��
��

��
��

��
��

AD

BD

CD

[D ∈], []

6

-

�
�
�
�
�
�
�
�
��

@
@
@
@@

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

A B

C

[D = ]

6

-

�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

AD

BD

CD

[D ∈],+∞)]

Figure 2: Translated counterclockwise rotation as D is increased over R+.
The parameterised coordinates of AD , BD and CD respectively derive from the solving of ()
and (), () and (), () and (). They list as:(

TAD ,MAD

)
= (−D ,−),() (

TBD ,MBD

)
= (−+ D , − D),(

TCD ,MCD

)
= (+ D , + D).
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Figure 3: Translated clockwise rotation as D is decreased over R−.
It is worth emphasising that on Figure 2, the Poincaré-Hopf and the saddle-node critical loci
coincide and merge for D =  in the sense that A = B. A counterpart scenario is available
on Figure 3 where negative values are considered for D . Similarly, the Poincaré-Hopf and the
flip critical loci coincide and merge for D = − in the sense that A− = C−. These mergers
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imply that the definition of the triangle
(
ADBDCD

)
is modified as |D | goes through one.

Namely, starting from

|T + D | < + M for |D | < (a)

M < +
(
T −D

)
D .

it becomes

|+ M | < T + D for D > (b)

M > +
(
T −D

)
D .

and

|+ M | > T + D for D < −(c)

M > +
(
T −D

)
D .

Figures 1, 2 and 3 illustrate how such a three-dimensional parameterised construction, still
organised around a triangle

(
ADBDCD

)
, keeps on proceeding from the same lines as the

traditional two-dimensional one, but to the qualification that the slope of the Poincaré-Hopf
segment

[
BDCD

]
being given by D , it will vary accordingly. whilst the change from (a) to (b)

has made clear that the geometric meaning of the triangle
(
ADBDCD

)
is distinct between the

configurations for which |D | <  and the ones for which |D | > , an important extra property
is worth emphasising at that stage: (, ) ∈

(
ADBDCD

)
for any D ∈ R \ {−,+}. As this

will be illustrated by the forthcoming subsection, this assumes a direct and straightforward
articulation with the number of eigenvalues moduli inside the unit circle.

II.2 – A Typology of the Eigenvalues

In order to reach the essence of the argument about the cardinality of stable eigenvalues,
consider Figure 1 and the basic configuration for which D = . An economy within the
triangle

(
ABC

)
— this means for values of T and M that remain close to zero — displays

three eigenvalues with modulus inside the unit circle. As this was further clarified by (), the
definition of the triangle

(
ADBDCD

)
is unaltered as |T +D | < +M and M < +

(
T −D

)
D

as long as D spans ]−, [, that indicates the uniform occurence of three moduli inside the unit
circle under this joint configuration. Incidently, this can similarly be understood by noticing
that the origin (, ) of the above representations over the planes (T ,D) is associated to
the satisfaction of z = D : for D < , this corresponds to the occurrence of a triple real
eigenvalue with an absolute value lower than one. As long as the system is maintained in
the interior of the triangle

(
ADBDCD

)
for |D | < , its stability properties are then ruled by

three eigenvalues with moduli inside the unit circle. Consider then an upward perturbation
on Figure 1. The system will cross the segment

[
BC

]
: this implies that the modulus of the

complex eigenvalues gets out of the unit circle and there only remains a unique eigenvalue
with norm less than one. When one, after a rightward or a leftward perturbation, leaves
the origin stability area by crossing

(
AC

)
or
(
AB

)
, the position of a unique eigenvalue

with respect to the unit circle will be modified and the system falls in an area with two
stable eigenvalues. Finally, a downward perturbation from any of these areas will lead the
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system within an area that exhibits one modulus within the unit circle. As for the above
characterisation of the interior of the triangle

(
ADBDCD

)
, the formal definitions — in terms

of the coefficients T and D — of these areas remains unaltered as long as D spans ] − , [,
such a line of reasoning straightforwardly generalises to the whole range of values of D such
that |D | < . This eventually establishes the typologies — the number of stable eigenvalues
indicated between parenthesis on these figures — portrayed by the left components of Figures
4 and 5.
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Figure 4: Typologies for D ∈ ], [ and D > .

Completing the same line of reasoning on the right components of Figure 4 and 5, for
∣∣D∣∣ > ,

though the origin (, ) of the above representations over the planes (T ,D) remains located
within the interior of the triangle

(
ADBDCD

)
, from (), the definition of the latter is now

modified to |T +D | > +M and M > +
(
T −D

)
D . The associated satisfaction of z = D

indeed now coresponds to the occurrence of a triple real eigenvalue with an absolute value
that is greater than one. From the same lines of reasoning as above, the interior of the triangle(
ADBDCD

)
then uniformly indicates the holding of three eigenvalues with a modulus that is

greater than one. Starting from this position, a perturbation that results in the crossing of the
segment

[
BDCD

]
should then be interpreted as follows: the modulus of the complex eigenvalues

gets in the unit circle and there only remains a unique eigenvalue with norm greater than one.
Similarly, perturbations entailing the crossing of

(
ADCD

)
or
(
ADBD

)
from a initial position

inside the
(
ADBDCD

)
when D >  indicate that the position of a unique real eigenvalue

will be modified with respect to the unit circle and the system falls in an area with two
unstable eigenvalues. Finally, a subsequent perturbation resulting in a crossing of

(
ADBD

)
after an initial crossing of

(
ADCD

)
or in a crossing of

(
ADCD

)
after an initial crossing of(

ADBD

)
would lead the system within an area that exhibits two modulus within the unit circle.
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Figure 5: Typologies for D ∈]− , [ and D < −.
This eventually establishes the typologies — the number of stable eigenvalues indicated
between parenthesis on these figures — portrayed by the right components of Figures 4 and 5.
As this soon will become clear, this collection of figures introduces an alternative benchmark
for analysing the stability properties of parameterised economies that entails the treatment of
a three-dimensional dynamical system.

III – Catching-up with the Joneses / Keeping-up with the Joneses:
A Basic Representative Agent Example

III.1 – The Setup

This section will consider a variation of the neo-classical growth model that is augmented by an
outward-looking specification of intertemporal preferences for the representative individuals;
the level of utility derived from a given amount of instantaneous consumption is thus
assumed to exhibit extra dependencies with respect to previous and contemporaneous society
consumption standards. More explicitly, these preferences state as

∞∑
t=

βtu
(
ct;Ct, Ct−

)
,()

for β ∈ ], [, ct, Ct and Ct− respectively their positive rate of marginal impatience, their
consumption at date t ≥  and the average consumption across all consumers at the current
and at the previous date, u

(
·;C,C−

)
being a continuous concave instantaneous utility function

which maps R+ into R, is of class Ck, k ≥ , over R∗+ and satisfies the Inada conditions at the
origin, namely and for a given pair

(
Ct, Ct−

)
, the holding of limc→∂u

(
c, C,C−

)
/∂c = ∞,

limc→∞∂u
(
c, C,C−

)
/∂c =  . Further, ∂u

(
c, C,C−

)
/∂c > , ∂u

(
c, C,C−

)
/∂c <  for

any c ∈ R∗+. Besides, the Keeping-up and the Catching-up with the Joneses dimension
of this formulation are respectively ensured by the holding of ∂u

(
c, C,C−

)
/∂c∂C > 

∂u
(
c, C,C−

)
/∂c∂C− >  prevail, i.e., mimetism effects with respect to contemporaneous

or earlier consumption standards. In opposition to this, respectively contemporaneous and
R∗+ =],+∞).
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lagged Running-away from the Joneses dimensions are ensured by the converse occurrences of
∂u(c, C,C−

)
/∂c∂C <  and ∂u(c, C,C−

)
/∂c∂C− <  that translates the potential from

a repulsive dimension from previous consumption standards.
The capital stock accumulates according to

Kt+ = F
(
Kt, L

)
− ct,

for Kt and L respectively the t-value, t ≥  of the capital stock and the fixed amount of the
labour input, F (·, ·) an aggregate production function that is continuous, maps R+ ×R+ into
R+, is of class C over R∗+ × R∗+, homogeneous of degree one, satisfies the Inada conditions
and ∂F (K,L)/∂K < , ∂F (K,L)/∂L <  for any K,L > , the capital stock having
been assumed to fully depreciate at each period of time. Instead of attempting to complete
an extensive characterisation of the symmetric competitive equilibrium with externalities
associated with the occurrence of Ct− = ct− and Ct = ct at any t ≥ , the current exposition
shall proficiently take advantage the simpler centralised approach introduced by Kehoe, Levine
& Romer []. This builds from considering a Pareto problem parameterised by a sequence of
externalities

{
Ct−, Ct

}+∞
t=

:

Maximise
{ct,Kt}

+∞∑
t=

δtu
(
ct, Ct, Ct−

)
s.t. Kt+ ≤ F

(
Kt, L

)
− ct,

K given,Kt, ct ≥ .

A solution to this optimisation problem satisfies all of the conditions that characterise
a symmetric competitive equilibrium with externalities but, possibly, the extra symmetry
requesites Ct− = ct− and Ct = ct at each t ≥ . For any

{
Ct−

}+∞
t=

, the earlier strict
concavity assumptions on u

(
·;C,C−

)
and F (·, L) imply that such an optimisation problem

has a unique solution. Establishing the existence of an interior intertemporal competitive
equilibrium with externalities for which Ct− = ct−

({
Ct−

}+∞
t=

)
and Ct = ct

({
Ct−

}+∞
t=

)
at

any t ≥  is a significantly more involving task: being outside of the current line of concerns,
it shall not be discussed further. Assuming then its existence, a symmetric competitive
equilibrium with externalities is then described by the holding of:

∂u

∂c

(
ct; ct, xt

)
− β ∂F

∂K

(
Kt, L

)∂u
∂c

(
ct+; ct+, xt+

)
= ,()

Kt+ − F
(
Kt, L

)
+ ct = ,

xt+ − ct = ,

lim
t→∞

δt · ∂u
∂c

(
ct; ct, xt

)
·Kt = .

Under the earlier assumptions on the technology and an extra restriction on prefer-
ences, namely the satisfaction of ∂u

(
c, C,C−

)
/∂c + ∂u

(
c, C,C−

)
/∂c∂C 6=  for any

(c, C,C−

)
∈ R∗+ × R∗+ × R∗+, system () defines a three-dimensional first-order dynamical

system
[
Kt+, ct+, xt+

]′ = Ψ
(
Kt, ct+, xt+

)
. The emergence of a third extra dimension with
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respect to the canonical two-dimensional Ramsey setting univocally springs from the consid-
eration of lagged consumption externalities in the preferences. A remarkable formal property
of the equilibrium dynamical system () is that it builds from two predetermined variables,
namely the capital stock and past consumption, such considerations being essential for the un-
derstanding of its uniqueness properties by the next section. An interior steady state position
is then defined as a triple

{
K?, c?, x?

}
∈ R∗+ × R∗+ × R∗+ which satisfies:

/β − ∂F

∂K

(
K?, L

)
= ,(a)

K? − F
(
K?, L

)
+ c? = ,(b)

x? − c? = .(c)

Its existence being ensured by the Inada conditions on the technology and the preferences, the
concavity assumption of the technology further implies that it is unique. From Appendix 1, a
linearisation of the dynamical system around this steady state gives the following expressions
for the coefficients of the characteristic polynomial P(z) = −z + T z −M z + D :

T = − ηE−

η + ηE
− 

η + ηE

− s
σ

(


βs
− 
)

+


β
,()

M =
(
− ηE−

η + ηE

)


β
− ηE−

η + ηE
,

D = − 
β

ηE−

η + ηE
,

for

σ ,
∂F

∂K
(K/L, )

∂F

∂L
(K/L, )

/
F (K/L, )

∂F

∂K∂L
(K/L, ),

− s ,
∂F

∂L
(K/L, )

/
F (K/L, ), s ,

∂F

∂K
(K/L, ) · K

L

/
F (K/L, ),

η ,
∂u

∂c
(
c, C,C−

)
c

/
∂u

∂c

(
c, C,C−

)
, ηE ,

∂u

∂c∂C

(
c, C,C−

)
C

/
∂u

∂c

(
c, C,C−

)
,

ηE− ,
∂u

∂c∂C−

(
c, C,C−

)
C−

/
∂u

∂c

(
c, C,C−

)
,

()

that respectively depict the elasticity of substitution between capital and labour, the share of
labour and the share of capital, the intertemporal elasticity of substitution in consumption
and a pair of outward-looking comparison utility coefficients defined from the marginal utility
on consumption, all these being considered at their steady state values.

A careful reader will have already noticed that, had such a lagged consumption argument been
internalised by the agent, the ensued dynamical system would have displayed a dimension of four. As
this was however argued by Ryder & Heal [] in the first characterisation of such an environment, the
analysis is then complexified further by the potential for utility satiation, such an occurrence having no
counterpart in the present setting.
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III.2 – The Analysis

It is noticed that D does not depend in () on the elasticity of substitution between capital
and labour, i.e., σ. In accordance with the earlier approach and selecting /σ as the tuning
parameter, such a feature will bring about the possibility of a purely geometric argument for
appraising the dynamical properties of the model.
The current setting is moreover slightly particular on a formal basis. As a matter of fact, since

∂T

∂(/σ)
(/σ) = − − s

η + ηE

(


βs
− 
)
,(a)

∂M

∂(/σ)
(/σ) = ,(b)

the parameterised curve ∆(/σ) simplifies to a straight-line with a slope given by

∂[∆(/σ)]
∂(/σ)

=
∂[M (/σ)]/∂(/σ)
∂[T (/σ)]/∂(/σ)

= ()

and an origin provided by ∆() =
(
T (),M ()

)
. It is further remarked that

− + T ()−M () + D = ,()

this latter equation meaning that ∆() will locate on the critical line
(
ADCD

)
. Finally, notice

that, from (), the comparison with the ordinate of the origin of ∆(/σ) with the corresponding
values of MAD , MCD and MBD namely the respective ordinates of the intercrossings of the
critical line

(
ADCD

)
with the critical line

(
ADBD

)
and the critical segment

[
BDCD

]
that

were argued throughout Section II as being central to the stability analysis, will respectively
detail as

M () +  = (/β + )
[
− ηE−

η + ηE

]
,(a)

M ()− D −  = (/β − )
[
+

ηE−

η + ηE

]
,(b)

M () + D −  = − ηE−

η + ηE
(/β + ) + (/β − ),(c)

where it it remarked that MAD >< MCD ⇐⇒ − >< −ηE−/β
(
η + ηE

)
. Otherwise stated,

MAD > MCD for D ∈ ]− , [∪],+∞) whereas MAD < MCD for D ∈ (−∞,−[.
To sum up and on a methodological basis, the subsequent argument shall hence first be
organised around the sign of η + ηE that emerges as the key parameter of the local stability
properties of this economy. First and from (a), it allows, whatever the value of D , for
locating the position of the whole ∆(/σ) with respect to the line

(
ADCD

)
associated with

the occurrence of an eigenvalue of +. Second and together with the value of ηE− , it is the
most significant determinant of D and thus of the plane (T ,M ) over which the analysis is
Although M does not explicitly depend upon /σ, in order to clarify further the approach that is to
be systematically followed to assess the geometrical properties of the curve ∆(/σ), such a fictitious
indexation is maintained in the subsequent exposition.
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then to be completed. An eventual step builds from locating ∆(/σ) upon that plane: recalling
from () that the slope of ∆(/σ) is invariantly nil, the localisation simplifies to firt place
∆(), namely T () and then analyse from (a) the implications of positive values for /σ.

a/ Running-away from the Joneses: η + ηE < 

From (a), this configuration is associated with ∂[T (/σ)]/∂(/σ) > : otherwise stated, the
origin of the curve ∆(/σ) is located on the critical line

(
ADCD

)
whilst its entire shape belongs

to the area associated with occurrence of P(+) >  on its right-hand side. As mentioned
above, the second step of the characterisation then builds from the consideration of the sign
of ηE− .
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/σ →∞
---∆()

/σ →∞
-----

/σPH

∆()

CD

−ηE−/
(
η + ηE

)
> β

Figure 6: Bifurcation schemes for η + ηE <  and ηE− > .

Firstly focusing on the occurrence of a catching up with the Joneses specification ηE− > ,
Figure 6 first takes advantage of the implied occurrence of D >  and displays the two
admissible configurations according to the sign of D −  = −ηE−/β

(
η + ηE

)
− . Firstly

and on the L.H.S. of Figure 6, −ηE−/β
(
η + ηE

)
∈] , [: from (), the negativeness of

−ηE−/
(
η+ ηE

)
−β immediatly implies that ordinate of ∆() is located above the one of AD .

As for the respective position with respect to the one of CD and from (b), this configuration
being associated with the occurrence of −ηE−/

(
η+ ηE

)
< β < , it similarly derives that the

ordinate of the origin will be located above the one of CD . All this implies that the economy
will be characterised by two moduli in the unit circle and hence be locally determinate —
the dynamical system being characterised by two predetermined variables — for any /σ > .
Secondly and on the R.H.S. of Figure 6, −ηE−/β

(
η + ηE

)
> : whilst the position of the

ordinate of the origin straightforwardly remains located above the one of AD , its position
with respect to the one of CD is reversed. Indeed, this configuration being associated with
the satisfaction of β + ηE−/β

(
η + ηE

)
< , two configurations are admissible. First and for

−ηE−/
(
η + ηE

)
> , the ordinate of the origin of ∆(/σ) will be located above the one of

CD : in accordance with the configuration depicted on Figure 6a, the economy will similarly
be characterised by two moduli inside the unit circle and hence display local uniqueness for
any /σ > . Second and oppositely, for −ηE−/

(
η + ηE

)
∈ ]β, [, the ordinate of the origin of

∆(/σ) will be located above the one of AD but below the one of CD . This would imply the
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existence of a critical /σPH , namely:

/σPH =

[
+ ηE−/

(
η + ηE

)]
(/β − )

[
− ηE−/β

(
η + ηE

)]
(− s)(/βs− )(/β)ηE−/

(
η + ηE

) ,

corresponding to the crossing of the critical segment
[
BDCD

]
and such that for /σ ∈]

, /σPH
[
, the dynamical system assumes no modulus inside the unit circle and is thus

locally unstable. It then typically undergoes a Poincaré-Hopf bifurcation for /σ = /σPH

and eventually assumes two moduli inside the unit circle and becomes locally unique for any
/σ > /σPH .
Secondly analysing the occurrence of a lagged running away from the Joneses specification
ηE− < , Figure 7 first takes advantage of the implied occurrence of D <  and displays the
two admissible configurations according to the sign of D +  = −ηE−/β

(
η + ηE

)
+ .
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−ηE−/
(
η + ηE

)
< −β

Figure 7: Bifurcation schemes for η + ηE <  and ηE− < .
From (b), it is first immediate that, for both occurrences, the ordinate of ∆() will be located
above the one of CD . From the earlier exposition, the latter is itself located above the one of
AD , but for the case D ∈ (−∞,−[. This is confirmed by the L.H.S. of Figure 7 that focuses on
the configuration −ηE−/β

(
η+ηE

)
∈] −, [: as −ηE−/β

(
η+ηE

)
> β−ηE−/β

(
η+ηE

)
> ,

the ordinate of the origin of ∆() locates above the ones of AD and CD , that implies that
the economy will be characterised by two moduli in the unit circle and hence be locally
indeterminate for any /σ > . Secondly and on the R.H.S. of Figure 7, −ηE−/β

(
η+ηE

)
< −,

a configuration for which the ordinate of CD is located below the one of AD . Two configurations
are then to be distinguished according to whether the ordinate of ∆() being is below or above
the one of AD . For −ηE−/

(
η+ηE

)
∈ ]−,−β[, the ordinate of ∆() is located above the one of

AD , the economy will be characterised by two moduli inside the unit circle and hence display
a local determinacy for any /σ > . In opposition to this and for −ηE−/

(
η + ηE

)
< −,

the ordinate of ∆() is located between the one of CD and the one of AD and there exists a
critical value /σF available as:

/σF = 
(+ /β)

[
− ηE−/

(
η + ηE

)] / (
η + ηE

)
(− s)(/βs− )

such that for /σ ∈
]
, /σF

[
, the dynamical system assumes only one modulus inside the unit

circle and is locally unstable. It then typically undergoes a flip bifurcation for /σ = /σF
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and eventually assumes two moduli inside the unit circle and becomes locally unique for any
/σ > /σF .

b/ Keeping-up with the Joneses: η + ηE > 

In contradiction with Figures 6 and 7 and from (a), this configuration will be associated
with ∂[T (/σ)]/∂(/σ) < : otherwise stated, whilst the origin of line ∆(/σ) is still located
on the line

(
ADCD

)
, its entire shape for /σ >  now belongs to the area associated with

occurrence of P(+) <  on its left-hand side. As for the earlier running away from the
Joneses configuration — η + ηE <  —, the second step of the characterisation is going to
build from the consideration of the sign of ηE− .
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Figure 8: Typologies for η + ηE >  and ηE− > .

Firstly focusing on the occurrence of a catching-up with the Joneses specification ηE− > ,
Figure 8 first hinges upon the implied occurrence of D <  and displays the two admissible
configurations according to the sign of D +  = −ηE−/β

(
η + ηE

)
+ . Firstly and on the

L.H.S. of Figure 8, −ηE−/β
(
η + ηE

)
∈ ] − , [. From (b), the ordinate of ∆() is located

above the one of CD that is itself located above the one of AD . New to this configuration is
however the role played by the ordinate of BD , where it shall henceforward be assumed that
(− β)/(+ β) < β. When the ordinate of ∆() is also located above the one of BD , namely
and from (c), for ηE−/

(
η + ηE

)
∈ ], (/β − )β/(/β + )[, there exists a /σF such that

for /σ ∈
]
, /σF

[
, the dynamical system assumes one modulus inside the unit circle and

is locally unstable. It then typically undergoes a flip bifurcation for /σ = /σF , eventually
assumes two moduli inside the unit circle and becomes locally unique for /σ > /σF . In
opposition to this and when the ordinate of ∆() is located between the one of CD and the
one of BD , i.e., for ηE−/

(
η + ηE

)
∈ ](/β − )β/(/β + ), β[, there exists a pair of values

/σPH and /σF such that for /σ/ ∈
]
, /σPH

[
, the dynamical system assumes one

modulus inside the unit circle and is locally unstable. It then typically undergoes a Poincaré-
Hopf bifurcation for /σ = /σPH . For any /σ ∈

]
/σPH , /σF

[
, the dynamical system

assumes three modulis inside the unit circle and is locally undeterminate. It then typically
undergoes a flip bifurcation for /σ = /σF , eventually assumes two moduli inside the unit
circle and becomes locally unique for /σ > /σF .
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Secondly and on the R.H.S. of Figure 8, considering the occurrence of −ηE−/β
(
η+ηE

)
< −,

it first appears from (c) that the entailed occurrence of ηE−/
(
η+ηE

)
> β > (−β)/(+β)

implies that the ordinate of ∆() cannot be located above the one of BD . For an origin of
∆() located between the ones of AD and BD , i.e, for ηE−/

(
η + ηE

)
∈ ]β, [, there exists a

pair of values /σF and /σPH such that for /σ ∈
]
, /σF

[
, the dynamical system assumes

one modulus inside the unit circle and is locally unstable. It then typically undergoes a flip
bifurcation for /σ = /σF . For any /σ ∈

]
/σF , /σPH

[
, the dynamical system assumes

no moduli inside the unit circle and is locally fully unstable. It then typically undergoes a
Poincaré-Hopf bifurcation for /σ = /σPH and eventually assumes two moduli inside the
unit circle and becomes locally unique for /σ > /σPH . Finally and for an origin of ∆()
located between the ones of CD and AD , i.e., for ηE−/

(
η + ηE

)
> , the dynamical system

first assumes no moduli inside the unit circle and is locally fully unstable. It then typically
undergoes a Poincaré-Hopf bifurcation for /σ = /σPH and eventually assumes two moduli
inside the unit circle and becomes locally determinate for /σ > /σPH .
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Figure 9: Typologies for η + ηE >  and ηE− < .
Finally focusing on the occurrence of a a lagged running-away from the Joneses specification
ηE− < , Figure 9 builds upon the satisfaction of D >  and displays the two admissible
configurations according to the sign of D + = −ηE−/

(
η+ηE

)
+. On the L.H.S. of Figure 9,

−ηE−/β
(
η+ ηE

)
∈] , [: from (b), the ordinate of ∆() is located above the one of CD and

there exists a /σF such that for /σ ∈
]
, /σF

[
, the dynamical system assumes one modulus

inside the unit circle and is locally unstable. It then typically undergoes a flip bifurcation for
/σ = /σF and eventually assumes two moduli inside the unit circle and becomes locally
unique for any /σ > /σF . Secondly and on the R.H.S. of Figure 9, −ηE−/β

(
η + ηE

)
> :

whilst the ordinate of ∆() locates above the one of AD but may be located above or below
the ordinate of CD . Interestingly, this has no implications on the bifurcation scenarios: there
indeed always exists a /σF such that for /σ/ ∈

]
, /σF

[
, the dynamical system assumes

one modulus inside the unit circle and is locally unstable. It then typically undergoes a flip
bifurcation for /σ = /σF and eventually assumes two moduli inside the unit circle and
becomes locally unique for any /σ > /σF .
To sum up and from Figures 6 and 7, as long as the contemporaneous spillover effects stemming
from aggregate consumption do not question the concavity of utility, the implications of
spillover effects stemming from earlier aggregate consumption will not question the local
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uniqueness of the steady state: there will at most exist a two-dimensional stable manifold
leading to the steady state. Interestingly however, such a memory of past consumption choices
may bend the economy towards the uprise of unstability through the emerge of periodic or
quasi-periodic equilibria. As this clearly appears from Figures 6b and Figures 7b with scenarios
associated with |D | >  that such complicated attractors are admissible, whatever the sign
of these lagged aggregate consumption spillover effects. One may finally further notice that
there is a strong link between local unstability are arbitrarily large values for the elasticity
of substitution between the technological factors. In strong opposition with this first range
of results, the case for strong contemporaneous spillover effects stemming from aggregate
consumption that ultimately overcome the concavity properties of the utility function, namely
the keeping-up with the Joneses configurations available through Figures 8 and 9, assumes
complex and contradictory implications on the stability properties. First, when, as for Figure 9,
such a strong positive mimetism dimension is introduced jointly with a negative one stemming
from past consumption, though local uniqueness is not questioned, local stability may be
lost and unstability occur through the emergence of periodic equilibria. Second and more
interestingly on Figure 8, it is the very conjunction of positive spillover effects stemming from
current consumption and past consumption that has the more dramatic implications on the
stability properties of the economy. Highly complicated scenarios with strong sensibilities with
respect to factors substituability but also with respect to the size of these spillovers then
indicate a natural area for expectations-driven fluctuations.

IV– Keeping-up with the Joneses: Golden Rule Equilibria in the

Model of Overlapping Generations

This section will consider a second application based upon a version of the basic charac-
terisation by Diamond [] of the capital accumulation process in the model of overlapping
generations that is augmented to an explicit account for labour supply and by an extra useless
asset and is due to Benhabib & Laroque []. Though its augmentation through a keeping-up
with the Joneses assumption on preferences just mimics the previous section, the ensued char-
acteristic polynomial exhibits a richer structure that translates into a more advanced references
to the tools introduced by Section II.

IV.1 – The Setup

The economy is populated by generations of agents who live for two periods, the popu-
lation size being constant accross generations. At any date t ≥ , the total population
summarises to a young agent of generation t and an old agent of generation t − . At
date t = , an agent was born old. An agent of generation t ≥  chooses a labour sup-
ply `tt ∈

[
, ¯̀], where ¯̀ denotes a maximum physical bound on his labour supply, ¯̀ > 

for his young age t and a consumption level ctt+ for his old age t + . His preferences
are featured by an intertemporal utility function U

(
`tt, c

t
t+, C

t
t+

)
= u

(
ctt+, C

t
t+

)
− v
(
`tt
)
,

for u ∈ Ck
(
R∗+ × R∗+,R+

)
, k ≥ , ∂u

(
ctt+, Ct

)
/∂ctt+ > , ∂u

(
ctt+, Ct

)
/∂
(
ctt+

)
< 

for all ctt ∈ R∗+, limct
t+
→∂u

(
ctt+, Ct+

)
/∂ctt+ = ∞, limct

t+
→∞∂u

(
ctt+, Ct+

)
/∂ctt+ = 
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and v ∈ Ck
(]
, ¯̀],R+

)
, k ≥ , ∂v

(
`tt
)
/∂`tt > , ∂v

(
`tt
)
/∂
(
`tt
)

>  for all `tt ∈ ], ¯̀],
lim`t

t→∂v
(
`tt
)
/∂`tt = , lim`t

t→¯̀∂v
(
`tt
)
/∂`tt = +∞.

A representative agent of generation t ≥  is allowed, when he is young, to save through
a capital asset in amount st

t or through a monetary asset mt the relative price of which in
terms of the numeraire consumption good denotes as Bt. Taking

{
ωt, Bt,Rt+

}
as given, for

ωt that denotes the real wage rate and Rt+ that denotes the gross return rate of the capital
stock, an individual would then select a -uple

{
`tt, c

t
t+, s

t
t,mt

}
∈ R

+ in order to maximise
U
(
`tt, c

t
t+, Ct+

)
subject to a pair of instantaneous budget constraints:

Btmt + st
t = ωt`

t
t,

ctt+ = Rt+s
t
t +Bt+mt.

Arbitrage implies Bt+/Bt = Rt+. Rearranging, the constraint set of the above program
can hence be simplified through the definition of an intertemporal budget constraint as
ctt+ = Rt+ωt`

t
t. The first-order condition of this program is given by:

∂v

∂`tt

(
`tt
)
−Rt+ωt

∂u

∂ctt+

(
Rt+ωt`

t
t, Ct

)
= .()

Reintegrating the intertemporal budget constraint, this restates, letting V (`) , ` · ∂v(`)/∂`
for ` ∈

]
, ¯̀] and U (c, C) , c · ∂u(c, C)/∂c, for c > , as U

(
ctt+, C

t
t+

)
= V

(
`tt
)
. Note that,

under the above assumptions, ∂V (`)/∂` >  and that V ∈ C k
(]
, ¯̀],R+

)
, so that the reflected

generational offer curve ϕ(·, C) of generation t boils down to `tt = ϕ
(
ctt+, C

t
t+

)
,
(
V − ◦

U
)(
ctt+, Ct+

)
. Imposing further V () = , it derives that ϕ(, C) =  and ∂ϕ(, C)/∂c > .

Letting then η(c, C) , c ·
[
∂u(c, C)/∂c

]
/
[
∂u(c, C)/∂c

]
, η`(`) , ` ·

[
∂v(`)/∂`

]
/
[
∂v(`)/∂`

]
and ξϕ(c, C) , c ·

[
∂ϕ(c, C)/∂c

]
/ϕ(c, C), one obtains, for any c >  and a given C:

ξϕ(c, C) =
[
+ η(c, C)

]
/[+ η`(`)

]
.()

Finally noticing that, for any c > , ξϕ(c, C) < , it is further assumed that  + η(c, C) > ,
i.e., ξϕ(c, C) ∈ ], [, a gross substitutability assumption being retained on preferences.
Letting the production facet be described by the same standard technology used in Section
III and M denote the fixed money supply, an extensive definition of a symmetric equilibrium
with externalities would then build from a triple

{
`tt, c

t
t+, s

t
t

}
that describes an optimal action

of the individual of generation t given
{
ωt,Rt+

}
, and the holding of `tt = Lt, Kt+ = st

t,
Kt+ = Yt + (− µ)Kt, ctt+ = −Yt + F

(
Kt, Lt

)
and mt = M that would respectively depict

the clearings of the labour market, the market of the productive asset, the consumption good
market and the money market. Finally a side condition ctt = Ct singles out a symmetric
competitive equilibrium with externalities the existence of which shall henceforth be assumed.
For clarification purposes, it is first convenient to reassess the status of the first-order condition
() in the course of this competitive equilibrium with externalities:

∂v

∂`tt

(
`tt
)
−Rt+ωt

∂u

∂ctt+

(
Rt+ωt`

t
t,Rt+ωt`

t
t

)
= .(′)

Incorporating then the intertemporal budget constraint, this restates, introducing U E (c) , c ·
[∂u(c, c)/∂c], c = C, for c > , as U E

(
ctt+

)
= V

(
`tt
)
. The equilibrium formulation
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of the reflected generational offer curve ϕE (·) of generation t is then available as `tt =
ϕE
(
ctt+

)
,
(
V − ◦ U E

)(
ctt+

)
. Letting also ηE (c, C) , c ·

[
∂u(c, C)/∂c∂C

]
/[∂u(c, C)/∂c]

and ξE
ϕ (c) , c ·

[
∂ϕE (c)/∂c

]
/ϕ(c, c), one obtains, for any c > :

ξE
ϕ (c) =

[
+ η(c, c) + ηE (c, c)

]
/[+ η`(`)

]
.()

where it is noted that ξE
ϕ (c) T  according to whether η(c, c) + ηE (c, c) T −  and that the

holding of ξE
ϕ (c) ≥  cannot any longer be discarded.

More generally, having completed substitutions, any competitive equilibrium with externalities
will be associated with a sequence which satisfies:

Lt − ϕE

([
∂F

∂K

(
Kt+, Lt+

)
+ (− µ)

]
∂F

∂L

(
Kt, Lt

)
Lt

)
= ,(a)

Kt+ +MBt −
∂F

∂L

(
Kt, Lt

)
Lt = ,(b)

Bt+ −
[
∂F

∂K

(
Lt+, Lt+

)
+ (− µ)

]
Bt = .(c)

Under the previous assumption, an competitive equilibrium with externalities such as ()
defines a three-dimensional dynamical system [Kt+ Lt+ Bt+ ]′ = Υ

(
Kt, Lt, Bt

)
. Whilst

its three-dimensional feature is a direct and unsurprising characteristic of monetary equilibria
in the model of overlapping generations with an explicitly described labour supply, it may be
worth noticing that Υ (·) fundamentally differs from the system Ψ(·) that was considered in
Section III: it indeed builds from a unique predetermined variable, namely the capital stock.
A benchmark long-run golden rule steady state is then defined as a triple

{
K?, L?, B?

}
∈

R∗+ ×
]
, ¯̀[×R∗+ which solves:

L? − ϕE

[
∂F

∂L

(
K?, L?

)
L?

]
= ,(a)

K? +MB? − ∂F

∂L

(
K?, L?

)
L? = ,(b)

∂F

∂K

(
K?, L?

)
+ (− µ) = .(c)

Under the above range of assumptions on preferences and the technology, it is a standard
argument to show that, whilst, from the concavity assumptions and the Inada conditions on
F (·, ·), (c) defines a unique K?/L?, that can be associated to a unique B?/L? from (c),
recalling that a monetary steady state is associated with the holding of c? = R?ω?`? = ω?`?,
the existence of at least one L? from (a) will be ensured by letting

lim`→

[
∂u

∂c

(
c, c)

/
∂v

∂`
(`)
]
>



Rω
> lim`→¯̀

[
∂u

∂c

(
c, c)

/
∂v

∂`
(`)
]

further prevail. To the latter L? can eventually be associated a unique K? and a unique B?,
that establishes the existence of at least one golden rule steady state position. Though existence
is not a difficult issue, the sought for uniqueness is more involving: as a matter of fact, it can be
shown that the case for multiplicity would unequivocally stem from the existence of a root to
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/ξE
ϕ =  and thus, from (), of the rather exceptional occurrence of η(c, c)+ηE (c, c) = η`(`).

As shall however soon appear, such an area is entirely disconnected from the assessment of
the local stability issue over a given section (T ,M ) on Figures 4 and 5: otherwise stated,
for any of the latters, there always exists a unique steady state, the multiplicity issue being
therefore not discussed further. Considering then a linearisation of the dynamical system
in the neighbourhood of a steady state and relying on the system of notations (), it is
established in Appendix 2 that the coefficients of the associated characteristic polynomial
P(z) = −z + T z −M z + D =  that features a linearisation of the dynamical system in a
neighbourhood of the steady state list as:

T = +
s

(− s)µ
+

(− s)µ
s

−
(
− 

ξE
ϕ

)
σ

(− s)µ
,(a)

M = +
s

(− s)µ
+

(− s)µ
s

−
(
− 

ξE
ϕ

)
σ

(− s)µ
−
(
− 

ξE
ϕ

)
(− s)µ

s
,(b)

D =


ξE
ϕ

(c)

IV.2 – The Analysis

Again, it is noticed that the coefficient D does not depend on the elasticity of substitution
between capital and labour, i.e., σ, the latter being selected as a bifurcation parameter for the
representations over the plane (T ,M ) that are parameterised by D , namely by the inverse
of the elasticity of the equilibrium offer curve /ϕE . Further noticing that the equation of the
parameterised curve ∆(σ) is available from

M = T −
(
− /ξE

ϕ

)
/α()

= T − (−D)/α,

for α , s/(−s)µ, where, for future reference, it is noted that ∆(σ) happens to be respectively
upper-bounded and lower bounded by a straight-line of equation M = T for respectively
D <  and D > , such a straight-line being associated with the boundary case /α = . The
components of the directional vector of the straight-line () are as for themselves given by:

∂T

∂σ
(σ) =

∂M

∂σ
(σ) = −

(
− /ξE

ϕ

)α
s

= −(−D)
α

s
·()

Interestingly, () indicates that the graph of ∆(σ) is parallel to the critical line
(
ADCD

)
.

Furthermore, substituting () into the equation of
(
ADCD

)
, namely and from () −+ T −

M + D = , it is obtained that the respective position of the parameterised line ∆(σ) with
respect to the critical line

(
ADCD

)
is available from:

(−D)
(
/α− 

)
.()

Hence and from (), for α < , ∆(σ) is respectively located in the above or in the underneath
of the critical line

(
ADCD

)
according to whether D >  or D <  prevails. Unsurpisingly,

reverse conjunctions hold for α >  ; namely, respective locations of ∆(σ) in the underneath

. . . 20. . .
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or in the above of critical line (ADCD

)
according to whether D >  or D <  prevails.

Furthermore, and from (), for D > , ∆(σ) happens to be upward-orientated whereas and
for D ∈ (−∞, [, it is downward-orientated.
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Figure 10: Bifurcation schemes for ξE
ϕ ∈ ], [.

Such dimensions are illustrated through Figures 10-13 where the localisation of ∆(σ) with
respect to the critical line

(
ADCD

)
unequivocally associates the crossing of the critical segment[

BDCD

]
with the equilibrium occurrence of α > . Scrutinising further the set of Figures 10-13,

it is worth recalling that, on any of these figures, all the admissible straight-lines ∆(σ) will
either be upper-bounded or lower-bounded by a straight-line of equation M = T according
to the position of D with respect to  under which they are drawn. But it is then immediate
that the latter, i.e., another straight-line of slope  that is parallel to the critical line

(
ADCD

)
,

encompasses the origin (, ) on any of the figures. Though there is no need to explicitly
state the lattter, by definition and from Section II.2, it is to be located in the interior of
the triangle

(
ADBDCD

)
. Otherwise stated, another useful partition becomes available: the

straight-line M = T that passes through the origin will itself be upper-bounded and lower-
bounded by another parallel to

(
ADCD

)
that passes through the point BD for respectively

D <  and D > . This implies that the whole collection of parameterised straight-lines ∆(σ)
will respectively be located below and above the latter for D <  and D > .
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Figure 11: Bifurcation schemes for ξE
ϕ > .
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In order to complete the aforementioned pictures, it then just remains to locate ∆(), namely
the origin of the parameterised line ∆(σ). More specifically, the issue is to locate ∆() with
respect to the flip critical line

(
ADBD

)
and the Poincaré-Hopf critical segment [BDCD

]
. This

information, combined with the one brought by the features of the directional vector (),
allows for concluding about the path followed by the economy as σ varies, and thus to reach
conclusions about the determinacy properties as well as the scope for local bifurcations. Firstly
considering the position of ∆() with respect to

(
ADBD

)
, the latter rests upon the sign of :

+ T () + M () + D = + T ()− /α+ (+ /α)D .()

The R.H.S. of () is unambiguously positive as long as D belongs to ] − ,∞). It follows
that in such case, ∆() is located above the flip critical line

(
ADBD

)
. Remembering that for

D < , ∆(σ) is downward-orientated, it emerges that a flip bifurcation, ensuring the existence
of cycles of period two in the neighbourhood of the steady state, is then, as this is illustrated
on Figures 11-13, bound to occur when σ = σF , for:

σF =
−
[
+ s/(− s)µ+ (− s)µ/s

]
+
(
− /ξE

ϕ

)
(− s)µ/s− − /ξE

ϕ(
− /ξE

ϕ

)
/(− s)µ

()

Conversely and on Figure 10, in the sub-case D >  the occurrence of a flip bifurcation is ruled
out, the parameterised line ∆(σ) being upward-orientated. Finally considering the localisation
of ∆() with respect to

[
BDCD

]
, the latter is available from the sign of

M ()− − [T ()−D ]D = (−D)(α−D).()

A short glance at Figures 10-13 indicates that the sign (), i.e., the localisation of ∆() with
respect to

[
BDCD

]
, is only relevant in the case α >  under which the holding of a Poincaré-

Hopf bifurcation cannot be discarded on a a priori basis. It may then be assessed that, for
D < , as the R.H.S. of () is positive, ∆() happens to be located above

[
BDCD

]
. The

parameterised half-line ∆(σ) being further downward-orientated, it follows that a Poincaré-
Hopf bifurcation, indicating the existence of quasi-periodic equilibria around the steady state,
is bound to occur for σ = σPH , where

σPH = (− s)µ
s/(− s)µ− /ξE

ϕ

− /ξE
ϕ

()
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Figure 12: Bifurcation schemes for ξE
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Then specialising the argument on the sub-case D ∈ ]−, [ on Figures 11 and 12, the complete
portrait — the path followed by the economy as σ is increased from zero — is finally available:
the equilibrium is initially locally determinate since it assumes one eigenvalue within the
unit circle, then a Poincaré-Hopf bifurcation occurs giving rises to a two-dimensional local
indeterminacy with three moduli inside the unit circle. Finally and after the occurrence of a
flip bifurcation for σ = σF , the equilibrium exhibits one degree of indeterminacy with two
moduli within the unit circle.
Facing finally with the case D >  and as this is illustrated on Figure 10, the sign of () is
no longer unambiguous. Nonetheless, neither the Poincaré-Hopf bifurcation nor the existence
of locally indeterminate equilibria are precluded.
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Figure 13: Bifurcation schemes for ξE
ϕ < −

To sum up, recalling the interpretation of the equilibrium offer curve and from Figure 10, it
is confirmed that, up to weak for consumption complementarities that would not question
the gross substitutability assumption retained on his preferences, it is only for arbitrarily low
order of the elasticity of subsitution that local unstability and an explicit scope for a Poincaré-
Hopf bifurcation emerge as admissible configurations. For larger orders, the steady state is
locally indeterminate. Second and on Figure 11, under an attraction dimension the preferences
of the individual that stems from the consumption of the others, namely a keeping-up with

the Joneses configuration, complicated bifurcation schemes with successive bifurcations for
different parameter values become admissible. The most interesting facet of these occurrences
formulates as the scope for periodic cycles that was canonically associated with the violation
of the gross subsitutability axiom on preferences. The latter is indirectly recovered through
figures 12 and 13 where it is the extra-concavity brought on the marginal utility of consumption
by the level of consumption of the others that results in an equilibrium violation of this
axiom. In opposition to this, the configuration 11 illustrates the richness of the keeping-up
with the Joneses configuration that unequivocally bends the economy towards a widened area
for expectations-driven fluctuations.
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V – Proofs

V.1 – Derivation of the Coefficients of the Characteristic Polynomial in the Benchmark

Case

Linearising the characteristic polynomial in the neighbourhood of the steady state leads to:

dct+

c?

dKt+

K?

dXt+

X?

 =


− ηE−

η + ηE
− (− s)

σ

c?

K?



η

(− s)
σ

(
c?

K?
+ 

)
ηE−

η + ηE

− c?

K?

(
c?

K?
+ 

)
s 

  





dct
c?

dKt

K?

dXt

X?


Further noticing that c?/K? +  = /βs and letting, e.g. J denote the first element of
the first row in the above Jacobian Matrix, the expressions of T , M and D in the main
text are straighforwardly derived by noticing that they respectively correspond to J + J,
JJ − JJ − J and −JJ. 4

VI.2 – The Characteristic Polynomial associated to Golden Rule Equilibria

The linearised form of the dynamical system is available as: ξE
ϕ s/(− s) ξE

ϕ ξE
ϕ s/(− s)

−/(− s) [/(− s)− η/σ](− s) [/(− s) + η(− s)/sσ](− s)
  

 Yt+

Lt+

Kt+


+

   
 [−s/(− s)σ + /(− σ)](− s) s/σ
−η  −(− η)

 Yt

Lt

Kt

 = .
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Then assuming that D 6= , for D = −
(
/ξE

ϕ

)
(ηs/σ), the components of the Jacobian Matrix

[J ] list as:

J = −D−
{
ξE
ϕ s
[
−
(
−/σ − (− s)/sσ

)
η
]
(−η)

}
,

J = −D−
{[
/(− s)− η/σ

]
(− s)

+ ξE
ϕ (− s)

[
−
(
−s/σ(− s) + /(− s)

)]}
,

J = −D−
{
ξE
ϕ

(
(− s)s/(− s)

)[
−
(
/σ

)]
+ ξE

ϕ

(
(− s)s/(− s)

)[(
−(/σ) + [−(− s)/sσ]

)
η
]
[−(− η)]

}
,

J = −D−
{
ξE
ϕ

(
ss/(− s)

)
[−(− s)/sσ]η(−η)

}
,

J = −D−
{(
−/(− s)

)
s+ ξE

ϕ

(
(− s)s/(− s)

)[
−
(
−s/(− s)σ + /(− s)

)]}
,

J = −D−
{
ξE
ϕ

(
ss/(− s)

)[
−
(
/σ

)]
+ ξE

ϕ

(
ss/(− s)

)
[−(− s)/sσ]η[−(− η)]

}
,

J = −D−
{
ξE
ϕ

(
(− s)s/(− s)

)[
(/σ)η

]
(−η)

}
,

J = ,

J = −D−
{
ξE
ϕ

(
(− s)s/(− s)

)[
(/σ)η

]
[−(− η)]

}
.

The determinant of the Jacobian Matrix is first available as:

det(J ) = J

(
JJ −JJ

)
+ J

(
JJ −JJ

)
= [−(− η)]

(
−D−

){(−η)ξE
ϕ

(
(− s)(− s)s/(− s)

)
×
([(
−(/σ)− (− s)/sσ

)
η
]{
−/(− s)

}
−
[
[−(− s)/sσ]η

]
×
{
/(− s)− (/σ)η

})
+ (−η)

(
ξE
ϕ

)((− s)ss/(− s))[−(−s/(− s)σ + /(− s)
)](
−
[
(/σ)η

])
+ (−η)

(
−D−

){[−(− η)]ξE
ϕ

(
(− s)ss/(− s)

)
×
(
−
[(
−(/σ) + [−(− s)/sσ]

)
η
]{
−/(− s)

}
+
(
[−(− s)/sσ]

)
η

×
{
/(− s)− (/σ)η

})
+ ξE

ϕ

(
(− s)ss/(− s)

)[
−
(
/σ

)](
−(/σ)η

)
+ ξE

ϕ

(
(− s)ss/(− s)

)[
−
(
−s/(− s)σ + /(− s)

)][
(/σ)η

]
[−(− η)]

}
=
(
−D−

)
ξE
ϕ

(
(− s)ss/(− s)

)(
−(/σ)η

)(
−
(
/σ

)
(−η)

)
=



ξE
ϕ

·

Completing related lines of computations, it is first obtained that the trace of the Jacobian
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Matrix is available along:
tr(J ) = J + J

=
/(− s)
ξE
ϕ η/σ

+ (− η) +
ξE
ϕ

{[(
/σ + (− s)/sσ

)
η
]
η −

(
/σ + /(− s)

)}
ξE
ϕ η/σ

.

It is then noticed that the third term in the above expression can be reformulated according
to:

= η +
(η/σ)

(
(− s)η/s

)
−
(
/σ + /(− s)

)
η/σ

.

Merging with the previous expression, it is obtained that:

tr(J ) = −
(
− 

ξE
ϕ

)
/(− s)
(/σ)η

+
(/σ)η

(
(− s)η/s

)
+ s/(− s)

(/σ)η
,

Finally facing with the sum of the principal minors of the Jacobian Matrix:
spm(J ) = JJ −JJ + JJ −JJ + JJ,

where:
JJ −JJ

=
(
−D−

){
ξE
ϕ

[
(/σ)η

]
(− s)ss/(− s)

[
s/(− s)σ

]
− ηξE

ϕ

[
η/σ

][
−(− s)η/sσ

]
(− s)ss/(− s)

− η
(
ξE
ϕ

)(
/σ + /(− s)

)(
(/σ)

)
η(− s)ss/(− s)

}
;

JJ −JJ

=
(
−D−

)−
{
ξE
ϕ

[
η/σ

]
(− s)s/(− s)

}
= ;

JJ =
(
−D−

)−
{
−
(
−/(− s)

)
+ ξE

ϕ

[
−
(
/σ + /(− s)

)]
(− s)s/(− s)

}
;

Finally, gathering terms, it is obtained that :

spm(J ) = −
(
− 

ϕ

E
)
/(− s)
(/σ)η

+


ξE
ϕ

(/σ)η
(
(− s)η/s

)
(/σ)η

− −s/(− s)σ
(/σ)η

·

To sum up, the trace, the sum of the principal minors and the determinant of the Jacobian
Matrix considered in the neighbourhood of a steady state derive as

tr(J ) = −
(
− 

ξE
ϕ

)
/(− s)
(/σ)η

+
(/σ)η

(
(− s)η/s

)
+ s/(− s)σ

(/σ)η
,

spm(J ) = −
(
− 

ξE
ϕ

)
/(− s)
(/σ)η

+


ξE
ϕ

(/σ)η
(
(− s)η/s

)
(/σ)η

− −s/(− s)σ
(/σ)η

,

det(J ) =


ξE
ϕ

·

The statement follows. 4

Ce quatrième jour de février de l’an deux mille et huit.
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