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Abstract

We propose a new theory of the demographic transition based on the evi-
dence that body development during childhood is an important predictor of adult
life expectancy. Fertility, childhood development, longevity, education and in-
come growth all result from individual decisions. Parents face a trade-off between
the number of children they have and the spending they can afford on each of
them in childhood. These childhood development spending will determine chil-
dren longevity when adults. It is in this sense that we refer to Wordsworth’s
aphorism that “The Child is Father of the Man.” Parents face a second trade-off
in allocating their time between increasing their own human capital and rearing
children. The model displays different regimes. In a Malthusian regime with no
education fertility increases with adult life expectancy. In the modern growth
regime, life expectancy and fertility move in opposite directions. The dynam-
ics display the key features of the demographic transition, including the hump in
both population growth and fertility, and replicate the observed rise in educational
attainment, adult life expectancy and economic growth. Consistent with the em-
pirical evidence, a distinctive implication of our theory is that improvements in
childhood development precede the increase in education.
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1 Introduction

The transition from a world of low economic growth with high mortality and high fertility

to one with low mortality and fertility but sustained growth has been the subject of

intensive research in recent years.1 In this literature, the relation between growth and

fertility results from the quantity/quality trade-off faced by parents between the number

of children and their education. Longevity is generally taken as given or modeled through

some aggregate externality.

In this paper, we analyze the demographic transition using a new theory of endogenous

fertility and mortality, based on a fundamental parental concern: providing children

with appropriate health care and nutrition and promoting good attitudes towards health

during childhood ensures a longer life for future generations2 Starting with Kermack,

McKendrick, and McKinlay (1934), who showed that the first fifteen years of life were

central in determining the longevity of the adult, the relationship between early devel-

opment and late mortality within cohorts has been well-established. Another important

contribution in the field is that of Barker and Osmond (1986) who related lower child-

hood health status to higher incidence of heart disease in later life. This idea also had an

echo in the literary tradition as witnessed by the aphorism (with apologies to feminists)

“The Child is Father of the Man” (Wordsworth 1802), meaning that the way a child is

brought up determines what he or she will become in the future.

The main mechanism suggested in the literature to explain the link between childhood

development and longevity is through improvements in nutrition and physiological sta-

tus, as emphasized by Fogel (1994). Another mechanism stressed by epidemiologists

links infections and related inflammations during childhood to the appearance of spe-

1Rostow (1960) presents an early attempt to understand the transition from stagnation to growth.
The first modern treatment of the issue is in the seminal paper by Galor and Weil (2000). Doepke
(2006) contains a recent survey.

2A survey of the related epidemiology literature can be found in Harris (2001)).
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cific diseases in old age (Crimmins and Finch 2006). The contribution of this paper is

to propose a new theory of the demographic transition based on the evidence that body

development during childhood is an important predictor of life expectancy.

The key and novel mechanism we propose is that parents face a trade-off between the

quantity of children they have and the amount they can afford to spend on each of them

during childhood. Parents like to have children, but they also care about their longevity.

By ensuring an appropriate physical development for their children and protecting them

from infections, parents provide them with greater health capital and a longer life.3 Such

provision is costly though, and its cost is proportional to the number of children. As a

consequence, having many children prevents parents of spending much on their health

capital. The proposed quality/quantity trade-off makes longevity and fertility negatively

related.

We are aware that longevity does not depend solely on childhood development. Adults’

investment in health and government spending on the elderly also contribute consider-

ably to reductions in mortality. However, adding these mechanisms into our setup would

not alter the trade-off we want to put forward, and, therefore, we abstract from these

additional mechanisms in order to streamline the argument. We are also aware that

there are at least two different types of health capital, as pointed out by Murphy and

Topel (2006). One extends life expectancy so that individuals can enjoy consumption

and leisure for longer; the other increases the quality of life, raising utility from a given

quantity of consumption and leisure. In this paper, since we are mainly interested in

3The state of the debate between nature and nurture may be synthesized by the following statement
“The effects of genes depend on the environment,” (Pinker 2004) where genes are associated with nature,
and the environment as a short-hand for the effects of human behavior with nurture. In this paper,
we are mainly interested in understanding how changes in human behavior, for a given distribution
of genes, affect childhood development. In other words, by restricting the analysis to a representative
cohort member, a standard assumption in OLG models, we do not pay much attention to within cohort
differences in genes, but concentrate on how changes in nurture over time affect childhood development
on average. The implicit assumption is that the complex interaction between nature and nurture shaping
the distribution of childhood development across cohort members in society has no significant effect on
the mean over a period of time covering one or two centuries.
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longevity, we restrict the analysis to the first type of health capital.

In this paper, the key mechanism relating demographics and growth is the Ben-Porath

hypothesis that longevity positively affects education and human capital accumulation,

by extending an individual active life.4 Following Boucekkine, de la Croix, and Licandro

(2002), we assume that adults decide about their own optimal amount of education, and

we take basic education, even if provided by parents, as being exogenously given. In

addition to the trade-off between the number and development of children stressed above,

adults face a trade-off between having children and improving their own education, which

makes the number of children and schooling negatively related. This is similar to the

trade-off faced by parents in a Beckerian world, where they care about the quantity and

quality (education) of their offsprings. Letting parents to care also about the education

of their children would certainty complicate the resolution of the model, obscuring the

trade-off between the number of children and their childhood development, which is the

key mechanism in our theory.

The dynamics of our model displays the key features of the demographic transition,

including the hump in total net fertility rate and in population growth. In particular, it

is able to replicate the observed rise in life expectancy and educational attainment, as

well as the initial increase and then decline in fertility. If the mechanisms we describe

predominate, the logic of the demographic transition could well be the reverse of that

which is usually assumed: the key trade-off is not between fertility and education, with

effects on longevity as a byproduct, but between fertility and healthier and longer living

children, with a subsequent effect on education. This timing is evident in the data

presented in the next section.

4Conditions for this mechanism to hold in the presence of endogenous fertility are derived in Hazan
and Zoabi (2006). In a recent controversial paper, Hazan (2006) argues that the Ben-Porath hypothesis
holds only if longevity affects lifetime labor supply positively, which he claims is not consistent with
US data. The main argument in our paper would also hold if, as in Hazan and Zoabi, childhood
development affects education directly because healthier children perform better.
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In our model, fertility, childhood development, longevity, education and income growth

all result from individual decisions. In this sense, this paper differs from the pre-

vious attempts in the literature to endogenize fertility and longevity simultaneously.

Many papers have the standard education/fertility trade-off with exogenous longevity

(for example, (Doepke 2004)). Other papers model health investment either by house-

holds (Chakraborty and Das (2005) and Sanso and Aisa (2006)) or by the government

(Chakraborty (2004) and Aisa and Pueyo (2006)) but have exogenous fertility. A few

treat both fertility and longevity as endogenous variables, but the mechanism leading to

longer lives always relies on an externality: more aggregate human capital or more ag-

gregate income leads to higher life expectancy (Blackburn and Cipriani (2002), Lagerloef

(2003), Cervellati and Sunde (2005) and (2007) and Hazan and Zoabi (2006)).

Two recent papers have modeled the trade-off between the number and survival of

children exclusively in the context of pre-modern societies. In Galor and Moav (2005)’s

paper, there is an evolutionary trade-off (i.e. not faced by individuals but by nature),

between the survival to adulthood of each offspring and the number of offspring that can

be supported. Lagerloef (2007) suggested that agents chose how aggressively to behave,

given that less aggressive agents stand a better chance of surviving long enough to have

children, but gain less resources, so more of their children die early from starvation. In

both cases, the trade-off is between the number and survival of children, while in our

paper it is between the number of children and adult longevity.

This paper is organized as follows. Section 2 presents some evidence on the link be-

tween the improvement in childhood development and the demographic transition. In

Section 3, we present the problem for individuals, and solve for the optimal allocation.

Section 4 is devoted to the study of the dynamics of dynasties. Aggregate dynamics,

including balanced growth path analysis, are studied in Section 5. A simulation of the

demographic transition is proposed in Section 6. Section 7 presents our conclusions.

5



2 Data on Childhood Development and Fertility

Height is a frequently used indicator in microeconomic studies of the relationship between

health and income. Weil (2007) finds that the effect on wages of an additional centimeter

of height ranges between 3.3% and 9.4%, depending on the data set used. In a second

step, he exploits the correlation between height and direct measures of health such as

the adult survival rate to evaluate health’s role in accounting for income differences

among countries; he finds that eliminating health variations would reduce world income

variance by a third.

Height is a simple measure of childhood development, since both better nutrition and

lower exposure to infections leads to increased height.5 Height is constant after, say,

the age of 18, but is still a good predictor of life expectancy and mortality in old age.

According to Waaler (1984), the trend towards greater height found in the data means

that younger cohorts, which have grown up with better nutrition, will have better health

and live longer as adults.

The height of conscripts has been systematically recorded by the Swedish army since

1820, which provides time-series information on changes in height throughout the de-

mographic transition. Figure 1 presents data for the cohorts born between 1760 and

1960. The left panel shows that the height of soldiers (measured at approximately age

20) is highly correlated with the life expectancy of the same generation.6 The right

panel of Figure 1 shows that body height and years of schooling are positively correlated

and, more importantly, that changes in height precede changes in education. Figure 2

5According to Silventoinen (2003), height is a good indicator of childhood living conditions (mostly
family background), not only in developing countries but also in modern Western societies. In poor
societies, the proportion of cross-sectional variation in body height explained by living conditions is
larger than in developed countries, with lower heritability of height as well as larger socioeconomic
differences in height.

6Notice that this strong correlation over time can also be established in a cross section of countries:
Baten and Komlos (1998) regressed life expectancy at birth on adult height and explained 68% of the
variance for a sample of 17 countries in 1860.
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Figure 1: Height, Life Expectancy and Education in Sweden
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Sources: Sandberg and Steckel (1997) for height data from 1820; Floud (1984) for height data before
1820 from Denmark); The “Human Mortality Database” for life expectancy data; and de la Croix,
Lindh, and Malmberg (2007) for education data.

Figure 2: Height and Net Fertility in Sweden
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Figure 3: Fertility Rates in Germany
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Sources: Baten (2003) for height data; Knodel (1974)
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completes the picture by reporting the net fertility rate for the same period. We observe

that fertility and height are positively correlated over the period 1800-1830, uncorrelated

between 1830 and 1900, and negatively correlated afterwards.

Further insights into the links between childhood development and fertility during the de-

mographic transition can be gained by combining two data sets. Baten (2003) classified

the former provinces of the German empire into six categories according to conscripts’

height in 1906, i.e., for men born in the 1880s. In Figure 2 we retain the two extreme

categories: provinces with the tallest (168.70 cm and more) and the shortest (166.50 cm

and less) soldiers. The Princeton European Fertility Project provides information on

fertility in these provinces for the years 1867-1933 (see Knodel (1974)). In the period

1870-1890, which is when the soldiers of 1906 were born, we can see that fertility rates

were systematically higher in the provinces with shorter soldiers, which is consistent

with the idea of a trade-off between the number of children and childhood development

(as measured by adult height). Later on, fertility rates dropped and converged.
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3 The Model: Individuals

Here we describe a continuous-time overlapping generations (OLG) model with endoge-

nous fertility and mortality inspired by de la Croix and Licandro (1999) and Boucekkine,

de la Croix, and Licandro (2002), who modeled the link between longevity and education

in a framework where all the demographic variables are exogenous.

Let us denote by B the age of puberty, i.e., the age at which individuals acquire regular

fertility. B assumed to be is constant. Individuals reaching puberty at time t are said to

belong to cohort t, whose size is denoted by P (t). Life expectancy at age B is denoted

by A(t), which is referred to below as life expectancy. We abstract from infant mortality,

and assume that the survival law is rectangular, with mortality rates equal to zero for

ages below B +A, and individuals dying with probability one at this age. Consequently,

B + A is life expectancy at birth. Choices are made by individuals reaching puberty.7

Preferences are represented by (we have dropped the index t to ease the exposition)

∫ A

0

c (z) dz + H̄
(

β ln n̂ + δ ln Â
)

. (1)

We assume that individuals do not consume until they reach age B. c(t) represents

consumption at age B + t. Preferences in consumption are linear for simplicity and the

time preference parameter is assumed to be zero. Under this assumption, the equilibrium

interest rate is zero and the marginal value of the intertemporal budget constraint, the

associated Lagrange multiplier, is unity. In addition to their own consumption flow,

individuals value the number of children, denoted by n̂, as well as the life expectancy of

their children, denoted by Â. H̄ is the average human capital per worker, which will be

7Modeling family behavior is not a simple issue. As children grow, parents take child preferences
into account more and more, but parents still have something so say as long as they support children
financially until they find a job, leave home and become fully independent. Since modeling this complex
process is beyond the objective of this paper, we assume that children become fully independent at one
stroke.
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defined below. It multiplies the term associated with children to keep utility balanced

in a growing economy, implying that the value of children and their health depends on

the average human capital of the society. Parameter β, β > 0, weights the marginal

utility of children relative to adult consumption. The marginal utility of the quality of

children is weighted by δ, δ > 0.

The technology producing human capital depends on the time allocated to education T

and the average human capital per worker:

h = µ (θ + T )α H̄.

The productivity parameter µ and the parameter θ, which relates to schooling before

puberty, are strictly positive, and α ∈ (0, 1). θ ensures that human capital, and hence

income, are positive even if individuals choose not to go to school after age B.

The budget constraint takes the form

∫ A

0

c (z) dz + n̂ Ψ(Â) = µ (θ + T )α H̄ (A − T − φn̂) . (2)

The right hand side is the total flow of labor income. For simplicity, we assume that

people have and raise their children immediately after finishing their studies and before

becoming active in the labor market. This greatly simplifies the dynastic structure of the

model. Raising a child takes a time interval of length φ > 0, implying that individuals

work for a period of length A − T − φn̂. The wage per unit of human capital is unity.

Parental expenditure on each child’s development is

Ψ(Â) = κ
1

2

H̄

A
Â2, (3)
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Figure 4: The life cycle

birth nubility work starts death

z − B z + T (z) + φn̂(z) z + A(z)z

which implies that the expenditure is quadratic in Â and inversely related to A.8 This

formulation is inspired by the economic theory of capital adjustment costs, and is con-

sistent with the complex interaction between nurture and nature observed by biologists

and psychologists. It stresses the difficulty of raising life expectancy above that of the

parents, reflecting how the genes interact with human behavior (the environment) in

building up a child body. The parameter κ > 0 measures the costs of developing chil-

dren and represents health technology in a broad sense. Finally, note that the integral

in Equation (2) may be substituted in Equation (1). The resulting objective function,

depending on Â, n̂ and T , is concave.

Figure 4 summarizes the OLG structure of the model. Generation z is born at z − B,

becomes independent at z, goes to school until z+T and enters the labor market at z+T+

φn̂. Their children belong to generation z+T +B, since T is the age at which individuals

have children, and children reach puberty after a period of length B. Individuals chose

their own education T , the number of children n̂ and the quality of children as measured

by their life expectancy Â. Their choice depends on three types of parameters. First,

those related to preferences, β and δ. Second, the parameters associated with child

rearing and childhood development, φ, B and κ. Finally, the educational technology

parameters θ, µ and α. The analysis of the demographic transition in Section 6 is built

on letting some of these parameters change smoothly with time. To simplify the exercise,

8An example of a technology of childhood development is given by Dalgaard and Strulik (2006), where
the metabolic energy to create a new cell is an exponential function of the body mass the individual
wants to reach.
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it will be assumed that all these parameters are cohort specific.

The maximization of utility (1), subject to the budget constraint (2) and to the positivity

constraints T ≥ 0 and c(z) ≥ 0 ∀z, can be interior or corner. We make the following

assumption about preferences:

Assumption 1 Preferences satisfy δ < 2β.

Assumption 1 states that the preference weight attached to childhood development,

δ, cannot exceed twice the weight attached to the number of children, β. The quan-

tity/quality trade-off depends on the ratio of marginal utilities to marginal costs, which

crucially depends on the factor two because of the quadratic form of the adjustment

costs. A similar condition can be found in Moav (2005) and de la Croix and Doepke

(2006), when parents face the standard fertility/education trade-off.

We make the following assumptions about education technology µ:

Assumption 2 The productivity of education technology satisfies:

µ > max

[
(β − δ/2)α2

θ1+α(1 + α)
,

δα

2θ1+α

]

≡ µ.

This assumption requires the productivity coefficient µ to be large enough. Let us

establish the main proposition on individual behavior.

Proposition 1 Under Assumptions 1 and 2, there exist two thresholds A and A, 0 <

A < A, such that:

12



If A ≥ A, there is a unique interior solution satisfying

Â2 =
δ

κn̂
A, (4)

T =
α

1 + α
(A − φn̂) −

θ

1 + α
, (5)

n̂ =
β − δ/2

µφ
(θ + T )−α . (6)

If A ≤ A < A, there is a unique corner solution with positive consumption satisfying

Â2 =
δ

κn̂
A, (7)

T = 0, (8)

n̂ =
β − δ/2

µφθα
. (9)

If 0 < A < A, there is a unique corner solution with zero consumption satisfying

Â2 =
δ

κ

µθαφ

β − δ/2
A, (10)

T = 0, (11)

n̂ =
β − δ/2

βφ
A. (12)

Proof. Using the Kuhn-Tucker conditions for constrained optimization, we can identify

the two thresholds A and A and characterize the different regimes. See Appendix A.

Restriction A ≥ A in Proposition 1 states that parental life expectancy has to be large

enough for schooling to be positive. At the interior solution, Equation (4) shows the

trade-off faced by parents between the number and the life expectancy of their children.

The relation is negative, since the total cost of providing children with health cares

increases as their number increases. Equation (5) is the standard Ben-Porath (1967)
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result, as described by de la Croix and Licandro (1999), where life expectancy positively

affects the time allocated to education since it allows people to work for a longer time.

The term φn̂ in Equation (5) shows an additional trade-off of having children: parents

expecting to have many children will postpone their entry into the labor market, reducing

the incentives to take additional education. This trade-off also shows up in Equation (6).

When A ≤ A < A, parental life expectancy A is not long enough to render optimal a

positive investment in education. For lower levels of life expectancy, i.e. when A < A,

both education and consumption are zero.9 Expected life time earnings are so low that

parents use all their resources in bearing a limited number of children.

From now on, the interior solution, (4)-(6), and the corner solutions, (7)-(9) and (10)-

(12), are referred to as Â = fA(A), T = fT (A) and n̂ = fn(A). The effect of an increase

in A is given by Corollary 1:

Corollary 1 f ′

A(A) > 0;

f ′

n(A) < 0, for A ≥ A, f ′

n(A) = 0, for A ≤ A < A, and f ′

n(A) > 0 otherwise

f ′

T (A) > 0, for A ≥ A, and f ′

T (A) = 0 otherwise

Proof. See Appendix A.

In the interior solution, increased life expectancy raises optimal schooling and human

capital levels via the Ben-Porath effect. This increases the opportunity cost (time cost)

of raising children. Hence, the optimal number of children drops as life expectancy

increases.

In the corner solutions, since T = 0, a change in parental life expectancy does not affect

education, canceling the Ben-Porath effect. In the corner regime (7)-(9) the number of

children remains constant whatever the life expectancy, but childhood development is

9Imposing a strictly positive minimum consumption level with c ≥ c̄ for the sake of realism would
not change the results. The only difference is that A would be larger and increasing in c̄.
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still positively affected by life expectancy, since the efficiency of health activities depends

positively on parental life expectancy. In the corner regime (10)-(12), when consumption

C is zero, however, the effect of life expectancy on the quantity and quality of children

reverses, since the number of children is directly determined by the C = 0 constraint,

which allows for more children as life expectancy increases. This is a Malthusian effect.

Consequently, for the study of the transition from Malthusian to modern growth in

Section 6, it makes sense to initially put the economy into this last regime.

4 Dynasties

Since individual decisions do not depend on aggregate variables, we can study the dy-

namics of life expectancy, fertility and education within dynasties separately, before the

analysis of the aggregates.

Let us consider the dynamics of life expectancy first. At any point t, individuals reaching

puberty belong to a representative dynasty with life expectancy A (t). Let us denote

as A1 = A(0) the life expectancy of the first generation of this dynasty. The operator

fA defines a difference equation governing the evolution of the dynasty’s life expectancy

since

Ai+1 = Âi = fA(Ai),

where the index i = 1, 2, 3,etc., is associated with generations. From Proposition 1, for

any initial value A1 there exists a sequence of solutions Ti = f i
T (A1), Âi = f i

A (A1) and

n̂i = f i
n (A1) for i = 1, 2, 3,etc. where X i is the ith consecutive application of operator

X. In the following, we characterize the dynamics of life expectancy. Once this has been

done, the sequence {A1, A2, ...} determines through the operators fT and fn the date

and size of the following generations.
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Proposition 2 Under Assumptions 1 and 2, the dynamics of life expectancy following

Ai+1 = fA(Ai), with A1 given, are monotonic. A stationary solution A = fA(A) exists,

is unique and globally stable.

Proof. See Appendix A.

Proposition 2 states that life expectancy converges to a constant value in the long run.

Consequently, from Proposition 1, fertility and education also converge to a constant

value. Demographic variables are then stationary in a model of endogenous growth,

meaning that the demographic transition only occurs, as the name itself indicates, as a

transitional phenomenon.

The results obtained so far allow us to assess some theoretical characteristics of the

demographic transition in our model. Consider Figure 5. The lower panel plots the

function fA(A). It describes a situation where the globally stable steady state is in the

interior regime. The top panel shows fertility as a function of life expectancy. Suppose

now that initial life expectancy is very low, below A. The dynamics of life expectancy

will be monotonic and converge to the steady state. A rise in life expectancy will first

drive fertility up (as long as the economy is in the Malthusian regime A < A), then

fertility will peak in the zone where A ≤ A < A (i.e. where T = 0 but C > 0), and

then decrease (in the interior regime). Schooling will be zero until we reach the interior

regime and will then increase monotonically. This sharp characterization is very much

in line with the stylized facts of the demographic transition as reported in Figures 1 and

2.

In this description of the theoretical dynamics, we have assumed a steady state in the

interior regime. A condition for such a situation to occur is given by Proposition 3.
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Figure 5: A Steady State in the Interior Regime

A

Â

A A

fA(A)

n̂

Proposition 3 The steady state is in the interior regime if

κ <
4αδθ2αµ2φ

(2β − δ) (α[2β − δ] + 2θ1+αµ)
≡ κ (13)

Proof. See Appendix A.

Condition (13) states that if the childhood development technology is cheap enough,

there is an interior steady state with positive education. Changing the value of κ is a

natural way of generating a demographic transition: if κ is initially high, the economy is
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Figure 6: Life cycle (from left to right) and living cohorts (from right to left)
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z

v
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in one of the corner regimes. Once κ has increased, health becomes more affordable, the

new steady state is in the interior regime, and life expectancy converges monotonically

to this value.

5 Aggregates

Some definitions are useful to study the dynamics of the aggregate population, active

population and human capital. In Figure 6, t and z represent time and cohort, respec-

tively. Let us define Ã (t) as the age of the oldest cohort still alive at time t, which then

represents the life expectancy at time t of cohort t − Ã(t). By definition, A(z) is the

life expectancy of cohort z. Then, given that generations z and t − Ã(t) are the same,

A(z) has to be equal to Ã(t). This is equivalent to introducing the variable change

z = t − Ã(t), implying that

Ã(t) = A
(

t − Ã (t)
)

.

A similar argument applies to the functions T (.) and n̂(.). Let us define T̃ (t) and ñ (t)

as the schooling time and the number of children of the youngest cohort entering the
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labor market at time t, i.e., cohort v = t− T̃ (t) − φñ(t) in Figure 6. Since T̃ (t) = T (v)

and ñ (t) = n̂(v),

T̃ (t) = T (t − T̃ (t) − φñ(t)),

and

ñ(t) = n̂(t − T̃ (t) − φñ(t)).

The total population is computed by integrating over all the living cohorts:

N (t) =

∫ t+B

t−Ã(t)

P (z) dz, (14)

from the oldest t − Ã(t) to the youngest t + B. The cohort size P (z) is given by

P (z + T (z) + B) = n̂ (z) P (z) , (15)

since members of cohort z have n̂(z) children at time z + T (z), who belong to cohort

z+T (z)+B. Aggregate human capital is defined by the human capital of active cohorts

H (t) =

∫ t−T̃ (t)−φñ(t)

t−Ã(t)

P (z) µ (θ + T (z))α H̄ (z)
︸ ︷︷ ︸

h(z)

dz (16)

where average human capital per worker is given by

H̄ (t) =
H (t)

E (t)
,

and total employment E (t) is

E (t) =

∫ t−T̃ (t)−φñ(t)

t−Ã(t)

P (z) dz.

The technology producing the consumption good, the only final good in this economy,
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is linear in aggregate human capital with productivity one, implying that the real wage

per unit of human capital is unity. Output per capita is then H(t)/N(t).

The Balanced Growth Path

A balanced growth path is an equilibrium path where the population grows at rate

η, human capital grows at rate γ, and, the demographic variable T , n and A are all

constant, as defined in Section 5. From Equation (15), the grow rate of cohorts’ size is

such that eη(T+B) = n, i.e.

η =
ln (n)

T + B
,

with P (t) = P ⋆eηt, P ⋆ > 0. The population growth rate depends on the fertility rate n

and on the age at child’s birth B + T . At a given fertility rate, the smaller the age at

birth, the larger the frequency of births and thus the growth rate of the dynasty.

Total population, as defined in Equation (14), evolves along a balanced growth path

following

N(t) = N⋆ eηt = P ⋆ eηB − e−ηA

η
eηt,

with N⋆ > 0. Population also grows at rate η and its size depends positively, as expected,

on life expectancy. When η approaches zero, i.e., when population is constant, its size is

given by N(t) = P ⋆(B + A), which is the product of the cohort size and life expectancy

at birth. Along a balanced growth path, the active population is given by

E (t) = E⋆ eηt = P ⋆ e−η(T+φn) − e−ηA

η
eηt.

Similarly as for total population, when η approaches zero E(t) converges to P ⋆(A−T −

φn), where the term in brackets is the length of active life. Finally, the growth rate of
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human capital γ satisfies

γ =
P ⋆

E⋆
µ(θ + T )α

(
e−γ(T+φn) − e−γA

)
.

To understand this result better, let us differentiate, at the balanced growth path, the

definition of H(t) in Equation (16) with respect to time:

H ′(t) = P (t − T − φn)h(t − T − φn) − P (t − A)h(t − A).

The change in aggregate human capital is the difference between the human capital of

the youngest workers and that of the oldest. From the human capital technology, and

using the balanced growth path assumption

γ =
H ′(t)

H(t)
=

P ⋆

E⋆
µ(θ + T )α

(
e−γ(T+φn) − e−γA

)
.

The first term on the r.h.s, P ⋆/E⋆, derives directly from the assumption that per worker

human capital affects the human capital of the current cohort. If, instead of normalizing

total human capital by E, we normalized it by P , this term would vanish. It basically

corresponds to the length of active life. The second term reflects the fact that both the

oldest and the youngest cohort share the same human capital technology, with a common

length of education. For this reason, the term µ(θ+T )α is common. Finally, the last term

in brackets reflects the fact that aggregate human capital was not the same at the time

the two cohorts were at school, the difference depending on the growth rate itself and

the age difference between the cohorts. The vintage human capital nature of the model

was pointed out by Boucekkine, de la Croix, and Licandro (2002): the human capital of

new cohorts entering the labor market is larger than that of the retiring cohorts, because

quality of schooling progressed with human capital accumulation.
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The growth rate of per capita output is γ − η at the balanced growth path. No theorem

is available to assess the asymptotic behavior of the solutions of our dynamic system

directly, and in particular, whether income per capita converges to its balanced growth

path.10 In the simulations in the next section though, the solution converges asymptot-

ically to the balanced growth path.

6 Simulating the Demographic Transition

In this section, we investigate to what extent the trade-off between the number of children

and their development can reproduce the key facts of the demographic transition. The

transition is studied as the reaction to a change in the environment (the Industrial

Revolution) occurring after 1820 and leading the economy to a new balanced growth

path characterized by sustained growth and longer lives. For this purpose, we implement

a change in the parameter κ and analyze how the economy adjusts to this change, using

numerical simulations.11

6.1 The Change in the Parameter κ

Before analyzing the demographic transition as a response to a change in the parameter

κ, we need to discuss briefly the interpretation to be given to such a change. Indeed,

many would think that the period 1800-1870 does not contain major technology changes

in health that could have increased life expectancy at puberty so much.

10No direct stability theorem is available for delay differential systems with more than one delay
since the stability outcomes depend on the particular values of the delays. See Mahaffy, Joiner, and
Zak (1995).

11A more sophisticated version of the model, in line with Galor and Weil (2000), would allow for an
endogenous industrial revolution. This could be achieved by letting health technology κ depend upon
population size or density.
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It is known that ancient ideas persisted a long time in modern Europe and the confidence

of consumers in medicine was low. As a consequence some authors claim that the rise of

life expectancy in early modern Europe did not relied on medical advances. Johansson

(1999) argues against this therapeutic nihilism that tends to deny that medicine had any

effectiveness before the end of the nineteenth century. First, in the period 1500-1800,

medicine showed an increasingly experimental attitude: no improvement was effected

on the grounds of the disease theory (which was still mainly based on traditional ideas),

but significant advances were made based on practice and empirical observations. For

example, although the theoretical understanding of how drugs work only came progres-

sively in the nineteenth century with the development of chemistry (Weatherall 1996),

the effectiveness of the treatment of some important diseases was improved thanks to the

practical use of new drugs coming from the New World. Second, the number of books

containing lifestyle advice increasing significantly over the period 1750-1800, which pro-

vides some indirect evidence of the fact that lifestyle advice (concerning, for example,

personal and domestic cleanliness) became popular. Third, Johansson (1999) reports

that, as early as 1829, Dr.F.B. Hawkins wrote a book entitled Elements of Medical

Statistics, in which he described what could be called an early modern epidemiological

transition. He describes a set of diseases which were leading causes of death but can

now (in 1829) be treated effectively: leprosy, plague, sweating sickness, ague, typhus,

smallpox, syphilis and scurvy.

The cumulative effects of these improvements could have produced a net increase in the

efficacy of medicine as early as in the eighteenth century (see de la Croix and Sommacal

(2008) for further arguments).
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6.2 The Demographic Transition over Time

We assume that the Industrial Revolution produced a change in the cost of childhood

development κ. Setting the age of puberty, B, to 15, we first calibrate the model

to reproduce a steady state having the following properties in the pre-1820 balanced

growth path: economic stagnation (γ − η = 0), low life expectancy at age B (A = 24),

no education after puberty (T = 0) and a population growth rate of 0.5% per year.

We also set the parameters to obtain the thresholds A = 25 and A = 38, which ensure

that the economy is initially in the Malthusian regime and ends in the modern growth

regime (interior regime). There are too many parameters given the number of targets,

and φ and α have been set arbitrarily (φ = 1, α = 1/5), while µ, θ, κ, δ and β have

been computed to match the properties given above. This leads to the following results:

µ = 0.671, θ = 7.37, κ = 1.772 ≡ κ0, δ = 47.75, and β = 25.

Note that for these values Assumption 1 holds. We can also compute the threshold for

µ required by Assumption 2. It is equal to 0.434, showing that Assumption 2 also holds

in our example.

Next, we implement a drop in κ such that life expectancy is increased to 70 years

at the new steady state. This requires us to divide κ by more than two, leading to

κ = 0.678 ≡ κ1 at the new steady state. We assume that this change takes place

smoothly, following a logistic curve:

κ(t) = κ0 +
κ1 − κ0

1 + e1840−t/5
.

With such a function, 99% of the change takes place between 1820 and 1870.12 We also

12If, instead, the change were discrete, we would observe intervals of times with no births, corre-
sponding to periods where everybody increases their length of schooling in a discrete way, giving rise
to permanent replacement echoes which are typical of models with delays (Boucekkine, Germain, and
Licandro 1997). In this case, the economy keeps fluctuating forever, moving from baby booms to baby
busts. Non-monotonic convergence also occurs in the Galor and Weil model - see Lagerloef (2006).
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assume that the parameter κ(t) is specific to generation t. Hence any change only affects

new generations, leaving past decisions unaffected.

Figure 7 depicts the simulation results.13 We first observe that, following the drop in

the cost of childhood development, life expectancy increases monotonically over time

and converges to the new steady state, in accordance with the prediction of Propo-

sition 2. Cohorts’ education also increases monotonically, showing that the economy

shifts from the Malthusian corner regime with no education to the interior regime with

T > 0. Notice that the magnitude of the increase in T is about right, with schooling

converging towards 5 years after puberty (15). Cohorts’ fertility (per individual, to be

multiplied by 2 to get fertility per women) first increases as long as the economy is in

the Malthusian state, then peaks in the corner regime with positive consumption, then

drops monotonically as a consequence of the trade-off between education and number

of children in the interior regime. The interaction of fertility and longevity over time

leads to a hump-shaped population growth rate, which is one important characteristic

of observed demographic transitions.

The robustness of the above results to alternative speeds of adjustment of κ has been

investigated. Assuming a slower adjustment, but still achieved by the year 2000,14 leads

to the economy spending a longer time in the intermediate corner regime, and education

beginning to increase later, around 1900. The hump shaped population growth rate is

still present, but arrives later. Lowering the threshold A by changing the calibration

would restore the original timing.

In this simulation, the demographic transition is triggered by technological change, rep-

resented by a drop in the physical cost of childhood development. An alternative to this

13The simulation was performed using the method developed by Boucekkine, Licandro, and Paul
(1997).

14It seems reasonable to assume that the majority of the possible gains in terms of childhood de-
velopment have been exploited - height is no longer increasing much more any longer in developed
countries, and further increases in longevity are more related to medical progress affecting adult and
old-age health capital, which is not modeled here.
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Figure 7: Example of dynamics - drop in κ
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storyline could be the following. According to Galor and Moav (2002) a long period of

struggle for survival during the Malthusian stagnation increased the weight attached to

the quality of children in the population following an evolutionary process, which in turn

fostered the take-off process. In our set-up this could be reflected by allowing changes

in the preference parameters β and δ. We could then replace the drop in κ in the above

simulation by an increase in the weight of quality relative to quantity to match the rise

in life expectancy between the initial and final steady states; the new relative weight

of quality would be δ/β = 1.96. The transitional dynamics following this change in

parameters was computed using the same method and the results are similar to those

displayed in Figure 7, indicating that the two stories – technical change and preference

changes – lead to the same results.

6.3 Regional Variations

We conclude from the above simulation exercise that our model is able to reproduce the

main features of the take-off from stagnation to growth through the demographic tran-

sition. Another question is whether we can also shed some light on regional variations

in the demographic transition. Considering the German data presented in Figure 3,

we have seen that adult height (a proxy for childhood development) and fertility were

negatively associated across provinces on the eve of the twentieth century. This is per-

fectly in line with the model when the economy is in the interior regime, i.e. in times

of falling fertility. However, when fertility is rising, as it was the case in the 1860s in

Germany, the economy is in the corner regime in which height and fertility are positively

associated. It is thus not obvious a priori that the model can reproduce a world where

shorter individuals have higher fertility at a time in when fertility is increasing.

One reason for different places exhibiting different fertility and height paths during the

demographic transition is that the initial cost of health could vary in different places, and
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Figure 8: Total Fertility Rates in Places A (dashed) and B (solid)
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the speed in the drop of the cost could be different. A pattern similar to that observed

in Figure 3 can emerge if the place which initially had a higher cost κ benefited from

a faster transition. Consider two economies with all parameters equal to those of the

previous simulation except for κ. In place A, the initial κ is 10 % larger than in place

B but it drops faster (the term e1840−t is divided by 10 rather than by 5). The result

of the simulation is shown in Figure 8. Fertility rates first rise then decline. There is

initially a large gap between the two places. Place A, with the lower fertility in 1865-

1895 also has higher childhood development in that period, as witnessed by the gap in

life expectancy computed for the cohort reaching puberty in 1900 (born in 1885 and

being in the military in 1906): life expectancy is 47.4 in place A and 45.2 in place B.

Hence, both the cross-sectional and time-series aspect of the demographic transition can

be captured if differential progress in health technology is allowed for.

7 Conclusion

The epidemiology literature stresses that life expectancy depends greatly on physical

development during childhood. Both better nutrition and lower exposure to infections
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leads to increased body height and a longer life. We have proposed a theory of the

demographic transition based on this fact. The novel mechanism of the model is that

parents face a trade-off between the quantity of children they have and the amount they

can afford to spend on childhood development of each of them. Parents like to have a

lot of children, but they also care about their health and longevity as adults. Having

many children prevents parents spending much on their health capital. If the cost of

health decreases, parents will increase their investment in their children’s longevity. The

number of children will first increase in the Malthusian regime as a consequence of

higher lifetime income. As longevity rises, fertility starts falling as a result of the trade-

off faced by parents between investing in their own human capital and spending time

rearing children. Following the trade-off between the number of children and childhood

development, adult longevity keeps increasing.

The model we have developed reproduces the characteristics of the demographic tran-

sition well, displaying the appealing features that longer education delays birth and

reduces fertility. Our theory can be seen as an alternative to the one based on a rise in

the return to human capital investment induced by economic progress, leading parents

to substitute quality for quantity. A distinctive implication of our theory is that im-

provements in childhood development should precede the increase in education. Taking

height as a proxy for childhood development, we have observed just such a pattern in

Swedish historical data.

Our theory can also provide an explanation for the puzzling fact that height at age

18 is a strong predictor of education attained later in life (Magnusson, Rasmussen,

and Gyllensten (2006) showed that Swedish men taller than 194 cm were two to three

times more likely to obtain a higher education than men shorter than 165 cm), even

after controlling for parental socioeconomic position, other shared family factors, and

cognitive ability. A further test of our theory would consist of checking whether family
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size is related to childhood development as measured by average height on historical

micro-data.
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A Proofs of Propositions

Proof of Proposition 1

After substituting the integral in (2) into (1) and diving by H̄ , the objective becomes

(

β ln n̂ + δ ln Â
)

+ µ (θ + T )α (A − T − φn̂) − n̂

(

κ

2

Â2

A

)

︸ ︷︷ ︸

C

which is maximized under the restrictions T ≥ 0 and C ≥ 0.

First order conditions to this problem are (omitting the Kuhn-Tucker conditions):

(1 + η)Â2 =
δ

κn̂
A (A.1)

(1 + η)αµ (θ + T )α−1 (A − T − φn̂) = (1 + η)µ (θ + T )α − λ (A.2)

1

n̂

(

β −
δ

2

)

= (1 + η)µ (θ + T )α φ (A.3)

where λ and η are the Kuhn-Tucker multipliers associated with the constraints T ≥ 0

and C ≥ 0, respectively. The interior solution (4)-(6) is (A.1)-(A.3) under η = λ = 0.

The corner solution (7)-(9) results from the same system under η = T = 0, and finally,

the corner solution (10)-(12) results from the first order conditions under T = C = 0.

Under Assumption 2, η = C = 0 is not optimal.

Interior Regime. The solution to the first order conditions (4)-(6) exists and is unique

iff the loci in (5) and (6) cut once and only once for positive n and T , and C ≥ 0 at

the solution. The locus in (5) is a straight line with negative slope and cuts the n̂ axes

at A−θ/α
φ

≡ n0, see Figure A.1. The locus in (6) has a negative slope, is convex, and

is such that n̂ goes to zero when T goes to infinity and cuts the n̂ axes at β−δ/2
µφθα ≡ n1.
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Figure A.1: The interior solution

β−δ/2

µφθα

A−θ/α
φ
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+
A

n̂

T

Comparing these two points and imposing n0 ≥ n1 leads to the condition A ≥ A, where

A =
β − δ

2

µθα
+

θ

α
.

Substituting (4) and (5) in the definition of C gives

C =
µ

α
(θ + T )1+α −

δ

2
,

which is positive under Assumption 2 for all T ≥ 0.

Corner regime A ≤ A < A. If A < A, the straight line is above the convex curve at

T = 0 (see Figure A.1). A sufficient condition for these two curves not to intersect in

the positive plane is that the straight line is steeper than the convex curve at zero. This

is guaranteed by Assumption 2. In that case, there is no interior solution, since negative

values for T are not feasible. Consequently, the solution must be corner with T = 0.
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From equations (7)-(9), at this corner solution

C = µθα

(

A −
β − δ/2

µθα

)

− δ/2,

which is positive for A ≤ A < A,with

A ≡
β

µθα
.

From Assumption 2, A < A. It is easy to see that the solution is unique.

Corner regime 0 < A < A. Finally, when 0 < A < A, the optimal solution is (10)-(12),

with both inequality constraints being binding. Uniqueness is trivial.

Proof of Corollary 1

For the interior solution, we apply the implicit function theorem to (4)-(6), which leads

to

f ′

A = dÂ/dA =

√

Aδ

n̂κ

(T (α + 1) + θ + α((A − n̂φ)α + θ))

2A((α + 1)(T + θ) − n̂α2φ)
.

The numerator is positive. Under Assumption 2, the denominator is also positive. The

results for f ′

n and f ′

T can be proved using the same arguments. For the corner solutions,

the result is straightforward.

Proof of Proposition 2

Let us denote the function fA(.) by fA1(.) when A ≥ A, fA2(.) when A ≤ A < A, and

fA3(.) when 0 < A < A. The dynamics of life expectancy following Ai+1 = fA(Ai) are

monotonic because fA is continuous and non-decreasing.
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Let us first prove the existence of a solution. From corollary 1, f ′

A(A) > 0. It is easy

to see that limA→0 fA(A) = limA→0 fA3(A) > 0. To prove the existence it is enough to

show

lim
A→∞

fA(A)

A
= lim

A→∞

fA1(A)

A
= 0.

From (5) and (6)

n̂ = cte(A − φn̂)−α.

Substituting in (4), and dividing by A2 gives

(

Â

A

)2

= cte
(A − φn̂)α

A
.

Since limA→∞ fn(A) = 0, it’s now easy to see that limA→∞

fA1(A)
A

= 0.

Let us now prove its unicity. For 0 < A < A, the function fA3(.) is increasing and

concave, with fA3(0) = 0 and f ′

A3(0) = ∞, implying that if it crosses the diagonal on

the interval (0, A), it crosses it only once.

Function fA2(.) is increasing and concave, with fA2(0) = 0 and f ′

A2(0) = ∞, implying

that if it crosses the diagonal on the interval [A, A), it crosses it only once.

Finally, let us prove that f ′

A1(A) < 1 for any fixed point of fA1(.) in A ≥ A. From the

implicit function theorem applied to (4)-(6),

dÂ

Â
/
dA

A
=

1

2

(1 + α)(A − φn̂)

A − (1 + α)n̂
.

At a fixed point of fA1, since Corollary 1 shows that f ′

A(A) > 0 in this interval, the

denominator must be strictly positive. It is then easy to see that f ′

A(A) < 1 iff A >

1+α
1−α

φn̂. Since, from Corollary 1, f ′

n(.) < 0 in this interval, f ′

A(A) < 1 for all A ≥ A iff

A > 1+α
1−α

φn̂, which holds under Assumption 2.
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Global stability is then trivial, since fA is above the diagonal before the unique steady

state equilibrium and below it afterwards.

Proof of Proposition 3

A steady state for A in the interior regime exists if there is a solution to the system

(4)-(6) evaluated at the steady state. Eliminating A and n from Equation (5) using

Equations (4) and (6) we find that the steady state T should satisfy:

T (1 + α) + θ = α

(
2δφµ(T + θ)α

κ(2β − δ)
−

(2β − δ)(T + θ)−α

2µ

)

The left hand side is a linear increasing function of T . The right hand side is a concave

function of T . A necessary and sufficient condition for the existence and uniqueness of

a solution is that the right hand side is larger than the left hand side at T = 0. This

leads to Condition (13).
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