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1 Introduction

In dynamic macroeconomics and finance, the use of representative-consumer models is prevalent.
As in Mehra and Prescott (1985), the standard (and by now classical) representative-consumer
model consists of a single consumer having a utility function U of the form

U(c) = E

( ∞∑
t=0

δt c1−β
t

1 − β

)
or U(c) = E

(∫ ∞

0
exp(−ρt)

c1−β
t

1 − β

)
,
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Risk-Sharing: An Application of Finance Theory to Development Economics”; and Murata Science Founda-
tion on “Internationalization of Asset Markets and Investors’ Portfolio Choice Behavior”. My email address is
hara@kier.kyoto-u.ac.jp.
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depending on whether the time span is discrete or continuous, and an initial endowment process
e = (et)t. Given that there is only one consumer, the equilibrium of such an economy must
necessarily be the no-trade equilibrium, in which the consumer is induced to demand his own
endowment process e = (et)t. The equilibrium state price deflator π = (πt)t, which evaluates
each consumption process c = (ct)t via E (

∑∞
t=0 πtct) or E

(∫ ∞
0 πtct

)
, can then be written in the

simple form of δtc−β
t or exp(−ρt)c−β

t . The task of identifying equilibrium asset price process
with dividend process d = (dt)t can therefore be reduced to one of calculating

Et

( ∞∑
τ=t

δt−τ

(
eτ

et

)−β

dτ

)
or Et

(∫ ∞

t
exp(−ρ(τ − t))

(
eτ

et

)−β

dτ dτ

)

at each time t.
There are a couple of important assumptions embedded in this specification. First, the

representative consumer has an expected utility function, thereby conforming the independence
axiom. Second, the discount rate is deterministic, constant, and independent of consumption
levels. Third, the representative consumer exhibits constant relative risk aversion.

When we take up any representative-consumer model, we are not really interested in the
analysis of an economy consisting of a single consumer per se. Rather, we regard the representa-
tive consumer economy as a reduced economy consisting of multiple, heterogeneous individuals.
Then a question arises: if we explicitly model an economy of multiple, heterogeneous individuals
and derive the utility function for the representative consumer by aggregating their utility func-
tions, are we likely to obtain an expected utility function, with the discount rate independent
of time and consumption levels and the relative risk aversion constant? This paper is devoted
to giving a negative answer to this question. We see that the expected utility function is un-
likely to be obtained as the representative consumer’s probabilistic belief is likely to depend on
consumption levels; his discount rate is likely to depend on consumption levels and decrease
over time; and his relative risk aversion is more likely to be decreasing rather than constant.
These violations of standard properties can occur even when all individual consumers have an
expected utility function with the discount rate deterministic, constant, and independent of
consumption levels, and his relative risk aversion is constant.

Note that we are not arguing that the representative-consumer approach is logically incorrect
or internally inconsistent. Rather, we are claiming that the specification of a utility function
for the representative consumer needs some care and cannot be based on any justification that
can typically given for individual consumers’ utility functions, such as results of laboratory
experiments. We are also aiming at general results, in the sense that the subsequent analysis
does not depend on the number of individual consumers in the economy, the form of their utility
functions, the wealth distribution across them, or the stochastic nature of their consumption
processes. On the other hand, we maintain the assumption of complete asset markets and
the assumption of state- and time-separability for utility functions. In particular, we cannot
include recursive utility functions or utility functions of habit formation. These utility functions
are interesting and important, but we would like to make full use of the existing results on
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aggregation of state- and time-separable utility functions.
This paper is organized as follows. Section 2 spells out our model and review some el-

ementary and well known results. Section 3 establishes some general formulas relating the
representative consumer’s risk attitudes, discount rates, and probabilistic beliefs to the individ-
ual consumers’ counterparts. Section 4 gives some economic interpretations to these formulas.
Section 5 summarizes these results and suggests directions of future research.

2 Setup

2.1 Uncertainty and consumers

The setup of this paper is as follows. As usual, we represent the uncertainty surrounding the
economy by a probability measure space (Ω,F , P ). In addition, to formulate state-dependent
utility (felicity) functions, we use (Z, h), where Z is a nonempty, open subset of a finite-
dimensional Euclidean space RL, and h is a measurable mapping of Ω into Z. Each element
of Z is a state variable, which, as will be seen in the next paragraph, completely determines
consumers’ utility (felicity) functions. Thus, L denotes the dimension of a state variable and h

specifies which state gives rise to which state variable. At this outset, the time span along which
consumption can take place is not explicitly modeled and, as such, we assume for a moment
that there is only one consumption period.

The economy consists of I consumers. Each consumer i has a possibly state-dependent
felicity function ui : R++ × Z → R, which is at least twice continuously differentiable,1 and
satisfies ∂ui(xi, z)/∂xi > 0 > ∂2ui(xi, z)/∂ (xi)

2 for every (xi, z) ∈ R++ × Z and the Inada
condition, that is, for every z ∈ Z, ∂ui(xi, z)/∂xi → 0 as xi → ∞, and ∂ui(xi, z)/∂xi → ∞ as
xi → 0. When the state variables are given by a measurable function h : Ω → Z, his utility
function Ui over consumptions ci : Ω → R++ are defined by requiring expected utility:

Ui(ci) = E(ui(ci, h)) =
∫

Ω
ui (ci(ω), h(ω)) dP (ω), (1)

To be exact, we need to impose some additional restrictions on ci to make the integral well
defined (finite). As such restrictions are irrelevant to the subsequent analysis, we shall not
explicitly state or impose them.

The key parameters of the felicity function ui (and thus of the utility function Ui) are risk
tolerance and responsiveness to the state variables. The risk tolerance si : R++ × Z → R++ is
defined by

si(xi, z) = − ∂ui(xi, z)/∂xi

∂2ui(xi, z)/∂(xi)2
.

This is the reciprocal of the Arrow-Pratt measure of absolute risk aversion, with the depen-
dence on z allowed for. The partial derivative with respect to xi, ∂si(xi, t)/∂xi, is called the

1The degree of continuous differentiability needed in each of the subsequent results will be made clear in its
proof. All such conditions can be satisfied by imposing sufficiently high (finite) degrees of continuous differentia-
bility on ui.
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cautiousness. The responsiveness to state variables, qi : R++ × Z → RL is defined by

qi(xi, z) =


q1
i (xi, z)

...
qL
i (xi, z)

 =


∂2ui(xi, z)/∂z1∂xi

∂ui(xi, z)/∂xi
...

∂2ui(xi, z)/∂zL∂xi

∂ui(xi, z)/∂xi

 .

Note then that

∂ui

∂xi

(
xi, z

1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL
)

∂ui

∂xi
(xi, z1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL)

= exp

(∫ zℓ

zℓ

qℓ
i

(
xi, z

1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL
)

dzℓ

)

for all i, ℓ, and
(
z1, . . . , zℓ−1, zℓ+1, . . . , zL

)
∈ RL−1, zℓ ∈ R, and zℓ ∈ R whenever zℓ ≤ zℓ and(

z1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL
)
∈ Z for every zℓ ∈

[
zℓ, zℓ

]
.

An important class of utility functions is that of multiplicatively separable utility functions.
A utility function ui is multiplicatively separable if there are two functions vi : R++ → R

and pi : Z → R++ such that ui(xi, z) = pi(z)vi(xi) for every (xi, z) ∈ R++ × Z.2 Then
si(xi, z) = −v′i(xi)/v′′i (xi) and

qi(xi, z) =


∂pi(z)/∂z1

pi(z)
...

∂pi(z)/∂zL

pi(z)

 ,

or, more succinctly,3

(qi(xi, z))⊤ =
1

pi(z)
∇pi(z) = ∇ (ln pi(z)) .

We thus write si(xi) for si(xi, z) and qi(z) for qi(xi, z) in this case. Then, qℓ
i (z) is equal to the

percentage change in p(z) when the ℓ-th state variable zℓ is changed by one unit, and ln p is a
potential function of the vector field q.4 Moreover,

pℓ
i

(
z1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL

)
pℓ

i (z1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL)
= exp

(∫ zℓ

zℓ

qi

(
z1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL

)
dzℓ

)

for all i, ℓ, and
(
z1, . . . , zℓ−1, zℓ+1, . . . , zL

)
∈ RL−1, zℓ ∈ R, and zℓ ∈ R whenever zℓ ≤ zℓ and(

z1, . . . , zℓ−1, zℓ, zℓ+1, . . . , zL
)
∈ Z for every zℓ ∈

[
zℓ, zℓ

]
.

2Wilson (1968) called v′
i a surrogate marginal utility function and pi a surrogate probability assessment function

in the context of heterogeneous beliefs.
3We regard the gradient vector ∇zw(x, z) as a row vector. Since q(x, z) is a column vector, we need to take

the transpose ⊤ to have an equality between the two.
4More generally, when ui need not be multiplicatively separable, for each fixed x ∈ R++, z 7→ qi(x, z) is a

potential function of the vector field z 7→ ln (∂ui(x, z)/∂x).
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2.2 Characterization of Pareto-efficient allocations

To find a Pareto efficient allocation of a given aggregate consumption c : Ω → R++ and its
supporting (decentralizing) state-price deflator when the state variable is given by h : Ω → Z,
it is sufficient to choose positive numbers λ1, . . . , λI and consider the following maximization
problem:

max
(c1,...,cI)

∑
i

λiUi(ci)

subject to
∑

i

ci = c.
(2)

Since the utility functions Ui are additive with respect to states and the expected utilities are
calculated with respect to the common probability measure P , it can be rewritten as

∑
i

λiUi(ci) = E

(∑
i

λiui(ci, h)

)
=

∫
Ω

(∑
i

λiui(ci(ω), h(ω))

)
dP (ω).

Hence, to solve the original maximization problem (2), it suffices to solve the simplified maxi-
mization problem

max
(x1,...,xI)∈RI

++

∑
i

λiui(xi, z)

subject to
∑

i

xi = x.
(3)

for each pair of a realized aggregate consumption level x ∈ R++ and a state variable z ∈ Z. It
can be easily proved that under the stated conditions, there is a unique solution, which we denote
by (f1(x, z), . . . , fI(x, z)). It can also be shown that for each fi is continuously differentiable in
both variables. We can define the value function of this problem u : R++ × Z → R by

u(x, z) =
∑

i

λiui (fi(x, z), z) .

This is the felicity function of the representative consumer. Then the solution to the original
maximization problem is given by (c1, . . . , cI), where, for each i, ci : Ω → R++ is defined by
ci(ω) = fi (c(ω), h(ω)) for every ω ∈ Ω. The representative consumer’s utility function is defined
by U(c) = E (u(c, h)).

Just as for an individual consumer’s utility function, we define risk tolerance and respon-
siveness to state variables for the representative consumer as follows:

s(x, z) = − ∂u(x, z)/∂x

∂2ui(x, z)/∂x2
,

qi(xi, z) =


∂2ui(xi, z)/∂z1∂xi

∂ui(xi, z)/∂xi
...

∂2ui(xi, z)/∂zL∂xi

∂ui(xi, z)/∂xi

 .
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The cautiousness is defined as the partial derivative ∂s(x, z)/∂x with respect to the aggregate
consumption level x. We will see that the representative consumer’s felicity function u need not
be multiplicatively separable between the aggregate consumption level x and the state variable
z even when all individual consumers’ felicity functions ui are multiplicatively separable.

The representative consumer is, of course, not an “actual” consumer, who would trade on
financial markets. Rather, he is a theoretical construct, whom we can use to identify asset
prices. Specifically, if u is the representative consumer’s felicity function and c is the aggregate
consumption process, then his marginal utility process evaluated at the aggregate consumption,
(∂u(c, h)/∂x), is a state price density. This means that the price of an asset with dividend
δ : Ω → R, relative to the risk-free bond (which pays off one unit of the commodity whichever
state has been realized), is equal to

E

(
∂u(c, h)

∂x
δ

)
E

(
∂u(c, h)

∂x

) .

Although we analyze the Pareto efficient allocations and their supporting (decentralizing)
prices, if the asset markets are complete, then our analysis is applicable to the equilibrium
allocations and asset prices. This is because the first welfare theorem holds in complete markets,
so that the equilibrium allocations are Pareto efficient and the equilibrium asset prices are
given by the corresponding support prices. Since the ui (·, z) are concave, the second welfare
theorem also holds, so that every Pareto efficient allocation is an equilibrium allocation for some
distribution of initial endowments. Hence an analysis of Pareto efficient allocations is also an
analysis of equilibrium allocations.

When the solution to the maximization problem (2) is an equilibrium allocation, the in-
dividual consumers’ wealth shares, evaluated by the equilibrium prices, determines the utility
weights λi in (2). All the properties we shall explore in the subsequent analysis are valid regard-
less of the choice of utility weights. Hence, these properties are also valid for the equilibrium
allocations regardless of wealth distributions.

3 General Formulas

We now present various formulas on the representative consumer’s risk attitudes and respon-
siveness to state variables.

3.1 Formulas in the existing literature

We start by presenting some of the formulas in the existing literature to give the idea of what
kind of formulas we aim at establishing in this paper. By Theorems 4 and 5 of Wilson (1968)
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to the ui(·, z) for each z ∈ Z, we obtain

s(x, z) =
∑

i

si(fi(x, z), z), (4)

∂fi

∂x
(x, z) =

si(fi(x, z), z)
s(x, z)

. (5)

By differentiating both sides of (4) with respect to x and applying (5), we obtain

∂s

∂x
(x, z) =

∑
i

∂fi

∂x
(x, z)

∂si

∂xi
(fi(x, z), z) =

∑
i

si (fi(x, z), z)
s(x, z)

∂si

∂xi
(fi(x, t), z) (6)

This shows that the representative consumer’s cautiousness is the weighted average of the in-
dividual consumers’ counterparts, where the weights are proportional to their absolute risk
tolerance.

Also, by Theorem 4 of Hara, Huang, and Kuzmics (2007),

∂2s

∂x2
(x, z) =

∑
i

(
si (fi(x, z), z)

s(x, z)

)2 ∂2si

∂ (xi)
2 (fi(x, z), z)

+
1

s(x, z)

∑
i

si(fi(x, z))
s(x, z)

(
∂si

∂xi
(fi(x, z), z) − ∂s

∂x
(x, z)

)2

.

To appreciate this formula, note first that by (5), the first term on the right-hand side can be
written as ∑

i

si (fi(x, z), z)
s(x, z)

(
∂2si

∂ (xi)
2 (fi(x, z), z)

∂fi

∂x
(x, z)

)

Here, the term
(
∂2si (fi(x, z), z) /∂ (xi)

2
)

(∂fi(x, z)/∂x) is the change in the cautiousness of
consumer i arising from the increase in his consumption level, which is, in turn, caused by an
increase in the aggregate consumption level. Thus the first term represents the direct effect on
the representative consumer’s cautiousness by an increase in aggregate consumption, hypothet-
ically taking the weights (∂si (fi(x, z), z) /∂xi) /s(x, z) as fixed. By (4), the second term on the
right-hand side is the weighted variance of the individual consumers’ cautiousness, divided by
the representative consumer’s absolute risk aversion. It can be shown that this term is equal to

∑
i

d

dx

(
si (fi(x, z))

s(x, z)

)
∂si

∂xi
(fi(x, z), z) .

Thus it represents the change in the representative consumer’s cautiousness arising from the
change in the weights (∂si (fi(x, z), z) /∂xi) /s(x, z), hypothetically taking the individual con-
sumers’ cautiousness ∂si (fi(x, z), z) /∂xi as fixed. It shows that this indirect effect on the
representative consumer’s cautiousness is proportionally related to the weighted variance of
the individual consumers’ cautiousness; and the subsequent analysis is an attempt to capture
this sort of indirect effects arising from heterogeneity. This formula therefore shows that the
heterogeneity in the individual consumers’ cautiousness increases the representative consumer’s
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cautiousness, thereby making his risk tolerance, as a function of aggregate consumption levels,
more convex.

3.2 Responsiveness to state variables

Our first proposition is concerned with the representative consumer’s responsiveness to state
variables and how the risk-sharing rules depend on state variables. They are analogous to
equality (10) of Wison (1968), Theorem 1 of Amershi and Stoeckenius (1983), and equality (10)
and Proposition 3 of Gollier and Zeckhauser (2005), who dealt with heterogeneous impatience.

Theorem 1 For every (x, z) ∈ R++ × Z,

∇zfi(x, z) = si(fi(x, z), z) (qi(fi(x, z), z) − q(x, z)) , (7)

q(x, z) =
∑

i

si(fi(x, z), z)
s(x, z)

qi(fi(x, z), z). (8)

(7) implies that if an individual consumer is more responsive to state variables than the rep-
resentative consumer, his consumption level would be higher the higher the value the state
variable takes. On the other hand, if he is less responsive to state variables than the represen-
tative consumer, his consumption level would be lower the higher the value the state variable
takes. Moreover, the change in his consumption levels per unit change of the state variable is
proportional to his absolute risk tolerance. The proportionality of the change with respect to
the risk tolerance is quite intuitive: Even when he is more responsive to state variables than the
representative consumer, if he were quite risk-averse (si (fi(x, z), z) being quite low), then his
consumption would not be much affected by the state variable, making

∣∣∂fi (x, z) /∂zℓ
∣∣ almost

zero for every ℓ.
(8) means that the representative consumer’s responsiveness is the weighted average of the

individual consumers’ counterparts where the weights are proportional to their absolute risk
tolerance. This is analogous to (6), which shows that the representative consumer’s cautiousness
is the weighted average of the individual consumers’ counterparts, with the same weights.

Proof of Theorem 1 The first-order condition for the maximization problem (2) is

λi
∂ui

∂xi
(fi(x, z), z) =

∂u

∂x
(x, z) (9)

for all i and (x, z) ∈ R++ × Z. By differentiating both sides with respect to zℓ, we obtain

λi

(
∂2ui

∂x2
i

(fi(x, z), z)
∂fi

∂zℓ
(x, z) +

∂2ui

∂zℓ∂xi
(fi(x, z), z)

)
=

∂2u

∂zℓ∂x
(x, z). (10)

By dividing both sides of (10) by those of (9), we obtain

∂fi

∂zℓ
(x, z) = si(fi(x, z), z)

(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)
. (11)
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This implies, in the vector notation, (7). Also, by adding both sides of (11) and using
∑

i

(
∂fi(x, z)/∂zℓ

)
=

0, we obtain

qℓ(x, z) =
∑

i

si(fi(x, z), z)
s(x, z)

qℓ
i (fi(x, z), z).

This implies, in the vector notation, (8). ///

3.3 Risk tolerance

We are interested in how the representative consumer’s risk tolerance and responsiveness to
state variables changes as the value that the state variables take varies, when the individual
consumers’ counterparts are heterogeneous.

The following theorem generalizes a formula presented in the proof of Theorem 3.3 of Mala-
mud and Trubowitz (2006), in a sense to be made precise later.

Theorem 2 For every ℓ and every (x, t) ∈ R++ × R+,

∂s

∂zℓ
(x, z) =

∑
i

∂si

∂zℓ
(fi(x, z), z)

+ s(x, z)
∑

i

si(fi(x, z))
s(x, z)

(
∂si

∂xi
(fi(x, z), z) − ∂s

∂x
(x, z)

) (
qℓ
i (fi(x, z)) − qℓ(x, z)

)
.

(12)

This theorem tells us that the change in the representative consumer’s risk tolerance in response
to a change in state variables can be decomposed into two terms. The first term is easy to grasp.
As shown by (4), the representative consumer’s risk tolerance is the sum of the individual
consumers’ counterparts. Thus the first term represents the direct effect on risk tolerance by
the change in state variables. It is equal to zero when all individual consumers’ felicity functions
ui are multiplicatively separable.

By (6) and (8), the second term of (12) is equal to the weighted covariance, multiplied by
the representative consumer’s risk tolerance, between the individual consumers’ cautiousness
and responsiveness to state variables, where the weights are proportional to the individual con-
sumers’ risk tolerance. Since the second term would be zero if all consumers’ cautiousness or
responsiveness are equal to one another, it captures the tendency of changes in the represen-
tative consumer’s risk tolerance that arise from the heterogeneity in the individual consumers’
cautiousness and responsiveness.

Proof of Theorem 2 By differentiating both sides of (4) with respect to zℓ, we obtain

∂s

∂zℓ
(x, z) =

∑
i

(
∂si

∂xi
(fi(x, z), )

∂fi

∂zℓ
(x, z) +

∂si

∂zℓ
(fi(x, z), z)

)
=

∑
i

∂si

∂zℓ
(fi(x, z), z) +

∑
i

∂si

∂xi
(fi(x, z), z)si(fi(x, z), z)

(
qℓ
i (fi(x, t)) − qℓ(x, t)

)
,

(13)
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where the last equality follows from (11). Since∑
i

si(fi(x, z), z)
(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)
= 0,

the second term of (13) can be written as

∑
i

(
∂si

∂xi
(fi(x, z), z) − ∂s

∂x
(x, z)

)
si(fi(x, z), z)

(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)
.

This is equal to the second term of the right-hand side of (12). ///

Corollary 1 Suppose that ui is multiplicatively separable for every i. Then

∂s(x, z)/∂zℓ

s(x, z)
=

∑
i

si(fi(x))
s(x, z)

(
s′i(fi(x, z)) − ∂s

∂x
(x, z)

) (
qℓ
i (z) − qℓ(x, z)

)
for every ℓ and every (x, t) ∈ R++ × R+. Moreover,

1. If (s′1(f1(x, z)), . . . , s′I(fI(x, z))) and
(
qℓ
1(z), . . . , qℓ

I(z)
)

are comonotone (that is,(
s′i(fi(x, z)) − s′j(fj(x, z))

)(
qℓ
i (z) − qℓ

j(z)
)
≥ 0 for every pair of consumers i and j), then

∂s(x, z)/∂zℓ ≤ 0. This weak inequality holds as an equality if and only if s′1(f1(x, z)) =
· · · = s′I(fI(x, z)) or qℓ

1(z) = · · · = qℓ
I(z).

2. If (s′1(f1(x, z)), . . . , s′I(fI(x, z))) and
(
qℓ
1(z), . . . , qℓ

I(z)
)

are anti-comonotone (that is,(
s′i(fi(x, z)) − s′j(fj(x, z))

)(
qℓ
i (z) − qℓ

j(z)
)
≤ 0 for every pair of consumers i and j), then

∂s(x, z)/∂zℓ ≤ 0. This weak inequality holds as an equality if and only if s′1(f1(x, z)) =
· · · = s′I(fI(x, z)) or qℓ

1(z) = · · · = qℓ
I(z).

This corollary (and also subsequent results) can be best understood by considering the case
where L = 1, Z = R+, and for every i, there exist a γi > 0 and an ηi ∈ R such that si(xi) = γi

for every xi and qi(z) = ηi for every z. In this case, the felicity functions can be written as
ui(xi, z) = p(z)vi(xi), where

vi(xi) =
x

1/γi

i

1 − 1/γi
and pi(z) = exp(ηiz).

That is, vi exhibits constant relative risk aversion and the multiplier pi depends exponentially
on the state variable z. The advantage of this case is that the (anti-)comonotonicity condition
in Corollary 1 can be checked without knowing (x, z) or the fi. Also, this case best illustrates
the fact that it is implausible to impose multiplicative separability on the representative con-
sumer’s felicity function. Even if each individual consumer’s felicity function is multiplicatively
separable, the representative consumer’s need not, depending on how the cautiousness and re-
sponsiveness are correlated with each other. In particular, if they are (anti-)comonotonically
related, then it cannot be multiplicatively separable. As we will see later, this fact has an

10



important implication on when the representative consumer’s utility function can be written in
the expected utility form.

3.4 Derivatives of the responsiveness

We turn our attention to how the representative consumer’s responsiveness to state variables is
affected by the change in aggregate consumption levels or in state variables.

Theorem 3 For every ℓ and (x, z) ∈ R++ × Z,

∂qℓ

∂x
(x, z) =

∑
i

(
si (fi(x, z), z)

s(x, z)

)2 ∂qℓ
i

∂xi
(fi(x, z), z)

+
1

s(x, z)

∑
i

si(fi(x, z))
s(x, z)

(
∂si

∂xi
(fi(x, z), z) − ∂s

∂x
(x, z)

) (
qℓ
i (fi(x, z)) − qℓ(x, z)

)
.

(14)

Just as Theorem 2, this theorem tells us that the change in the representative consumer’s
impatience can be decomposed into two terms. The first term is easy to grasp. By (5), the first
term can be rewritten as

∑
i

si (fi(x, z), z)
s(x, z)

(
∂qℓ

i

∂xi
(fi(x, z), z)

∂fi

∂x
(x, z)

)

Here, the term (∂qi (fi(x, z), z) /∂xi) (∂fi(x, z)/∂x) is the change in the responsiveness of con-
sumer i arising from the increase in his consumption level, which, in turn, caused by an increase
in the aggregate consumption level. Thus the first term represents the direct effect on the rep-
resentative consumer’s responsiveness by the change in aggregate consumption. It is equal to
zero when all individual consumers’ felicity functions ui are multiplicatively separable.

The second term is equal to the weighted covariance, divided by the representative con-
sumer’s risk tolerance, between the individual consumers’ cautiousness and responsiveness,
where the weights are proportional to the individual consumers’ risk tolerance. Since the second
term would be zero if all consumers’ cautiousness or responsiveness are equal to one another,
it captures the tendency of changes in the representative consumer’s responsiveness that arise
from the heterogeneity in the individual consumers’ cautiousness and responsiveness.

Proof of Theorem 3 By (8),

s(x, z)qℓ(x, z) =
∑

i

si(fi(x, z), z)qℓ
i (fi(x, z), z). (15)

11



By differentiate both sides of (15) with respect to x, we obtain

∂s

∂x
(x, z)qℓ(x, z) + s(x, z)

∂qℓ

∂x
(x, z)

=
∑

i

(
∂si

∂xi
(fi(x, z), z)

∂fi

∂x
(x, z)qℓ

i (fi(x, z), z) + si (fi(x, z), z)
∂qℓ

i

∂xi
(fi(x, z), z)

∂fi

∂x
(x, z)

)
.

Thus

∂qℓ

∂x
(x, z) =

1
s(x, z)

∑
i

si (fi(x, z), z)
∂qℓ

i

∂xi
(fi(x, z), z)

∂fi

∂x
(x, z)

+
1

s(x, z)

(∑
i

∂si

∂xi
(fi(x, z), z)

∂fi

∂x
(x, z)qℓ

i (fi(x, z), z) − ∂s

∂x
(x, z)qℓ(x, z)

)

=
∑

i

(
si (fi(x, z), z)

s(x, z)

)2 ∂qℓ
i

∂xi
(fi(x, z), z)

+
1

s(x, z)

(∑
i

si (fi(x, z), z)
s(x, z)

∂si

∂xi
(fi(x, z), z)qℓ

i (fi(x, z), z) − ∂s

∂x
(x, z)qℓ(x, z)

)
,

where the last equality follows from (5). By (4), (6), and (8),

∑
i

si (fi(x, z), z)
s(x, z)

∂si

∂xi
(fi(x, z), z)qℓ

i (fi(x, z), z) − ∂s

∂x
(x, z)qℓ(x, z)

=
∑

i

si(fi(x, z))
s(x, z)

(
∂si

∂xi
(fi(x, z), z) − ∂s

∂x
(x, z)

) (
qℓ
i (fi(x, z)) − qℓ(x, z)

)
.

The proof is thus completed. ///

If all the ui are multiplicatively separable, then

∂qℓ

∂x
(x, z) =

1
s(x, z)

∑
i

si(fi(x))
s(x, z)

(
s′i(fi(x, z)) − ∂s

∂x
(x, z)

) (
qℓ
i (z) − qℓ(x, z)

)
(16)

for every ℓ and (x, z) ∈ R++ × Z. Just as Corollary 1, this shows that the representative
consumer’s utility function is unlikely to be multiplicatively separable even the individual coun-
terparts are, unless their cautiousness and responsiveness has exactly zero covariance.

We next give a formula for ∂qℓ(x, z)/∂zk, which shows how the representative consumer’s
responsiveness to one state variable zℓ is affected by a change in another state variable zk.
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Theorem 4 For all ℓ, k, and (x, z) ∈ R++ × R+,

∂qℓ

∂zk
(x, z)

=
∑

i

si(fi(x, z), z)
s(x, z)

∂qℓ
i

∂zk
(fi(x, z), z)

+
∑

i

si(fi(x, z), z)
s(x, z)

∂si

∂xi
(fi(x, z), z)

(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)(
qk
i (fi(x, z), z) − qk(x, z)

)
+

∑
i

(si(fi(x, z), z))2

s(x, z)
∂qℓ

i

∂xi
(fi(x, z), z)

(
qk
i (fi(x, z), z) − qk(x, z)

)

+
∑

i

∂si

∂zk
(fi(x, z), z)

s(x, z)

(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)
. (17)

This theorem tells us that the changes in the representative consumer’s responsiveness to
state variables can be decomposed into four terms. The first term is easy to grasp. As shown by
(8), the representative consumer’s responsiveness is equal to the weighted average of the individ-
ual consumers’ counterparts, where the weights are proportional to their risk tolerance. Thus
the first term represents the direct effect, by the change in state variables, on the representative
consumer’s responsiveness, while the weights are hypothetically fixed.

The third and fourth terms represent the change in the representative consumer’s respon-
siveness caused by the impact on the individual consumers’ responsiveness by the change in
consumption levels and the impact on the individual consumers’ risk tolerance by state vari-
ables. These terms are equal to zero if all consumers’ felicity functions are multiplicatively
separable.

The second term is most interesting. It represents the impact on the representative con-
sumer’s responsiveness when the individual consumers have differing responsiveness. As men-
tioned above, the representative consumer’s responsiveness is equal to the weighted average of
the individual consumers’ counterparts, and the weights are proportional to their risk toler-
ance. If their responsiveness is different, then the risk-sharing rules fi would depend on the
state variable zk; that is, the partial derivative ∂fi(x, z)/∂zk would be different from zero.
Unless the cautiousness, ∂si(fi(x, z), z)/∂xi, is zero (which would be the case if ui exhibited
constant absolute, rather than relative, risk aversion), the change in consumption levels has an
impact on the individual consumers’ risk tolerance, and thus on the representative consumer’s
responsiveness, which is the weighted average of the individual consumers’ responsiveness, with
the weights given by their risk tolerance. The second term, therefore, captures the change in
the representative consumer’s responsiveness arising from the heterogeneity in the individual
consumers’ responsiveness.

13



Proof of Theorem 4 By (8) and differentiation for a product,

∂qℓ

∂zk
(x, z) =

∑
i

d

dzk

(
si(fi(x, z), z)

s(x, z)

)
qℓ
i (fi(x, z), z) +

∑
i

si(fi(x, z), z)
s(x, z)

d

dzk

(
qℓ
i (fi(x, z), z)

)
.

(18)
By (7),

d

dzk

(
si(fi(x, z), z)

s(x, z)

)

=

∂si

∂xi
(fi(x, z), z)

s(x, z)
∂fi

∂zk
(x, z) +

∂si

∂zk
(fi(x, z), z)

s(x, z)
− si(fi(x, z), z)

(s(x, z))2
∂s

∂zk
(x, z)

=
si(fi(x, z), z)

s(x, z)

 ∂si

∂zk
(fi(x, z), z)

si(fi(x, z), z)
−

∂s

∂zk
(x, z)

s(x, z)
+

∂si

∂xi
(fi(x, z), z)

(
qk
i (fi(x, z), z) − qk(x, z)

) .

By (4), ∑
i

d

dzk

(
si(fi(x, z), z)

s(x, z)

)
= 0.

Thus,

∑
i

d

dzk

(
si(fi(x, z), z)

s(x, z)

)
qℓ
i (fi(x, z), z)

=
∑

i

d

dzk

(
si(fi(x, z), z)

s(x, z)

) (
qℓ
i (fi(x, z), z) − qℓ(x, z)

)
=

∑
i

si(fi(x, z), z)
s(x, z)

∂si

∂xi
(fi(x, z), z)

(
qk
i (fi(x, z), z) − qk(x, z)

)(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)

+
∑

i

si(fi(x, z), z)
s(x, z)

 ∂si

∂zk
(fi(x, z), z)

si(fi(x, z), z)
−

∂s

∂zk
(x, z)

s(x, z)

(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)

=
∑

i

si(fi(x, z), z)
s(x, z)

∂si

∂xi
(fi(x, z), z)

(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)(
qk
i (fi(x, z), z) − qk(x, z)

)

+
∑

i

∂si

∂zk
(fi(x, z), z)

s(x, z)

(
qℓ
i (fi(x, z), z) − qℓ(x, z)

)
, (19)

where we used (8) to obtain the second term on the far right hand side.
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Again by (7),

d

dzk

(
qℓ
i (fi(x, z), z)

)
=

∂qℓ
i

∂xi
(fi(x, z), z)

∂fi

∂zk
(x, z) +

∂qℓ
i

∂zk
(fi(x, z), z)

=
∂qℓ

i

∂xi
(fi(x, z), z) si (fi(x, z), z)

(
qk
i (fi(x, z), z) − qk(x, z)

)
+

∂qℓ
i

∂zk
(fi(x, z), z) .

Hence,

∑
i

si(fi(x, z), z)
s(x, z)

d

dzk

(
qℓ
i (fi(x, z), z)

)
=

∑
i

si(fi(x, z), z)
s(x, z)

∂qℓ
i

∂zk
(fi(x, z), z)

+
∑

i

si(fi(x, z), z)
s(x, z)

∂qℓ
i

∂xi
(fi(x, z), z) si (fi(x, z), z)

(
qk
i (fi(x, z), z) − qk(x, z)

)
. (20)

Thus, by (29), (19), and (20), we obtain (17). ///

The right-hand side of (17) in Theorem 4 can be much simplified if we concentrate on
the case of multiplicatively separable felicity functions. Moreover, it is much more illustrative
to represent the resultant equalities in the matrix notation. We regard qi(xi) and q(x, z) as
L-dimensional column vectors and define the partial Jacobian matrix Dzq(x, z) by

Dzq(x, z) =


∂q1

∂z1
(x, z) · · · ∂q1

∂zL
(x, z)

...
. . .

...
∂qL

∂z1
(x, z) · · · ∂qL

∂zL
(x, z)

 ∈ RL×L,

and similarly Dqi(z) ∈ RL×L.
The following corollary follows from Theorem 4 and (8)

Corollary 2 Suppose that ui is multiplicatively separable for every i. Then

∂qℓ

∂zk
(x, z) =

∑
i

si(fi(x, z))
s(x, z)

∂qℓ
i

∂zk
(z)

+
∑

i

si(fi(x, z))
s(x, z)

s′i(fi(x, z))
(
qℓ
i (z) − qℓ(x, z)

)(
qk
i (z) − qk(x, z)

)
for all ℓ, k, and (x, z) ∈ R++ × Z. In the matrix notation,

Dzq(x, z) =
∑

i

si(fi(x, z))
s(x, z)

Dqi(z)+
∑

i

si(fi(x, z))
s(x, z)

s′i(fi(x, z)) (qi(z) − q(x, z)) (qi(z) − q(x, z))⊤ .

(21)
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The formula (21) is rich in qualitative implications, as the following corollary shows.

Corollary 3 Suppose that ui is multiplicatively separable for every i.

1. If s′i(fi(x, z)) ≥ 0 for every i, then

Dzq(x, z) −
∑

i

si(fi(x, z))
s(x, z)

Dqi(z) (22)

is positive semi-definite. If s′i(fi(x, z)) > 0 for every i and there is no hyperplane of RL

that contains all the qi(z), then it is positive definite.

2. If s′i(fi(x, z)) ≤ 0 for every i, then (22) is negative semi-definite. If s′i(fi(x, z)) < 0 for
every i and there is no hyperplane of RL that contains all the qi(z), then it is negative
definite.

3. If Dqi(z) is positive semi-definite and s′i(fi(x, z)) ≥ 0 for every i, then Dzq(x, z) is pos-
itive semi-definite. It is positive definite if Dqi(z) is positive definite for some i, or if
s′i(fi(x, z)) > 0 for every i and there is no hyperplane of RL that contains all the qi(z).

4. If Dqi(z) is negative semi-definite and s′i(fi(x, z)) ≤ 0 for every i, then Dzq(x, z) is
negative semi-definite. It is negative definite if Dqi(z) is negative definite for some i, or
if s′i(fi(x, z)) < 0 for every i and there is no hyperplane of RL that contains all the qi(z).

Part 1 of Corollary 3 establishes an impact of the individual consumers’ heterogeneous
responsiveness on the representative consumer’s responsiveness. To see this, recall that by
(8), the representative consumer’s responsiveness is equal to the weighted average of the indi-
vidual consumers’ counterparts, where the weights si(fi(x, z))/s(x, z) are proportional to risk
tolerance. Then, by (21), (22) is the difference between the derivative of the representative
consumer’s responsiveness and the “fictitious” derivative of his responsiveness when the weights
are hypothetically fixed. It is equal to zero if and only if the responsiveness is identical across
consumers, that is, q1(z) = · · · = qI(z). Thus, (22) represents the bias in the estimation of the
derivatives of the representative consumer’s responsiveness, Dzq(x, z), when the heterogeneity
in the individual consumers’ responsiveness is erroneously ignored.

In the appendix, we show that if s′i(fi(x, z)) ≥ 0 for every i, then this impact on the
representative consumer’s responsiveness can be formalized as a convexifying effect. Specifically,
we show that if we construct a fictitious economy consisting of consumers having the same risk
tolerance as the true one (represented by the si) but different responsiveness from the true
ones (represented by the qi) in such a way that the heterogeneity in the individual consumers’
responsiveness is absent, then the logarithmic transformation of the marginal utility function of
the (true) representative consumer is more convex than the fictitious representative consumer’s
counterpart, and the difference between the Hessian matrices of these two is equal to (22), which
is positive semi-definite.
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4 Applications

The argument in the preceding sections are fairly general. We shall now discuss how the results
in the general argument can be applied to more specific settings. We will see that many results
in the existing literature can be derived from our results.

4.1 Heterogeneous beliefs

Suppose now that for each i = 1, . . . , I, consumer i has a subjective probability measure Pi

on (Ω,F ) and a state-independent felicity function vi : R++ → R. His utility function Ui is
defined as the expected utility function

Ui(ci) =
∫

Ω
vi(ci(ω)) dPi(ω),

where ci : Ω → R++.
We impose two conditions on the Pi. First, for every i, Pi and P are mutually absolutely

continuous. Let dPi/dP : Ω → R++ be its Radon-Nikodym derivative. Second, there are
a positive integer L, an open subset Z of RL, a measurable mapping h : Ω → Z, and, for
each i, a twice continuously differentiable function pi : Z → R++ such that Pi/dP = pi ◦ h.
This assumption means roughly that although the subjective probabilistic belief of consumer i

may be different from the objective (natural or physical) probability measure P , the likelihood
ratio for any given state between the two is a function of finite-dimensional state variables; and
the dependence can be made twice continuously differentiable. Define ui : R++ × Z → R by
ui(xi, z) = pi(z)vi(xi). Then

Ui(ci) =
∫

Ω
vi(ci(ω))

dPi

dP
(ω) dP (ω) =

∫
Ω

vi(ci(ω))pi(h(ω)) dP (ω) =
∫

Ω
ui(ci(ω), h(ω)) dP (ω).

This shows that the expected utility function generated by a felicity function vi and a subjective
probabilistic belief Pi satisfies the assumptions for the state-contingent utility function ui stated
in Section 2.

For these ui and λi, solve the simplified maximization problem (3), denote the solution by
(f1(x, z), . . . , fI(x, z)), and define the value function by u(x, z) =

∑
i λiui(fi(x, z)). This is

the representative consumer’s felicity function, and his overall utility function U is defined by
U(c) = E (u(c, h)). In general, u is not multiplicatively separable and, as has been studied by
Wilson (1968), there is may not be any probability measure on (Ω, F ) with respect to which U

can be written in the form of expected utility. However, following Gollier (2007), we define his
probabilistic belief via its Radon-Nikodym derivative, which in general depends on the aggregate
consumption level x.

Specifically, assume that ω 7→ ∂u(x, h(ω))/∂x is P -integrable for every x.5 Define p :
5We will later see that this assumption is irrelevant, because we will only be interested in the percentage

change in probabilities caused by a change in state variables, and any constant multiple has no effect on the value
of any percentage change. Moreover, the following definition of p involves h, but, as far as the percentage change
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R++ × Z → R++ by

p(x, z) =

∂u

∂x
(x, z)

E

(
∂u

∂x
(x, h)

)
If u were multiplicatively separable, so that u(x, z) = p̂(z)v(x) for some functions v and p̂ with
E(p̂(h)) = 1, then

p(x, z) =
p̂(z)v′(x)

E(p̂(h))v′(x)
= p̂(z).

Thus p(x, ·) = p̂ for every x. Therefore, p (or, more precisely, p(x, h(·))) is a natural generaliza-
tion of the Radon-Nikodym derivative of the representative consumer’s subjective probabilistic
belief. Since multiplying a positive constant does not affect q,

q(x, z) =
1

p(x, z)
∇zp(x, z), that is, qℓ(x, z) =

∂p

∂zℓ
(x, z)

p(x, z)
=

d

dzℓ
(ln p(x, z)) . (23)

Hence qℓ(x, z) is the percentage change in the likelihood ratio of the representative consumer’s
subjective probability relative to the objective probability due to a unit change in the ℓ-th state
variable zℓ, when the aggregate consumption level is x. Similarly, qℓ

i (z) is the percentage change
in the likelihood ratio of consumer i’s subjective probability relative to the objective probability
due to a unit change in zℓ.

We shall now apply the results in Section 3 to obtain some results regarding the represen-
tative consumer’s probabilistic belief. First, by (23) and an analogous equality for each qi(z),
(8) can be rewritten as

∂p

∂zℓ
(x, z)

p(x, z)
=

∑
i

si(fi(x, z))
s(x, z)

∂pi

∂zℓ
(z)

pi(z)
(24)

for every ℓ and (x, z). That is, the percentage change in the likelihood ratio of the representative
consumer’s subjective probability relative to the objective probability due to a unit change in
a state variable is equal to the weighted average of the individual consumers’ counterparts,
where the weights are proportional to their risk tolerance. (24) implies (8) in Proposition 3 of
Gollier (2007). In particular, the percentage change in the likelihood ratio of the representative
consumer’s subjective probability is more biased towards those of more risk-tolerant consumers.
Note however that (24) does not claim that the likelihood ratio of the representative consumer’s
subjective probability relative to the objective probability is equal to the weighted average of
the individual consumers’ counterparts, with the weights proportional to risk tolerance, which
would be expressed as

p(x, z) =
∑

i

si(fi(x, z))
s(x, z)

pi(z). (25)

This equality, in general, does not hold. One of the reasons for this is that if we define p̂ :

is concerned, it does not matter.
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R++ × Z → R++ by

p̂(x, z) =
∑

i

si(fi(x, z))
s(x, z)

pi(z), (26)

then its expected value E (p̂(x, h)) need not be equal to one. But this is not an essential cause
for discrepancy between p(x, z) and p̂(x, z), because we can divide p̂ by a positive constant
(E (p̂(x, h)) without affecting affecting its responsiveness

q̂(x, z) =
1

p̂(x, z)
∇p̂(x, z), (27)

and a discrepancy may well remain between q(x, z) and q̂(x, z). The following proposition shows
that this discrepancy is related to the correlation between the pi(z) and the qi(z).

Proposition 1 Suppose that ui is multiplicatively separable for every i. If we define p̂ : R++×
Z → R++ by (26) and q̂ : R++ × Z → RL by (27), then, for every ℓ,

q̂ℓ(x, z)− qℓ(x, z) =
1

p̂(x, z)

∑
i

si(fi(x, z))
s(x, z)

(
s′i (fi(x, z)) + 1

)
(pi(z) − p̂(x, z))

(
qℓ
i (z) − qℓ(x, z)

)
.

(28)

Proof of Proposition 1 By (26) and differentiation for a product,

∂p̂

∂zℓ
(x, z) =

∑
i

d

dzℓ

(
si(fi(x, z), z)

s(x, z)

)
pi (z) +

∑
i

si(fi(x, z), z)
s(x, z)

∂pi

∂zℓ
(z) . (29)

By (7),

d

dzℓ

(
si(fi(x, z))

s(x, z)

)
=

s′i(fi(x, z))
s(x, z)

∂fi

∂zℓ
(x, z) − si(fi(x, z))

(s(x, z))2
∂s

∂zℓ
(x, z)

=
si(fi(x, z))

s(x, z)

s′i(fi(x, z))
(
qℓ
i (fi(x, z)) − qℓ(x, z)

)
−

∂s

∂zℓ
(x, z)

s(x, z)

 .

By (4), ∑
i

d

dzℓ

(
si(fi(x, z))

s(x, z)

)
= 0.
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Thus, by (26),

∑
i

d

dzℓ

(
si(fi(x, z))

s(x, z)

)
pi (z)

=
∑

i

d

dzℓ

(
si(fi(x, z))

s(x, z)

)
(pi (z) − p̂(x, z))

=
∑

i

si(fi(x, z))
s(x, z)

s′i(fi(x, z))
(
qℓ
i (z) − qℓ(x, z)

)
(pi (z) − p̂(x, z))

−
∑

i

si(fi(x, z))
s(x, z)

∂s

∂zk
(x, z)

s(x, z)
(pi (z) − p̂(x, z))

=
∑

i

si(fi(x, z))
s(x, z)

s′i(fi(x, z)) (pi (z) − p̂(x, z))
(
qℓ
i (z) − qℓ(x, z)

)
. (30)

On the other hand, since ∂pi(z)/∂zℓ = pi(z)qℓ
i (z),

1
p̂(x, z)

∑
i

si(fi(x, z))
s(x, z)

∂pi

∂zℓ
(z) − qℓ(x, z)

=
1

p̂(x, z)

∑
i

si(fi(x, z))
s(x, z)

(
pi(z)qℓ

i (z) − p̂(x, z)qℓ(x, z)
)

=
1

p̂(x, z)

∑
i

si(fi(x, z))
s(x, z)

(pi (z) − p̂(z))
(
qℓ
i (z) − qℓ(x, z)

)
. (31)

Thus, by (29), (30), and (31), we obtain (28). ///

The following example shows that in a two-consumer economy, when the two consumers
have constant and equal relative risk aversion and the beliefs are given by gamma distributions,
then the representative consumer’s belief predicted by p̂ puts higher probabilities on upper or
lower tails than the true representative consumer’s belief.

Example 1 Let Ω = Z = R++, F = B(R++), h(ω) = ω for every ω, and P follow the gamma
distribution with parameters (κ, θ), so that its density function (Radon-Nikodym derivative
with respect to the Lebesgue measure) is

θκ

Γ(κ)
zκ−1 exp(−θz).

Note that this is the exponential distribution with parameter θ if κ = 1. Let I = 2 and both
consumers have constant and equal relative risk aversion β. As for their beliefs, Pi follows
the gamma distribution with parameters (κ, θi), where θ1 < θ2. Note that the parameter κ is
common across P , P1, and P2.

Then

pi(z) =
(

θi

θ0

)κ

exp(−(θi − θ0)z) and qi(z) = −(θi − θ0).
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The right-hand side of (28) is equal to6

1 + 1/β

p̂(x, z)

∑
i

si(fi(x, z))
s(x, z)

(pi(z) − p̂(x, z)) (qi(z) − q(x, z)) .

Thus q̂(x, z) − q(x, z) R 0 if and only if p1(z) R p2(z), which is equivalent to

z R κ
ln θ2 − ln θ1

θ2 − θ1
.

Denote the right-hand side by z∗. Then

q̂(x, z) − q(x, z)


<

=
>

 0 if z


<

=
>

 z∗. (32)

We shall now explore an implication of (32) on the discrepancy between p and p̂. Recall first
that E (p(x, h)) = 1. Let P0 be the probability measure on R++ such that dP0/dP = p(x, h).
By dividing p̂(x, ·) by E (p̂(x, h)), we can assume that E (p̂(x, h)) = 1. Then∫

R++

p̂(x, h(ω))
p(x, h(ω))

dP0(ω) =
∫

R++

p̂(x, h(ω))
p(x, h(ω))

p(x, h(ω)) dP (ω) =
∫

R++

p̂(x, h(ω)) dP (ω) = 1.

Since
q̂(x, z) − q(x, z) =

d

dz

(
ln

p̂(x, z)
p(x, z)

)
,

(32) implies that the likelihood ratio p̂(x, z)/p(x, z) is a strictly decreasing function of z on
(0, z∗), is a strictly increasing function of z on (z∗,∞), and attains its unique minimum at z∗.
Thus, p̂ puts more probabilities on at least one of the upper and lower tails than p.

Remark 1 The quadratic utility functions, v(x) = (−1/2) (x − d)2 with a constant d, have
been used in the Capital Asset Pricing Model. These functions do not conform to the setting of
this paper, because v′(x) < 0 for every x > d and the Inada condition is not satisfied on R++.
However, if we take the open interval (−∞, d), which is bounded from above but not bounded
from below, as the domain of v, then v′′(x) < 0 < v′(x) for every x ∈ (−∞, d) and the Inada
condition is satisfied, that is, v′ (x) → 0 as x → d and v′ (x) → ∞ as x → −∞. Moreover, let
s : (−∞, d) be its risk tolerance, then s(x) = d − x and hence s′(x) = −1 for every x. Hence v

exhibits increasing absolute risk aversion and its cautiousness is constantly equal to zero. We
shall now prove, as suggested by (28), that if every consumer has a quadratic utility function,
then p and p̂ coincide with each other up to a scalar multiplication.

Indeed, let ui : (−∞, di) × Z → R be the felicity function of consumer i, where ui(xi, z) =
6Given the constant and equal relative risk aversion β, it can be shown that neither p(x, z) nor p̂(x, z) depends

on x. Thus, we could write p(z) for p(x, z), p̂(z) for p̂(x, z), q(z) for q(x, z), q̂(z) for q̂(x, z), and s(x) for s(x, z).
In particular, the representative consumer’s felicity function u is multiplicatively separable and his overall utility
function Ui can be written in the expected-utility form.
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pi(z)vi(xi) and vi(xi) = (−1/2) (xi − di)
2. For the maximization problem (3) with these felicity

functions, we can define the representative consumer’s utility function u : (−∞, d) × Z → R,
where d =

∑
di. It can be easily shown that

u(x, z) =
1∑

i

(λipi(z))−1

(
−1

2

)
(d − x)2.

Thus, the representative consumer also has a multiplicatively separable, quadratic utility func-
tion and we can take

p(z) =
1∑

i

(λipi(z))−1
.

Moreover, the efficient risk-sharing rules f1, . . . , fI are given by

di − fi(x, z) =
(λipi(z))−1∑

j

(λjpj(z))−1
(x, z).

Thus
si(fi(x, z))

s(x)
=

(λipi(z))−1∑
j

(λjpj(z))−1
.

Hence

p̂(z) =
∑

i

(λipi(z))−1∑
j

(λjpj(z))−1
pi(z) =

(∑
i

λ−1
i

)
p(z).

Therefore, p and p̂ coincide with each other up to scalar multiplication, and q and q̂ coincide
with each other.

Next, we show, within the same parametric family as Example 1, if we ignore the hetero-
geneity in belief, then we underestimate the fatness of the upper and lower tails of the density
function of the representative consumer’s belief, and hence the prices of the call and put options
written on the aggregate consumption.

Example 2 Let Ω = Z = R++, F = B(R++), h(ω) = ω for every ω, and P follow the gamma
distribution with parameters (κ, θ), so that its density function (Radon-Nikodym derivative
with respect to the Lebesgue measure) is

θκ

Γ(κ)
ωκ−1 exp(−θz).

Note that this is the exponential distribution with parameter θ if κ = 1. All consumers have
constant and equal relative risk aversion β. Assume that β < κ. As for their beliefs, Pi follows
the gamma distribution with parameters (κ, θi). Note that the parameter κ is common across
P and the Pi, but θi need not. The Radon-Nikodym derivative of Pi with respect to P is given
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by

pi(ω) =
(

θi

θ0

)κ

exp(−(θi − θ0)ω) and hence qi(ω) = −(θi − θ0).

for every i and ω. Assume that the θi are not completely equal. Then, by (21), ∂q(x, ω)/∂ω > 0
for every ω.

Since s′i(x
i) = 1/β for every i and xi, ∂q(x, ω)/∂x = 0 by (16). Hence u is also multi-

plicatively separable. Moreover, although the proof is omitted here, it is possible to show that
u also exhibits constant relative risk aversion β. We can thus write u(x, ω) = p(ω)v(x), with
s′(x) = 1/β for every x and q′(ω) > 0 for every ω.

The aggregate consumption is given by c : Ω → R++ such that c(ω) = ω. Thus the hetero-
geneous probabilistic beliefs can all be interpreted as those regarding the aggregate consumption
levels. We assume that both E (pv′(c)) and E (pv′(c)c) are finite.

Let’s now imagine that a modeler erroneously assumed that all consumers have the same
belief, which is given by the Gamma distribution with parameters (κ, θ̂), where

θ̂ =
E (pv′(c))
E (pv′(c)c)

(κ − β). (33)

Thus, the representative consumer’s belief is also given by the Gamma distribution with pa-
rameters (κ, θ̂). The fictitious representative consumer’s utility function û is given by û(x, ω) =
p̂(ω)v(x), where q̂(ω) = p̂′(ω)/p(ω) = −(θ̂ − θ0).

Define π : Ω → R++ and π̂ : Ω → R++ by

π(ω) =
p(ω)v′(c(ω))
E (pv′(c))

and π̂(ω) =
p̂(ω)v′(c(ω))
E (p̂v′(c))

.

Then π and π̂ are the state-price deflators, with the risk-free bond being the numeraire, when
the representative consumer has the subjective probability densities p and p̂, respectively.7 In
fact, E(π) = E(π̂) = 1. Note that p(ω)/p̂(ω) = π(ω)/π̂(ω) for every ω. It can be derived from
(33) that E(πc) = E(π̂c), that is, π and π̂ give the same price for the aggregate consumption c.

By this property and q′(ω) > 0 = q̂′(ω), we can show that p(ω)/p̂(ω) is a strictly convex
function of ω, taking value 1 at exactly two points in Ω. This means that the density p, which
correctly recognizes the heterogeneity in beliefs, is more dispersed (puts higher probabilities
on both upper and lower tails) than the density p̂, which incorrectly ignores the heterogeneity
in beliefs. Following the argument of Proposition 1 of Franke, Stapleton, and Subrahmanyam
(1999), we can derive from this fact that E(π̂d) < E(πd) for every convex and nonlinear
d : R++ → R. This means that any derivative asset, whose payoff is a convex and nonlinear
function of the aggregate consumption, is underpriced if the heterogeneity in beliefs is ignored.
In particular, since both call and put options have convex and nonlinear payoffs, the option
prices are underestimated by erroneously assuming homogeneous beliefs.

7In other words, for each d : Ω → R, E(πd) and E(π̂d) are the prices for the forward contract promising to
deliver d.
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4.2 Heterogeneous impatience

Although we assumed in Section 2 that there is only one consumption period, the present
formulation of state-dependent utilities can accommodate utility functions in a continuous-time
setting. In this subsection, we show how this can be done by following Hara (2006).

Let R+ = [0,∞) be the time span and F = (Ft)t∈R+
be a filtration, describing the way

in which the information on Ω is gradually revealed. Let K be the set of all R++-valued
progressively measurable stochastic processes, that is, the set of those c = (ct)t∈R+ such that
the restriction of c on Ω × [0, t] is (Ft ⊗ B ([0, t]))-measurable for every t ∈ R+. Denote by η

the Lebesgue measure on R+.
We assume that each consumer i has a utility function Ui over consumption processes in K

of the form E

(∫
R+

exp(−ρit)vi(ci
t) dη(t)

)
, where ρi is a strictly positive number representing

his impatience, vi : R++ → R be a felicity function satisfying the assumptions in Section 2,
and ci =

(
ci
t

)
t∈R+

.8

We now show how this class of utility function can be written in the form (1) of state-
dependent utilities in Section 2. Let M be the set of all subsets M of Ω × R+ such that
M ∩ (Ω × [0, T ]) ∈ Ft ⊗ B ([0, t]) for every t ∈ R+. Then M is a σ-field of Ω × R+ and K

coincides with the set of all R++-valued M -measurable stochastic processes. For each ρ > 0,
denote by ηρ be the probability measure on R+ following the exponential distribution with
parameter ρ, that is, its density function is given by t 7→ ρ exp(−ρt). Then the product measure
space (Ω × R+, M , P ⊗ ηρ) is a probability measure space. Then, by Fubini’s Theorem,

Ui(ci) = ρ−1
i

∫
Ω×R+

vi

(
ci
t(ω)

)
d (P ⊗ ηρi) .

Since
d (P ⊗ ηρi)
d (P ⊗ ηρ)

(ω, t) =
ρi

ρ
exp (− (ρi − ρ) t) ,

if we define pi(t) = ρ−1 exp (− (ρi − ρ)) and ui(xi, t) = vi(xi)pi(t), then

Ui(ci) = ρ−1
i

∫
Ω×R+

vi

(
ci
t(ω)

) ρi

ρ
exp (− (ρi − ρ) t) d (P ⊗ ηρ)

=
∫

Ω×R+

vi

(
ci
t(ω)

)
pi(t) d (P ⊗ ηρ)

=
∫

Ω×R+

ui(ci
t(ω), t) d (P ⊗ ηρ) .

8To be exact, the utility function Ui is defined only on the set of those ci for which the expected utility is
finite. The details on how to modify the domain of Ui taking this fact into consideration can be found in Hara
(2006).
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Thus Ui can be written in the form of (1).9 Note that

qi(t) = −(ρi − ρ)

and hence the subjective discount rate of consumer i is equal to ρ − qi(z).
Let u : R++ × R+ → R be the representative consumer’s felicity function and s : R++ ×

R+ → R and q : R++ × R+ → R be his risk tolerance and responsiveness to time (state
variable). Then, just as in the case of individual consumers, ρ − q(x, t) is the discount rate for
the representative consumer. We now look into how the representative consumer’s discount rate
is affected by the heterogeneity of the individual consumers’ discount rates and cautiousness.

First, by (8),

ρ − q(x, t) =
∑

i

si (fi(x, t))
s(x, t)

ρi. (34)

This means that the representative consumer’s discount rate is the weighted sum of the indi-
vidual consumers’ discount rates, where the weights are proportional to their risk tolerance. It
has been already established by Gollier and Zeckhauser (2006, Proposition 3).

Second, by (16),

d

dx
(ρ − q(x, t)) =

1
s(x, t)

∑
i

si(fi(x, t))
s(x, t)

(
s′i(fi(x, t)) − ∂s

∂x
(x, t)

)
(ρi − (ρ − q(x, t))) .

This means that the representative consumer’s discount rate is higher at higher consumption
levels if and only if the weighted covariance between the individual consumers’ cautiousness
and discount rates is positive; and his discount rate is lower at higher consumption levels if
the covariance is negative. Since it is quite possible that the covariance is different from zero,
this formula case doubts on the prevalent use of consumption-independent discount rates in the
representative-consumer model.10

Third, by (21),

d

dt
(ρ − q(x, t)) = − 1

s(x, t)

∑
i

si(fi(x, t))
s(x, t)

s′i (fi(x, t)) (ρi − (ρ − q(x, t)))2 .

This shows that the if the individual consumers risk tolerance is increasing (equivalently, their
absolute risk aversion is decreasing) as in the case of constant relative risk aversion, then the
representative consumer’s discount rates decreases over time. Gollier and Zeckhauser (2006,
Proposition 5) established the same conclusion, but without obtaining any formula relating the
time derivative of the representative consumer’s discount rates to the the individual consumers’

9To be exact, since the time span R+ is not an open subset of R, ui does not satisfy all the conditions of
Section 2. However, ui is twice continuously differentiable at the boundary point 0 of R+, all the general results
in 3 are applicable to ui.

10For example, if all individual consumers exhibit constant relative risk aversion and the coefficients of constant
relative risk aversion and the subjective discount rates are comonononically or anti-comonotonically related, then
the covariance is strictly positive or strictly negative, unless either of the relative risk aversion coefficients or the
discount rates are completely equal across all individual consumers.
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counterparts. The above formula case doubts on the prevalent use of constant discount rates in
the representative-consumer model.

Note that the discount rates can be independent of aggregate consumption levels and yet
decreasing over time. In particular, this is the case if all consumers exhibit constant and equal
relative risk aversion. In such a case, Gollier and Zeckhauser (2006, Section IV) showed that
the representative consumer’s discount rate may be a hyperbolic function of time. Hara (2007)
identified the class of discount factors that can arise from the consumers of constant and equal
relative risk aversion.

5 Conclusion

We have investigated implications of heterogeneous responsiveness to state variables in an econ-
omy populated by multiple consumers who have state-dependent expected utility functions.
We have established some formulas showing how the representative consumer’s risk attitudes
will be changed by state variables and how the change in aggregate consumption levels affect
his responsiveness to state variables. These formulas clarify when and, if so, how, his felicity
function fails to be multiplicatively separable. We have also found a formula showing how his
responsiveness to one state variable is affected by a change in another state variable.

We have applied these formals to analyze the consequences of heterogeneity in probabilistic
beliefs and time discount rates. Among other results, we have shown that the representative
consumer may not have any constant discount rate or any probability measure with respect to
which his expected utility is calculated. We have also shown that his discount rate is likely to
be decreasing over time and his probabilistic belief is likely to be more dispersed than individual
consumers’ beliefs.

There are many interesting directions of future research. First, given that our specification
of state variables can be multi-dimensional, we should look into the consequence of the joint
heterogeneity in probabilistic beliefs and time discount rates. Second, the case of multiple goods
should be investigated: although it is possible to set up the welfare maximization problem (3)
taking x as multi-dimensional, such multi-dimensionality makes the characterization of the
risk-sharing rules more complicated. It may be more promising to apply the results here to the
indirect functions taking the spot prices as state variables. Third, we should explore implications
of our results to asset pricing in continuous time. Such implications may also help us to judge
which, say, term structure models are deemed as more plausible than others based on equilibrium
considerations in a heterogeneous economy.

A Formalization of the Convexifying Effect

We claimed, after stating Corollary 2, that the heterogeneity in individual consumers’ respon-
siveness to state variables gives rise to a convexifying effect. But we did not specify exactly
which function is made more convex by the presence of such heterogeneity. In this appendix,
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we define a function that is to be made more convex, thereby giving a precise meaning to the
convexifying effect.

A.1 Logged marginal utility functions

First, for the subsequent analysis, we introduce the concept of a logged marginal utility func-
tion. Let u : R++ ×Z → R be a state-contingent felicity function having the properties stated
in Section 2, such as (at least) twice continuous differentiability, positive first partial deriva-
tives and negative second partial derivatives with respect to the consumption level, and Inada
condition. Then define w : R++ × Z → R by

w(x, z) = ln
(

∂u

∂x
(x, z)

)
for every (x, z). We call this the logged marginal utility function derived from u. It is easy to
show that w is (at least once) continuously differentiable and satisfies ∂w(x, z)/∂x < 0 for every
(x, z), and, for every z, w(x, z) → −∞ as x → ∞ and w(x, z) → ∞ as x → 0. Conversely, for
any such function w : R++ × Z → R, if we define u : R++ × Z → R by

u(x, z) =
∫ x

1
exp (w(y, z)) dy, (35)

then u satisfies the properties stated in Section 2. Moreover, the logged marginal utility function
derived from u coincides with the given w. Furthermore, if we start with a felicity function u,
derive the logged marginal utility function w, and then define a new function û : R++×Z → R

by the right-hand side of (35), then the difference û(x, z) − u(x, z) depends only on z. Since
adding to a felicity function a function that depends only on z does not change the solution
to (3), we can conclude that there is an essentially bijective correspondence between felicity
functions and logged marginal utility functions.

Let w be the logged marginal utility function derived from u and q be the responsiveness
to state variables of u. It is easy to show that q(x, z) = (∇zw(x, z))⊤ for every (x, z). That is,
for each x, w(x, ·) : Z → R is a potential function of the vector field q(x, ·) : Z → RL. Thus,
Dzq(x, z) = ∇2

zw(x, z) and, in particular, Dzq(x, z) is a symmetric matrix for every (x, z).

A.2 Fictitious representative consumer

In this subsection, we construct a fictitious representative consumer. A fictitious representative
consumer is derived from a group of individual consumers who have the same risk attitudes as the
true ones but different responsiveness in such a way that they all share the same responsiveness
at some given value z∗ of state variables.

For each i, let ui be the felicity function of consumer i, which is multiplicatively separable.
Write ui(xi, z) = pi(z)vi(xi). By solving (3), we obtain the risk-sharing rules fi : R++ × Z →
R++, one for each consumer, and the representative consumer’s felicity function u : R++×Z →
R. Let w : R++ × Z → R be the logged marginal utility function derived from u. Let
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(x∗, z∗) ∈ R++ × Z.
For each i, define φi : Z → R by φi(z) = ln pi(z). Then define φ̂i : Z → R by φ̂i(z) =

φi(z)+ (q(x∗, z∗) − qi(z∗))
⊤ (z − z∗) for every z. Then ∇φ̂i(z) = ∇φi(z)+ (q(x∗, z∗) − qi(z∗))

⊤

and ∇2φ̂i(z) = ∇2φi(z) for every z, and φ̂i(z∗) = φi(z∗) and ∇φ̂i(z∗) = q(x∗, z∗).
Then define ûi : R++ × Z → R by ûi(xi, z) = exp (φ̂(z)) vi(xi) for every (xi, z). Let ŵi

be the logged marginal utility function derived from ûi, ŝi be its risk tolerance, and q̂i be its
responsiveness to state variables. Then,

ŵi(xi, z) = ln v′i(xi) + φ̂(z),

ŝi(xi, z) = si(xi, z),

q̂i(xi, z) = qi(z) + (q(x∗, z∗) − qi(z∗)) ,

Dz q̂i(xi, z) = Dqi(z)

for every (xi, z). We can thus write q̂i(z) for q̂i(xi, z). Then q̂i(z∗) = q(x∗, z∗) and Dq̂i(z∗) =
Dqi(z∗). In words, by constructing ûi out of ui, each individual consumer’s risk tolerance si is
kept as before, while his responsiveness to state variables, qi, is shifted so that all individual
consumers share the same responsiveness q(x∗, z∗) at z = z∗.

By solving (3) where the ui are replaced by the ûi but the original utility weights λi are
retained, we obtain the risk-sharing rules f̂i : R++ × Z → R++, one for each consumer,
and the representative consumer’s felicity function û : R++ × Z → R. We call û the fictitious
representative consumer’s utility function. Let ŵ be the logged marginal utility function derived
from û.

A.3 Proof of the convexifying effect

In this section, we prove that the (true) representative consumer’s logged marginal utility func-
tion w is more convex than the fictitious representative consumer’s logged utility function ŵ

around (x∗, z∗). Since the only difference between the w and the ŵ is that the former involve
heterogeneous responsiveness at z∗ but the latter do not, the additional convexity of w around
(x∗, z∗) can be attributed to heterogeneous responsiveness involved in the construction of w.

Let ŝ be the risk tolerance of û and q̂ be the responsiveness to state variables of û. Using the
first-order condition, it is easy to show that f̂i(x, z∗) = fi(x, z∗) for all i and x. This implies that
û(x, z∗) = u(x, z∗), ŵ(x, z∗) = w(x, z∗), and ŝ(x, z∗) = s(x, z∗) for every x. Thus, û represents
the same risk attitudes as u whenever z = z∗. Moreover, since q̂i(z∗) = q(x∗, z∗) for every i, (8)
implies that

q̂(x∗, z∗) = q(x∗, z∗).

Thus û represents the same responsiveness as u at (x∗, z∗). Since q̂(x∗, z∗) = Dzŵ(x∗, z∗) and
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q(x∗, z∗) = Dzw(x∗, z∗),

ŵ(x∗, z∗) = w(x∗, z∗),

∇zŵ(x∗, z∗) = ∇zw(x∗, z∗).

That is, ŵ coincides with w around (x∗, z∗) up to the first order. Yet, we shall now prove
that ∇2

zŵ(x∗, z∗) is, in general, not equal to ∇2
zw(x∗, z∗). Rather, the difference ∇2

zŵ(x∗, z∗) −
∇2

zw(x∗, z∗) is positive semi-definite if s′i(xi) ≥ 0 for every xi, that is, the ui exhibit decreasing
absolute risk aversion. This means that w is more convex than ŵ around (x∗, z∗).11

The proof goes as follows. Since q̂1(z∗) = · · · = q̂I(z∗), by applying Corollary 2 to q̂, we
obtain

Dz q̂(x∗, z∗) =
∑

i

ŝi

(
f̂i(x∗, z∗)

)
ŝ(x∗, z∗)

Dq̂i (z∗) =
∑

i

si(fi(x∗, z∗))
s(x∗, z∗)

Dqi (z∗) .

Thus, by applying Corollary 2 to q, we obtain

Dzq(x∗, z∗)−Dz q̂(x∗, z∗) =
∑

i

si(fi(x∗, z∗))
s(x∗, z∗)

s′i(fi(x∗, z∗)) (qi(z∗) − q(x∗, z∗)) (qi(z∗) − q(x∗, z∗))⊤ .

Since the left-hand side is equal to ∇2
zŵ(x∗, z∗)−∇2

zw(x∗, z∗) and the right-hand side is positive
semi-definite, this completes the proof.
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