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Abstract

A decision scheme (Gibbard (1977)) is a function mapping profiles
of strict preferences over a set of social alternatives to lotteries over
the social alternatives. Motivated by conditions typically prevailing
in elections with many voters, we say that a decision scheme is weakly

strategy-proof if it is never possible for a voter to increase expected
utility (for some vNM utility function consistent with her true pref-
erences) by misrepresenting her preferences when her belief about the
preferences of other voters is generated by a model in which the other
voters are i.i.d. draws from a distribution over possible preferences. We
show that if there are at least three alternatives, a decision scheme is
necessarily a random dictatorship if it is weakly strategy-proof, never
assigns positive probability to Pareto dominated alternatives, and is
anonymous in the sense of being unaffected by permutations of the
components of the profile. This result is established in two settings:
a) a model with a fixed set of voters; b) the Poisson voting model of
Meyerson (1998a,b, 2000, 2002).
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1 Introduction

Suppose we are given a finite set V of social alternatives and n voters. A
preference profile is an n-tuple of strict individual preferences over V . A social

choice function is a function whose domain is the set of preference profiles
and whose range is V . The Gibbard-Satterthwaite theorem (Gibbard (1973),
Satterthwaite (1975)) asserts that a social choice function must be dictatorial
if there are at least three alternatives, the social alternative selected at a
profile of preferences is never Pareto dominated for that profile, and the
function is strategy-proof, which means that it is never possible for a voter
to achieve a preferred outcome by reporting something other than her actual
preference ordering.

When the electorate is large, voters typically have quite limited infor-
mation about the preferences of other voters, so one should consider the
possibility that a social choice function might be strategy-proof “in effect” if,
in practice, voters are never able to manipulate because they lack sufficiently
precise information. This paper develops a weakened notion of strategy-
proofness that expresses this perspective. Our main results show that this
weaker notion is still strong enough to imply a dictatorial conclusion.

Any mechanism combining the agents’ preferences in a nontrivial manner
must depart from the framework of the Gibbard-Satterthwaite theorem in
some respect, and for this reason the result is fundamental in the theory
of mechanism design. The Gibbard-Satterthwaite theorem allows voters to
have any strict preferences, but, for example, in the theory of matching
(e.g., Roth and Sotomayor (1990)) agents are typically assumed to care only
about whether they are matched and, if so, with whom. A domain restriction

specifies a subset of the set of preference profiles. In the theory of voting the
seminal concept of this sort is the notion of single peaked preferences, which
leads to the median voter theorem (e.g., Black (1958)). Allowing the voters
(but not the mechanism designer) to know each others’ preferences, and
to behave with greater strategic sophistication, leads to the theory of Nash
implementation pioneered by Maskin (1999). In Bayesian implementation the
given information, for both the agents and the mechanism designer, includes
a prior distribution on the space of n-tuples of agent types, a mechanism
determines a Bayesian game, and Bayesian Nash equilibrium, rather than
equilibrium in dominant strategies, is the preferred solution concept.

Another relaxation of the Gibbard-Satterthwaite framework, that is more
closely related to the work presented here, is to allow a random outcome.
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Indeed, tied elections are commonly resolved by coin flips, so this extension
is very natural, and the Gibbard-Satterthwaite theorem would lose much
of its force if there were electoral systems employing randomization that
embodied democratic values. Gibbard (1977) defines a decision scheme to
be a function whose domain is the set of preference profiles and whose range
is the set of probability distributions over V . Gibbard’s result (a precise
explanation is given in Section 2) reinforces the negative conclusion of the
Gibbard-Satterthwaite theorem: if a decision scheme is strategy-proof in the
sense that manipulation is never beneficial (when evaluated in terms of any
von Neumann-Morgenstern utility consistent with the actual preference) and
Pareto dominated alternatives never receive any probability, then the scheme
must be a random dictatorship.

The main idea studied here might be thought of as a domain restriction,
except that instead of imposing restrictions on the profiles that can occur, we
impose restrictions on the voters’ beliefs about the profile. Specifically, we
assume that each voter’s belief about the preferences of the other voters can
be described by a model in which the other voters’ preferences are i.i.d. draws
from a common distribution. We are particularly motivated by elections with
many voters and more than two candidates such as the primaries used to
select the parties’ candidates in the U.S. electoral system. Of course voters’
beliefs in such a context are never exactly described by an i.i.d. model
for various reasons, e.g., the preferences of members of married couples are
believed to be correlated. A voter who is contemplating manipulation, but
is uncertain about the profile, must average over different ways in which
her vote might be pivotal, and our guiding intuition is that the averaging
entailed by the i.i.d. assumption is a reasonably accurate approximation of
the averaging resulting from the uncertainty voters face in practice. If this is
correct, a decision scheme that never rewarded manipulation by voters with
i.i.d. beliefs, and was not otherwise flawed, would merit serious consideration,
and the existence of such decision schemes would challenge the pertinence of
the Gibbard-Satterthwaite theorem.

Conversely, our finding that there are no satisfactory decision schemes of
this sort would seem to be a significant strengthening of Gibbard’s theorem.
Insofar as this is a negative result, it is strengthened by any restriction im-
posed on the voters beliefs, and in this sense there is no need for us to defend
the “realism” of the i.i.d. assumption. In principle attacks on its relevance
should take the form of arguments to the effect that certain i.i.d. beliefs do
not need to be considered.
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Formally, a decision scheme is weakly strategy-proof if there is no voter,
preference for that voter, von Neumann-Morgenstern utility consistent with
that preference, and distribution over orderings of the alternatives, such that
the voter can achieve a higher expected utility by manipulating when she
regards the other voters’ preferences as i.i.d. draws from that distribution. To
illustrate this idea concretely, suppose that there are three voters, that from
voter 1’s point of view the preferences of the other two voters are i.i.d. random
variables, and that voter 1 can do better by manipulating when voter 2 has
preference P and voter 3 has preference ordering Q. The assumption that the
preferences are i.i.d. implies that it is equally likely that voter 2 has preference
Q and voter 3 has preference P . In addition, if these two events are much
more likely than both voters having preference P , then in turn both voters
having preference Q must be much more likely than either of these events.
The fact that there is a profile at which voter 1 can profitably manipulate
does not necessarily imply that there is a belief for voter 1 satisfying our
assumption at which profitable manipulation is possible.

In fact it is easy to see that there are decision schemes that never as-
sign positive probability to Pareto dominated alternatives and are weakly
strategy-proof, but not strategy-proof. For any particular voter with the sorts
of beliefs we are allowing, and any particular profile, the voter regards all
profiles obtained by permuting the preferences of the other voters as equally
likely. For such a voter two decision schemes are effectively equivalent, if,
for each profile, the two lotteries obtained by averaging the results of the
two decision schemes over all permutations of the other voters’ preferences
are the same. Since the number (n− 1)! of permutations of the other voters
grows rapidly with n, one can easily show, simply by counting equations and
unknowns, that the set of decision schemes yielding a given system of aver-
ages can have high dimension. The anonymous random dictatorship is the
decision scheme in which the probability of choosing a particular alternative
is the fraction of the electorate that have that alternative as their favorite;
in effect, a voter is selected according to an equiprobable lottery, and that
voter’s favorite alternative is the social choice. Starting with this decision
scheme, it is not hard to construct examples that are weakly strategy-proof
by virtue of giving the same averages, but are not strategy-proof.

These considerations suggest that we should restrict attention to deci-
sion schemes that are anonymous in the sense that permuting the voter’s
preferences does not affect the outcome. It is not easy to imagine how an
electoral system might be regarded as democratic if it was not anonymous,
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and anonymity is certainly consistent with the spirit of our assumption con-
cerning agents’ beliefs. For any decision scheme there is a derived anonymous
decision scheme, which we will call its anonymization, in which the lottery as-
signed to a profile is the average of the lotteries assigned by the given decision
scheme to the profiles obtained by permuting the components of the profile.
The anonymization of an anonymous decision scheme is the scheme itself,
so the process of anonymization partitions the decision schemes into equiv-
alence classes, each of which has an anonymous central element that is the
anonymization of every element of the class. A decision scheme never assigns
probability to Pareto dominated alternatives if and only if its anonymization
also has this property. If a decision scheme is weakly strategy-proof, then so
is its anonymization.

We can now state our first main result, which is proved in Section 3:
if a decision scheme is anonymous and weakly strategy-proof, and never as-

signs positive probability to Pareto dominated alternatives, and there are at

least three alternatives, then it is the anonymous random dictatorship. Since
there is the additional hypothesis of anonymity, this is not, strictly speak-
ing, a derivation of Gibbard’s conclusion from weaker assumptions, but it
seems correct to regard it as such conceptually because the additional pos-
sibilities allowed by dropping anonymity are trivial. In particular, there is
the following corollary: if there are at least three alternatives and a deci-

sion scheme is weakly strategy-proof and never assigns positive probability

to Pareto dominated alternatives, then its anonymization is the anonymous

random dictatorship.
In the discussion to this point we have assumed that the set of voters is

fixed. More precisely, we have assumed that each voter has no uncertainty
about who the other voters are, even if their preferences are uncertain. In
actual elections voters often have quite imprecise knowledge concerning the
pool of eligible voters, and in addition there is uncertainty about which ones
will actually turn out. Thus it is very natural to consider models in which
the size of the electorate is uncertain.

From the point of view of the sort of result described above, what quali-
ties are desirable in a random model of the electorate? Since the conclusion
is negative—an “impossibility theorem”—the result is more forceful if the
conclusion is shown to hold even when voter’s beliefs are restricted to a
relatively small set, since then the conclusion also holds when the voters’
beliefs are less restricted. A bit more subtly, the result is more forceful if the
model of beliefs is a natural limit of other models, since the conclusion for
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the other models can be derived from continuity. Finally, tractable models
are preferred, of course. All these considerations strongly recommend the
Poisson voting model developed by Meyerson (1998a,b, 2000, 2002) in which
the number of voters with each preference is distributed according to a Pois-
son distribution, and these random variables are statistically independent.
Section 4 extends the result described above to that setting.

2 Gibbard’s Theorem

Our analysis builds on several lemmas proved in Gibbard (1977), and the
reader must refer to that source if she wishes to obtain a complete under-
standing of the proof. In order to create a package that is as seamless as
possible we follow the notation and terminology of that paper quite closely.
This sections recapitulates the basic framework, and additional concepts from
that paper are introduced in Section 3.

There is a nonempty finite set of alternatives V whose elements are de-
noted by x, y, and z. A (strict) preference over V is a complete transitive
asymmetric binary relation on V . Such relations are denoted by P , Q, Pk,
etc. A utility scale is a function U : V → R. The utility scale U is said to fit

the preference P if more highly ranked alternatives give greater utility: for
all x, y ∈ V , U(x) > U(y) if and only if xPy. For any finite or countable
set A, ∆(A) denotes the space of probability measures on A. A lottery is
a probability measure on V . A utility is automatically interpreted (in the
sense of von Neumann and Morgenstern) as extending linearly to ∆(V ), so
that U(µ) :=

∑

x∈V U(x)µ(x) whenever µ ∈ ∆(V ).
Society consists of n voters, who are indexed by the integers 1, . . . , n. A

profile is an n-tuple P = 〈P1, . . . , Pn〉 assigning a preference to each voter.
Let P be the set of profiles. For each k = 1, . . . , n let P−k be the set
of (n − 1)-tuples of preferences 〈P1, . . . , Pk−1, Pk+1, . . . , Pn〉, thought of as
configurations of preferences of the voters other than k. If P ∈ P is given,
P−k will denote the (n − 1)-tuple obtained by dropping Pk. If P−k ∈ P−k

and P ′
k are given,

〈P−k, P
′
k〉 = 〈P1, . . . , Pk−1, P

′
k, Pk+1, . . . , Pn〉

is the profile obtained by combining these objects. If P ∈ P and P ′
k are

given,
P/kP

′
k := 〈P−k, P

′
k〉
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is the profile obtained from P by replacing Pk with P ′
k.

A decision scheme is a function

d : P → ∆(V ).

We denote the probability assigned to alternative x by the decision scheme at
profile P by d(x,P), and for any X ⊂ V we let d(X,P) :=

∑

x∈X d(x,P). We
say that d is a probability mixture of schemes d1, . . . , dm if there are positive
numbers α1, . . . , αm with α1 + · · ·+ αm = 1 such that

d(x,P) = α1d1(x,P) + · · · + αmdm(x,P)

for all alternatives x and profiles P.
The decision scheme d is potentially manipulable by k at a profile P if there

is a utility scale U that fits Pk and a preference P ′
k such that U(d(P/kP

′
k)) >

U(d(P)). We say that d is manipulable if it is potentially manipulable by
some voter at some profile, and otherwise it is strategy-proof. Note that a
probability mixture of strategy-proof decision schemes is strategy-proof.

A lottery ρ is Pareto optimal ex post for profile P if ρ(x) = 0 for any
alternative x that is Pareto dominated insofar as there is another alternative
y such that yPix for all i. The decision scheme d is Pareto optimific ex post if,
for each profile P, d(P) is Pareto optimal ex post for P. If d is a probability
mixture of schemes d1, . . . , dm, then d is Pareto optimific ex post if and only
if each dj is Pareto optimific ex post.

For a preference P , let ϕ(P ) be the top ranked alternative or favorite. A
decision scheme d is dictatorial, or a dictatorship, if there is a voter k such
that d(ϕ(Pk),P) = 1 for all P ∈ P. A random dictatorship is a probability
mixture of dictatorships.

Gibbard’s most general result asserts that a strategy proof decision scheme
is a probability mixture of finitely many decision schemes, each of which is
nonperverse (this concept is defined in the next section) and either duple,
meaning that there are two alternatives that are the only alternatives re-
ceiving positive probability at any preference profile, or unilateral, meaning
that it depends only on the preferences of a single voter. Gibbard credits
Sonnenschein with the observation that, insofar as a duple decision scheme
cannot be Pareto optimific ex post if there are three or more alternatives,
and a unilateral decision scheme is Pareto optimific ex post if and only if it
is dictatorial, it follows that:
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Theorem 1 (Gibbard (1977)). If there are three or more alternatives and

the decision scheme d is strategy-proof and Pareto optimific ex post, then it

is a random dictatorship.

3 The I.I.D. Model

A model of the electorate for voter k is a probability measure β ∈ ∆(P−k).
The decision scheme d is potentially manipulable by k at a model β if there
is a utility scale U that fits Pk and a preference P ′

k such that

U
(

∑

P−k∈P−k

d(P−k, P
′
k)β(P−k)

)

> U
(

∑

P−k∈P−k

d(P−k, Pk)β(P−k)
)

. (∗)

Let O be the set of all strict orderings of V . The model β is identically and

independently distributed (i.i.d.) if there is a σ ∈ ∆(O) such that β(P−k) =
∏

i6=k σ(Pi) for all P−k ∈ P−k. The decision scheme d is strongly manipulable

if there is a voter k such that d is potentially manipulable at some i.i.d. model
of the electorate for k, and if this is not the case we say that d is weakly

strategy-proof.
Let N := {0, 1, 2, . . .} be the nonnegative integers, and let A := N

O. An
element of A is called an anonymous profile because it specifies the number
of voters with each preference ordering without attributing those preferences
to specific individuals. For a ∈ A let |a| =

∑

P∈O aP be the total number of
voters, and for n = 0, 1, 2, . . . let An := { a ∈ A : |a| = n }. Let πn : P → An

be the function defined by letting the component πn,P (P) be the number of k
such that Pk = P . The decision scheme d is anonymous if d(P) depends only
on πn(P), so that there is a function Dn : An → ∆(V ) such that d = Dn ◦πn.
The anonymous random dictatorship is the decision scheme d∗ given by

d∗(x,P) := 1
n
#{ k : ϕ(Pk) = x }.

Theorem 2. If there are three or more alternatives and the decision scheme

d is anonymous, weakly strategy-proof, and Pareto optimific ex post, then it

is the anonymous random dictatorship.

The proof is developed in a sequence of lemmas. Fix a decision scheme
d. A set X ⊂ V heads a preference P if xPy for all x ∈ X and y ∈ V \X. If
d(X,P) = d(X,P/kP

′
k) for all k, P, and P ′

k such that X heads both Pk and
P ′

k, then d is said to be localized. The most innovative step in our argument
is:

9



Lemma 1. If d is weakly strategy proof and anonymous, then it is localized.

Proof. Fix a voter k, a set X ⊂ V , and Pk and P ′
k such that X heads both Pk

and P ′
k. We need to show that the probability of X is unaffected by whether

k reports Pk or P ′
k. Let π−k be πn−1 reinterpreted as a function with domain

P−k: for each P , π−k,P (P−k) is the number of j such that Pj = P . Since we
can interchange Pk and P ′

k, it suffices to show that M = ∅ where M is the
set of a ∈ An−1 such that

d(X, 〈P−k, P
′
k〉) 6= d(X, 〈P−k, Pk〉)

for some (hence all, because d is anonymous) P−k such that π−k(P−k) = a.
Aiming at a contradiction, suppose that M is nonempty.

Below we will show how to find b ∈ M and σ ∈ ∆(O) such that the
derived i.i.d. model of the electorate for k, denoted by β, has β(P−k)/β(P′

−k)
arbitrarily large for all P−k and P′

−k such that π−k(P−k) = b and π−k(P
′
−k) =

a ∈ M \ {b}. When these ratios are sufficiently large we have

∑

P−k∈P−k

d(X, 〈P−k, P
′
k〉)β(P−k) 6=

∑

P−k∈P−k

d(X, 〈P−k, Pk〉)β(P−k).

In this circumstance there is a utility scale U that fits Pk, and which empha-
sizes the difference between X and V \X while nearly disregarding differences
between elements of X and between elements of V \ X, to such an extent
that either inequality (∗) holds, or this inequality holds with Pk and P ′

k in-
terchanged, contradicting the assumption that d is weakly strategy-proof.

Let b be an extreme point of the convex hull of M . Then b ∈ M because
it is not in the convex hull of M \ {b}. Applying the separating hyperplane
theorem to b and the convex hull of M \ {b} gives a vector ℓ ∈ R

O such
that 〈ℓ, b〉 > 〈ℓ, a〉 for all a ∈ M \ {b}. For α > 0 let σα ∈ ∆(O) be the
probability distribution in which the probability of each P is proportional to
αℓP , so that σα(P ) := αℓP /

∑

P̃∈O αℓ
P̃ and σα(P )/σα(P ′) = αℓP /αℓP ′ for all

P, P ′ ∈ O. Let βα be the derived i.i.d. model of the electorate for k: for each
P−k ∈ P−k, βα(P−k) =

∏

i6=k σα(Pi). Then for any P−k,P
′
−k ∈ P−k we have

βα(P−k)

βα(P′
−k)

=
αℓP1 · · ·αℓPk−1 · αℓPk+1 · · ·αℓPn

α
ℓP ′

1 · · ·α
ℓP ′

k−1 · α
ℓP ′

k+1 · · ·αℓP ′
n

=
α〈ℓ,π−k(P−k)〉

α〈ℓ,π−k(P′
−k

)〉
.

If π−k(P−k) = b and π−k(P
′
−k) = a ∈ M \ {b}, then βα(P−k)/βα(P′

−k) =
α〈ℓ,b〉/α〈ℓ,a〉 → ∞ as α → ∞, as desired.
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The remainder of the argument is a matter of marshalling tools developed
in Gibbard (1977). We write xP !y to indicate that xPy and that x and y are
adjacent in the ranking, so that for all z /∈ {x, y}, zPx if and only if zPy. If
this is the case, then P y denotes the ranking obtained by interchanging x and
y without changing the ranking of either in relation to any third alternative
z, and we say that P y is obtained from P by switching x and y. Given a
profile P and a voter k with ϕ(Pk) 6= y, let

Pky := 〈P1, . . . , Pk−1, P
y
k , Pk+1, . . . , Pn〉.

We say that d is pairwise responsive if d(z,Pky) = d(z,P) for all distinct
alternatives x, y, and z, all voters k, and all profiles P such that xPk!y. Of
course if this is the case, then d({x, y},Pky) = d({x, y},P) for all x, y, P,
and k such that xPk!y.

Lemma 2. d is localized if and only if it is pairwise responsive.

Proof. This follows from Lemma 1 (p. 672) of Gibbard (1977).

Given a profile P and a voter k with ϕ(Pk) 6= y, the effect under d of k’s
switching y upward is

εy
k(d,P) := d(y,Pky) − d(y,P).

The decision scheme d is nonperverse if εy
k(d,P) ≥ 0 for every P, k, and

y 6= ϕ(Pk). If P is an ordering and x, y ∈ V , P ↑{x, y} is the ordering of
{x, y} obtained by restricting P to this set. For P ∈ P the derived profile of
preferences over {x, y} is

P↑{x, y} := 〈P1↑{x, y}, . . . , Pn↑{x, y}〉.

We say that d is pairwise isolated if

εy
k(d,P) = εy

k(d,P′)

for all P, P′, x, and y such that P↑{x, y} = P′↑{x, y} and all k such that
Pk = P ′

k and xPk!y. The decision scheme d is decomposable if, for any fixed
k, x, and y with x 6= y, there are functions γ and δ such that for all P with
xPk!y,

εy
k(d,P) = γ(P↑{x, y}) + δ(Pk).
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Lemma 3. If d is localized, then it is pairwise isolated and decomposable.

Proof. This is Lemma 3 (p. 673) of Gibbard (1977).

For a profile P, ϕ(P) := 〈ϕ(P1), . . . , ϕ(Pn)〉. We say that d depends only

on favorites if d(P′) = d(P) for all profiles P and P′ such that ϕ(P′) = ϕ(P).

Lemma 4. If d is localized and Pareto optimific ex post, and there are three

or more alternatives, then d depends only on favorites. If, in addition, d is

anonymous, then it is the anonymous random dictatorship.

Proof. First consider particular k, x, and y with x 6= y. Since d is localized,
it is decomposable; let γ and δ be the functions given by the definition
of decomposability. Since there are three distinct alternatives, for some z /∈
{x, y} there are profiles P with ϕ(Pi) = z for all i. Since d is Pareto optimific
ex post, d(z,P) = 1 for any such P. By allowing P to vary in the set of
such profiles we can deduce that γ is identically zero, and that δ(Pk) = 0
whenever xPk!y and x 6= ϕ(Pk). Since d is pairwise responsive, and it is
possible to move between any two P and P′ with ϕ(P) = ϕ(P′) through a
sequence of switches that do not affect the vector of favorites, d depends only
on favorites.

It now follows that there are numbers ǫk(x, y) ∈ [0, 1] such that εy
k(d,P) =

ǫk(x, y) whenever x = ϕ(Pk) and xPk!y. Consider a profile P in which all
voters rank x first and y second. Since d is Pareto optimific ex post, by
switching x with y one voter at a time we obtain

ǫ1(x, y) + · · · + ǫn(x, y) = 1.

If d is anonymous, then ǫk(x, y) does not depend on k, so ǫk(x, y) = 1/n for
all k, x, and y.

Theorem 2 follows from Lemmas 1 and 4.

4 The Poisson Model

In earlier sections a decision scheme was a function whose argument was
an assignment of preferences to a fixed set {1, . . . , n} of “names.” When
the set of voters is variable, any attempt to keep track of names would be
cumbersome at best, and irrelevant to our aims, so we adopt a definition
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that embeds the assumption of anonymity. An extended anonymous decision

scheme (EADS) is a function

D : A → ∆(V )

from anonymous profiles to lotteries. Fix such a D. Let D(x, a) be the
probability that x is chosen when the anonymous profile is a, and for X ⊂ V
let D(X, a) :=

∑

x∈X D(x, a).
As in the last section, we wish to develop a mild notion of strategy proof-

ness based on restrictions on the beliefs a voter may hold about the pref-
erences of other voters. For a random variable taking values in N that is
distributed according to the Poisson distribution with mean µ, the probabil-
ity that the variable takes on value m is

fµ(m) := µme−µ/m!.

For λ ∈ (0,∞)O and a ∈ A let

Fλ(a) :=
∏

P∈O

fλP
(aP ).

Then Fλ specifies a model of the electorate in which the numbers aP of voters
with each preference are independent random variables and each aP has a
Poisson distribution with mean λP .

Poisson models of elections and more general games have been studied
extensively by Meyerson (1998a,b, 2000, 2002). The Poisson distribution
with mean µ is the limit as N → ∞ of the distribution of the number
of heads among N independent coin flips, each of which comes up heads
with probability µ/N . Insofar as Poisson models are limits of related or
more general models, results such as Theorem 3 below imply, by continuity,
corresponding results for “nearby” models. In part because they are limits,
Poisson models tend to be especially tractable.

A particularly pleasant property, which we take as the basis of our anal-
ysis, is called environmental equivalence. Suppose that a voter believes that
the probability of being one of m+1 voters with preference P is proportional
to m+1 times the probability that there are m+1 voters with preference P .
Then the probability, conditional on being a voter with preference P , that
there are m other voters with preference P , should be

(m + 1)fλP
(m + 1)

∑∞
j=1 jfλP

(j)
=

λm+1
P /m!

∑∞
j=1 λj

P /(j − 1)!
=

λm
P /m!

eλP
= fλP

(m).
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Thus the voter’s belief concerning the number of other voters with preference
P coincides with the given distribution of the total number of voters with
this preference. Since the numbers aP are statistically independent, being a
voter with preference P conveys no information about the number of voters
with any other preference. Therefore the voter’s belief about the rest of the
electorate should coincide with the model’s description of the entire elec-
torate. These calculations are heuristic, appealing to intuitions concerning
the perspective of one member of an infinite pool of potential voters, each of
whom is chosen with infinitesimal probability, but they can be made precise
by taking the limit of a sequence of models in which, for each P , NP potential
voters with preference P each have probability λP/NP of being included in
the electorate.

An extended model of the electorate is a probability measure B ∈ ∆(A).
For each P let eP be the element of A whose P -coordinate is 1 and whose
other coordinates are 0. We say that D is potentially manipulable by prefer-
ence ordering P at B if there is a utility scale U that fits P and a preference
P ′ such that

U
(

∑

a∈A

D(a + eP ′)B(a)
)

> U
(

∑

a∈A

D(a + eP )B(a)
)

(∗∗).

The EADS D is strongly manipulable if there is a preference P such that D
is potentially manipulable by P at some Poisson model Fλ, and if this is not
the case we say that D is weakly strategy-proof.

We say that D is Pareto optimific ex post if D(x, a) = 0 whenever there
is y such that yPx for all P with aP > 0. The extended anonymous random

dictatorship is the EADS D∗ given by

D∗(x, a) :=
1

|a|

∑

ϕ(P )=x

aP .

Theorem 3. If there are three or more alternatives and the EADS D is

weakly strategy-proof and Pareto optimific ex post, then it is the extended

anonymous random dictatorship.

We say that the EADS D is localized if D(X, a + eP ) = D(X, a + eP ′)
for all a ∈ A and P, P ′ ∈ O such that X heads both P and P ′. For each
n = 1, 2, . . . there is a unique anonymous decision scheme dn such that
dn = D ◦ πn. Clearly D is localized if and only if each dn is localized, D is
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Pareto optimific ex post if and only if each dn is Pareto optimific ex post,
and D is the extended random anonymous dictatorship if and only if each
dn is the anonymous random dictatorship for that n. Therefore Theorem 3
follows from Lemma 4 and the following analogue of Lemma 1.

Lemma 5. If D is weakly strategy proof, then it is localized.

Proof. Fixing a nonempty X ⊂ V and P and P ′ such that X heads both P
and P ′, let M be the set of a ∈ A such that

D(X, a + eP ′) 6= D(X, a + eP ).

Our goal is to show that M = ∅. Supposing otherwise, let n be the minimum
value of |a| for a ∈ M , let L be the set of a ∈ M such that |a| = n, and let
N := L ∪ { a ∈ A : |a| > n }. Then L ⊂ M ⊂ N .

Let B be the convex hull of L, and let C be the convex hull of N . Then
B is the convex hull of its extreme points, each of which is an element of
L. Let b be one of these extreme points. Then b is also an extreme point of
C because any representation of b as convex combination of elements of C
must assign positive weight only to points whose components sum to n. The
separating hyperplane theorem gives a vector ℓ ∈ R

O such that 〈ℓ, b〉 > 〈ℓ, a〉
for all a ∈ N \ {b}. Since a ∈ N whenever aQ ≥ bQ for all Q, all components
of ℓ are negative.

For some α > 0 let λ be the vector with components λQ := αℓQ. For
a ∈ A we have

∏

Q λ
aQ

Q = α
∑

Q ℓQaQ = α〈ℓ,a〉 and

Fλ(a) =
∏

Q∈O

λ
aQ

Q e−λQ/aQ! = α〈ℓ,a〉e−
∑

Q∈O
λQ

/

∏

Q∈O

aQ!.

In particular
Fλ(a)

Fλ(b)
=

(

∏

Q∈O

bQ!/aQ!
)α〈ℓ,a〉

α〈ℓ,b〉
.

For each a ∈ N \ {b} this quantity goes to zero as α → ∞, but in fact
a stronger statement is true and relevant. Since the components of ℓ are
negative, 〈ℓ, a〉 is bounded above by a negative multiple of |a|. The number
of a ∈ A with |a| = n′ is a polynomial function of n′, and

∏

Q∈O bQ!/aQ! is
bounded above by

∏

Q∈O bQ!. Therefore
∑

a∈M\{b} Fλ(a)

Fλ(b)
≤

∑

a∈N\{b} Fλ(a)

Fλ(b)
→ 0 as α → ∞,
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so
∑

a∈A

D(X, a + eP ′)Fλ(a) 6=
∑

a∈A

D(X, a + eP )Fλ(a)

when α is sufficiently large, in which case there is a utility scale U that
fits P such that either (∗∗) or (∗∗) with P and P ′ interchanged holds when
B = Fλ. This contradiction of the assumption that D is weakly strategy-
proof completes the proof.
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