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ABSTRACT 

Nominal Tales of (for) Real Economies: Taste for Inflation, Trade 

Money, Collaterals and Reserve Requirements 
Ana Paula Martins 

 
This research explores the real effects of the monetization of a stylized one-sector capital 

growth model driven by rational representative agents. The capital state equation encompasses a 
finance constraint, a conversion mechanism, and official reserves; an inventory state equation is 
additionally introduced. 

Generalizations assuming taste for nominal growth at the utility level were staged and 
nominal MIU was also tested, as felicity functions combining real as nominal consumption as 
arguments. 

The analysis relies on a discrete methodology. Contrast with a high-powered money 
supply multiplier mechanism is also briefly outlined. Time interval between transactions, the 
money rotation period, is endogenised. 
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Nominal Tales of (for) Real Economies: Taste for Inflation, Trade 

Money, Collaterals and Reserve Requirements 
 
 
Introduction 
 
Conventional production technology of standard growth models suggests no 

immobilization costs other than implied by capital depreciation and time unit definition. That is 
true for continuous or discrete specifications. In contrast, intertemporal monetary representations 
of the (macro)economic system invariably rely on some generalization of the Clower’s constraint 
which, if taken on aggregate, either imposes some, or must preclude some conversion of real 
assets by nominal balances increase. It is the purpose of this research to model the consequences 
of the two - distinct - underlying processes.  

The issue has been circumvented in a variety of ways, usually by assuming some return 
government net transfers – money conversion flows reverted to seigniorage. However, under 
those (and exogenous), money balances control would still hardly fall outside the individual’s 
discretionary power: if more than possessed cash holdings even after the (nominal) transfer are 
desired, they can be requested from the banking system (through borrowing), undesired ones 
eliminated (through outstanding loan repayment without re-signing).  

Another interpretation assumes that cash- in-advance is required prior to any transaction. 
Then each period, net increases in overall trade, calling for money emission, are immobilized. 
That means, say, if all existing currency was obtained through credit, new (net) loans would take 
one period to be granted – by the central bank - and meanwhile production would be waiting. Or 
that all production is in fact “on hold” (yet, without depreciating: we have inventories of all future 
period expenditure but no – other than delay - storage costs) for one period till it gets exchanged 
for money – to then be transferred back to other goods and services. If one then translates the 
restriction into a conventional real capital state equation, one is confronted with the loss of 
approximately 

1
 the change in current period’s output. A loss such as that can be rationalized by 

shopping time, or production-cum-trade waiting time requirements. Yet, standard real growth 
models do not seem to call for a production-before-expenditure (say, consumption and 
investment) assumption; on the other hand, we would rather think money would diminish the 
latter, not add them. But without some time frictions, people would not have a reason to hold 
money, cash: they could keep switching instantaneously real goods (interest-bearing deposits….) 
for money and vice-versa whenever needed: if the price of money is the inverse of the price level, 
the (private) opportunity cost of holding currency is the interest rate; money velocity should 
approach infinity; and this did not happen, not even with credit and other cards. That expenditure 

                                                 
1
 Should the general price level be stable… 
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delays can occur due to borrowing constraints appears possible; and to that extent, that they 
interplay with the rotation of inventory stocks (and its velocity…). 

The main novelty of this research is therefore to produce a sufficiently general constraint 
to generate, firstly, both a CIA-finance 

2
 one and a variable production and exchange waiting 

time. Secondly, simple mechanisms representing the efficiency in the (new) money creation 
process: from a simple almost neutral re- insertion to a high-powered money supply multiplier. 
And thirdly, require (additional) immobilization of real resources, akin to commodity money – 
i.e., encompass the existence real reserve requirements; a rise in these would work similarly to a 
tightening of monetary policy, or to a request for pledges in exchange for money loans. Such 
constraint, along with a closing transaction money demand relation, is then replaced in the simple 
Ramsey’s (1928) growth model; an inventory state equation is superimposed - allowing an 
accountingly consistent interpretation of the finance constraint, both microeconomically as with 
the national income-expenditure identity. Money is introduced in the real model as a mirror, a 
representation, of existing assets – a measurement/conversion device - rather than an asset per se 
– people do not hold money for itself; rather, they hold real wealth through money: by holding 
money, they own a claim, a property title, over existing real assets in the economy, and when they 
pay for goods and services with money they in fact trade, exchange, (part of) wealth they own for 
them -, and relies (as CIA models do) on technical transaction requirements 

3
 – along with 

individual optimization – to justify its possession. 
Obviously, the time costs implicit in the Clower’s constraint tend to generate, in the 

presence of population growth, vanishing per capita nominal balances - with parallel continuous 
deflation; even a stably populated economy that experiences real per capita growth, say, induced 
by exogenous technical progress, cannot escape the latter in the long-run… This occurs for the 
efficient solution, endogenizing the general price level, as in the – inefficient – competitive 
equilibrium outcome - generating a Friedman-like rule. Mathematically, a switch to a Sidrauski’s 
(1967) money- in-utility (here, felicity) function would not solve the problem – because it 
considers real, not nominal, balances as argument. In MIU models, money appears in the utility 
function due to the ease of transactions, to the flow of transaction services, it allows; yet, one 
could argue that only indirectly (after all, as for those of capital) would we experience such 
benefits: in a deterministic world, there would be no reason for liquidity to be overly desired per 
se.  

One could contend that nominal 
4
 rather than real per capita money balances are valued 

along with real consumption – that will provide a sensible steady-state with no inflation; a more 
                                                 

2
 The literature does not identify CIA modelling – which imposes monetization of consumption 

expenditure instead of the conventional transactions money demand equation - with the Clower’s finance 

constraint; yet the latter really imposes some sort of advance condition… 
3
 Wang and Yip (1992) provide an interesting survey of pertinent literature.  

4
 One can find previous modelling with nominal balances in utility in Benassy (1990). 
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or less even weight of nominal and real consumption at the felicity function level also will. The 
assumption could capture individuals’ awareness to level and changes of the “real” size of the 
nominal measurement unit. A less contemplated alternative is to consider the inflation rate itself 
as affecting either the accumulated utility function – and admit it to be able to generate similar 
(but of opposite sign) effects to the real rate of time preference –, or the periodic production 
function. In fact, the presence of inflation seems to generate uneven discounting in experimental 
episodes 

5
; we might as well suggest individual maximization of an accumulated nominally 

discounted felicity function, the latter with nominal quantities as arguments. Under a transactions 
money demand (technology), the weighting for output generates a nominal growth rate argument 
of the utility and/or the production function. Moreover, one could then find a – even if distant – 
(an additional…) justification for Taylor’s type of monetary policy rules 

6
… 

We retain a deterministic 
7
 and discrete context, and stage a representative agent 

economy – isolating the analysis from other public finance concerns (distribution, public goods, 
externalities…). The traditional methodology applied to the model, involving path and steady-
state analysis, allows us to study the effects of changes of technological (or environmental) 
parameters and to address policy issues. Optimal allocations are no longer attainable under 
decentralized equilibria – the simple Clower constraint would involve intrinsic non-neutrality. 
These are nevertheless rich for economic interpretation: a q-theory of investment but also of labor 
contracts and money balances held by firms can now be inferred. 

The exposition proceeds as follows: section 1 introduces the financial constraint in the 
basic representative agent dynamic problem. Mathematical implications of the introduction of the 
inventory state equation with the finance or modified finance constraint are explored in section 2. 
Short-run dynamics and steady-state properties of a general model with reserves and conversion 
delays are explored in section 3. Preferences exhibiting “taste for nominal balance” and “taste for 
nominal growth” are introduced in section 4. Equilibrium pricing systems are devised in section 
5. A high-powered money supply multiplier effect is modelled in section 6. A final appraisal 
produces a concluding section. 

 
 
1. Nominal Conversion: the  Banking System and the Financial Constraint  
 
We will consider a representative – infinitely lived - agent economy, positioned at t = 0 

and deciding for t = 1,2,…, where accumulated discounted felicity is maximized: 

(1.1) ∑
∞

=1t

ρt U(ct) 

                                                 
5
 See Frederick, Loewenstein and O’Donoghue (2002) for recent references. 

6
 See Svensson (2003) for an appraisal. These usually stem from exogenous central bank’s objectives. 

7
 Precautionary motives are therefore not linked to, nor their study an immediate aim of, the research. 
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ct denotes (per capita, real) consumption in period t, ρ is the periodic discount factor 

8
. 

Population grows - at an exogenous constant rate n 
9
, i.e., Lt = (1 + n) Lt-1 - Lt denotes total 

population/labor force existing at time t (during period t…). If individuals value equally and 
additively the utility of all family members, present and future, ρ should be replaced by – or 
interpreted as - ρ = ρ’ (1 + n) 

10
, where ρ’ is the appropriate individual (unit) discount factor; that 

is, if (1.1) represents the objective function of an horizontal as vertical Benthamite household and 

relevant decision unit, (proportional to) ∑
∞

=1t

ρ’t Lt U(ct)  =  L0 ∑
∞

=1t

ρ’t (1 + n)t U(ct). 

The representative consumer-producer must decide whether to produce investment 
goods, it, adding to his pre-existing (physical) capital stock, kt -1 - the unit of which depreciates at 
rate d per period -, or consumption goods, ct, during each period. The goods - made available at 
time t - are homogeneously generated by an aggregate CRS production function, F(Kt-1, Lt), 
implying an average labor product one denoted by yt = f(kt-1), with f(0) = 0 and fk(kt-1) > 0 

around the relevant range of kt-1 = 1t

t

K
L

− , the capital- labor ratio providing today’s output. kt-1 = 

1t

t

K
L

−  as in the Solow-Swan model 
11

; all other per capita variables are defined in a consistent 

time basis of numerator and denominator. 
 
. The economy is a monetized one; there is a currency conversion requirement: “money 

buys goods, goods buy money, but goods don’t buy goods” 
12

- labor and capital services buy 
money, money buys goods, but the former cannot buy goods directly nor vice-versa - and cash 
must meet it. Then, each period – at the end of each period -, total product must be “monetized”: 

 
(1.2) Mt  =  Pt f(kt-1)  

 
Mt denotes the aggregate nominal money stock at time t divided by Lt, labor/population, 

and Pt the general price level – in nominal units - at which it is traded. Transactions are not made 

– not even implicitly… - continuously in time, and money is not instantaneous: if used at a 
transaction, it must be held – by either of the sides – for one period of time. 

                                                 
8
 I.e., ρ = 1 / (1 + ro) where ro is – has the status of a - the discount rate. Then, ro = (1 / ρ) - 1. 

9
 For Portugal, 1953-1995 – using information from Pinheiro et al (1997) -, the average annual population 

growth rate was 0.45% (of employment, 0.77%) and virtually irrelevant. That may not be the case for sub-periods 

– and definitely not for other countries. 
10

 See Barro and Sala -i-Martin (1995), p. 61 and ft. 4. 
11

 See Azariadis (1998), p. 4, for example. 
12

 Clower (1967). 
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t is defined in the appropriate revolving payment period units 
13

 – where the unit of time 
coincides with the time elapse at which additional – or less - money balances are required (and 
we assume the valid production function in the economy has the same time dimension) to trade 
total yt. So, it would be as if transactions – corresponding nominal payments and/or accounting 

clearance - occur at discrete points in time, one time unit apart – and money velocity is one. 
Equation (1.2) establishes the demand for real cash-balances, which becomes completely 
determined by individuals discretion, once they determine (sequences of) kt. Therefore, the 

equation is also one of general price level determination which, given nominal money balances – 
money supply -, adjusts real balances to output. 

Due to (1.2), the inflation rate, π t = Pt / Pt-1 - 1, always approximates the growth rate of 
per capita money balances, mt = Mt / Mt-1 – 1 = [(Lt  Mt) / (Mt -1 Lt -1)] / (1 + n) - 1, minus the 

growth rate of per capita product - or the growth rate of aggregate money balances minus the 
growth rate of production, i.e.: 

 
(1.3)    (1 + π t)  =  (1 + mt) f(kt-2) / f(kt-1)   

 
To the extent that money is needed, changes in private holdings of cash-balances dMt - 

per capita money issuances at time t - can be purchased from the central authority – for a physical 
counterpart, that the consumer must therefore produce -, “priced” – as cash balances are traded in 
the economy - at the inverse of the general product price level, Pt. Then: 

 
(1.4) ct + it + dMt/Pt  =  f(kt-1)  

and: 
(1.5) Mt  =  Mt-1 / (1 + n)  +  dMt  

 
Simultaneously, the central bank reinserts part of these dMt /Pt’s – real goods - through 

loans - in cash, requested to the issuing authority -, dBt/Qt 
14

 in the system, implicitly lending 

                                                 
13

 In the models below, a transactions demand equation and payment rotation practices end up by ruling 

real cash-balances demand. The model would equally apply with a money velocity equation V Mt’ = Pt’ yt’ with 

t’ generically defined and V as income transactions per unit of time – then one unit of time t should have length 

t’/V. Either formulation would be regarded as a technological one, dictated by the speed of business affairs – and 

the time unit to which the effective production function f(kt-1) applies to. For Portugal, using data – from 

Pinheiro et al (1997) - covering 1953-1995, regression, without intercept, of annual per capita nominal GDP on 

(end of the year) per capita nominal aggregate yielded: for (at official, accounting price) gold reserves, 11.1021; 

for central bank total assets, 2.99862; for currency, 16.3533; for narrow money, M1, 4.06849; for M2, 1.42521. 
14

 This models how seigniorage is channelled back to private expenditure. For a closed representative 

agent economy one must assume it is somehow…  
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them at the prevailing rate - Qt is the price of investment in terms of private debt (bank credit) 
value; dBt denotes then credit issuances in period t; we will denote dBt/Qt by dbt. Or it just 

bought assets through open market operations – if the assets were government debt titles, it 
financed government expenditures or transfers (it monetized - net - debt…). Then: 

 
(1.6) ct + it + dMt/Pt - dBt/Qt  =  f(kt-1)  

 
Leaving (other) public finance aside 

15
, we can think that dMt/Pt can be borrowed at the 

prevailing interest rate from the issuing authority and, with no delay, dMt/Pt = dBt/Qt; if 

investment goods are instead purchased by the monetary authority for cash, then the central bank 
will receive capital income from its property; in any case, the authority is owned by all citizens, 
who ultimately collect the revenue and own the bank’s assets. Money is a liability of the issuing 
authority; it can perform such operations to the extent that it is assumed to satisfy collateralized 
transactions: in the first case, by the investment goods on which account the loan was granted, in 
the second, money issuance is backed up by the real assets purchased by the bank... (If instead the 
government made transfers – granted subsidies - to provide the implicit re- insertion, in practice, it 
would have to issue public debt, backed by its future tax-raising ability, on the desired amount 
that would sell to the central bank to get the money; yet, that makes no difference to the real 
model.) 

Capital evolves according to: 
 
(1.7) (1 + n) kt  =  kt-1 + it - d kt-1  =  (1 – d) kt-1 + f(kt-1) - ct + dBt/Qt - dMt/Pt  

 
At each trading-point in time - before trading - the economy’s wealth-value is: 
 
(1.8) Mt + St-1 Pt / Qt  =  Pt kt-1 (1- d) + Pt f(kt-1)    

 
St-1 Pt / Qt is the monetary value of assets not traded during period t. St-1 Pt / Qt = Pt kt-1 

(1- d). 
Suppose there are frictions and only a fraction h of today’s cash issuances meet 

immediate expenditure opportunities. Then:  
 
(1.9) dbt  =  dBt/Qt  =  h  dMt/Pt + (1 - h) dMt-1/Pt-1 (1 – dh) / (1 + n)   

 
and only a fraction – h, an exogenous system parameter - of money balances creation get 

immediate application, with another parcel being delayed to next period. We allow for such 

                                                 
15

 Allowing monetary operations to be reversible without taxes... 
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parcel (investment good – say, c is perishable), waiting to be purchased, to depreciate at rate dh, 

which may be higher or lower than d. We can assume that nominal transfers from (or direct 
purchases by…) the government would have immediate effect, being mirrored in the first term of 
(1.9), with remaining loans – requiring unavoidable credit assessment delays - being represented 
by the second term: a proportion h – then, a government policy instrument - of desired increase in 
money balances is provided by nominal government (net nominal) transfers. 

Alternatively, agents ask for nominal loans to meet payments in period t; part, h, they get 
immediately; (1 – h), with one period lag: loans are channeled trough the commercial banking 
system and take some time. Or, agents obtained the money balances, but there were delays in real 
trade – in delivery, or due to inadequacy to, unanticipated, consumers’ desires concerning the 
consumption-investment choice - or other processing… 

 
As an alternative to (1.9), a longer effective cost can be imposed in the economy: of 

existing investment generated as cash-balance coverage, only a fraction h’ is made operational in 
each period: 

 
(1.10) dbt  =  dBt/Qt  =  h’ dMt/Pt + h’ dMt-1/Pt-1 (1 – h’) (1 – dh) / (1 + n)  + h’ dMt-

2/Pt-2 (1 – h’)2 (1 – dh)2 / (1 + n)2  + … = 

 = h’ [dMt/Pt + (1 - h’) dMt-1/Pt-1 (1 – dh) / (1 + n) + (1 – h’)2 (1 – dh)2dMt -2/Pt-2 

/ (1 + n)2 + … ] = 
 =  [(1 - h’) (1 - dh) / (1 + n)] dBt-1/Qt-1  + h’ dMt/Pt 

 
With part of money creation being made through nominal transfers able to meet 

immediate expenditure, we could have: 
 
(1.11) dBt/Qt  =  (1 - h’) (1 - dh) (dBt-1/Qt-1 – Trt-1) / (1 + n) + h’ dMt/Pt + (1 – h’) Trt  

 
In the aggregate, without frictions in the credit market or other, h, h’ = 1, and dMt/Pt = 

dBt/Qt. Money – fiat money, paper titles defined in nominal units – can be – or can hope to be 
rendered - completely neutral and Mt indeterminate - and also Pt but the indeterminacy is 

completely innocuous 
16

. That is lost – and optimality of “competitive” price formation through 
(1.2) – whenever a portion of dMt/Pt and/or its lags affects individuals’ real budget constraints. 

                                                 
16

 One could argue that money, as unit of account, should have a stable purchasing power – i.e., in the real 

world, such stability could be desirable. Then, a optimal endogenous policy should generate zero (or at least 

undetermined) inflation. Yet, a nominal currency with stably changing real value, with appropriate calculation by 

the public, would provide, in a deterministic world, exactly the same measurement service... The argument is 

pursued in sections 5 and 6 below. 
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Yet, we keep the assumption that from period t-1 to period t, titles in amount per capita Mt-1 - 

currency – (must) circulate in the hands of the public: immediate – real… - re-insertion does not, 
in our research, mean instant money, that could be borrowed and returned immediately, at the 
same point in time; the distinction would not be important for the efficient allocation, but it 
obviously would for an equilibrium: theoretically, instant money involves no seigniorage. 

 
. Suppose no delays exist but money is commodity money – transmutable species - 

which cannot be converted back into other goods (nor yield utility) until one unit of time t has 
passed. Then, dBt/Qt = 0: dMt is transmuted into gold at time t. Of course “dBt/Qt” – Mt - 

continues to exist – but in the hands of the public and being used for trade: at transactions time, 
apart from old capital, there exists f(kt-1) and Mt/Pt real worth of commodities in the market – the 

latter constituting a stock (more or less…) perpetually immobilized. Also, “gold” in the hands of 
the public may erode so that (1.5) is replaced by 

 
(1.12) Mt = (1 – dr) Mt-1 / (1 + n) + dMt 

 
Prices are then defined in quantity of gold. 
A central authority is then superfluous (moreover, money is its own direct 

“collateral”…)… People would deposit the gold in the treasury safe-boxes for convenience only. 
Convertibility but with floating nominal conversion rate of the “deposit slips” would be 
consistent with dBt/Qt = 0 (if the treasury kept the gold immobilized in full) in (1.7) – at trading 

time it would be as if everyone had to trade with gold. 
Of course, economies are expected to function with convertible paper. Fiat money was 

invented to avoid the inherent immobilization cost, allowing the gold to be (physically…) lent – 
for “consumption” uses; (gold) reserve requirements could then be imposed for security reasons: 
to provide an insurance against over- issuance the public is allowed to claim the commodity (with 
a representative agent, he has no problem of credibility towards itself); or because money can 
only be issued at the end of the period, uncertainty or other (extraneous to the model) may require 
more cash-balances than titles effectively issued. They would have to be imposed to finite the 
reserve multiplier mechanism that would develop to gain control of money supply… Then banks 
- the central bank - keep a morsel rr 

17
 of issued papers as commodity in the treasury vault – but 

these titles were (initially) kept convertible. It is as if the reinsertion would become 
18

 - with no 
delays: 

 
                                                 

17
 If rr ≠1, a multiplier effect could develop in a world with deposits… We briefly discuss it at the end of 

section 9.2.  
18

 rr Mt-1 (1 – dh) should be added to the right hand-side of (1.7) to include these idle assets. Yet, Qt may 

be formed after (1.7) only. 
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(1.13) dBt/Qt  =  dMt / Pt - rr [Mt / Pt – (Mt-1/ Pt-1) (1 – dr) / (1 + n)] 

 
Or rather, dBt/Qt = dMt/Pt and part of it – amount rr [Mt / Pt – (Mt-1/ Pt-1) (1 – dr) / (1 + 

n)] - is applied in reserve acquisition. Under a sluggish conversion mechanism such as (1.9), 
“net” reinsertion could be  h  {dMt /Pt - rr [Mt / Pt – (Mt-1/ Pt-1) (1 – dr) / (1 + n)]} + (1 - h) (1 – 
dh) {dMt-1/Pt-1 - rr [Mt -1 / Pt-1 – (Mt-2/ Pt-2) (1 – dr) / (1 + n)]}. 

(If the nominal unit is, or is indexed to, a quantity of “gold” – in fact, real product in our 
simple one-sector economy… -, Mt-1/ Pt-1 should be replaced by Mt-1/ Pt, with reserve 
expenditure rr [Mt / Pt – (Mt -1/ Pt) (1 – dr) / (1 + n)] per period; the same applies to lagged 

mechanisms such as (1.9) if delays add to the process.) 
Notice that such real “vault” reserves are idle pledge: remaining money can have 

collateral in the investment loans that the bank (or rather, the “gold” owners through the bank – 
that lent the gold to the bank, which then lent part of it to investors who transmuted it back to 
capital) – still… - concedes. And/or in (existing assets through) the tax ability the central 
government also detains. 

In a deterministic – fully honest - economy, (immobile…) real reserve requirements 
have no theoretical rationale – rr would be zero; in practice, they would be important in 
maintaining central bank credibility and independence, even in closed economies. On the other 
extreme, it has been argued - Blanchard and Fisher (1989), p. 194 – that a “competitive fiat 
money system would inevitably degenerate into a commodity money system”: on the one hand, 
people would not accept to let go of seigniorage to a private entity; on the other, money would 
have to be fully convertible for paper-money issued by a private entity to be credible, and slight 
distrust, species price change eliciting private arbitrage, – that could outburst often in a changing 
economy…- would lead to conversion effectively occurring… In fact, a 100% coverage (rr > 1 
would mean that some buffer “pocket gold” is also kept under the bed) closely approaches the 
commodity money setting (if also 100% required reserve ratio is imposed on commercial banks). 
Finally, for the period 1953-1995, the coefficient of the regression (without intercept) of 
Portuguese per capita central bank gold reserves (at official, accounting price – at market prices, 
the values would be even higher) on per capita currency circulation was 1.24734, and on high-
powered money of 0.402327 

19
 and they do not change much if we shorten the sample to the more 

recent periods – surely a compelling reason not to neglect its existence 
20

. Of course, the value of 
gold may largely reflect its usefulness as a reserve – then, if there is a fixed amount of (not 
transmutable) gold in the economy, Z, the existence of gold reserve requirements has no impact 

                                                 
19

 On total central bank assets, of 0.231488; on M1, narrow money - currency plus current (checking) 

account deposits -, 0.293378; on M2, 0.102331. 
20

 And possibly of why CIA modelling with similar effects to dBt / Qt = 0 may end up mimicking similar 

consequences … 
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on expenditure: its market price, call it qt, would just adjust so that rr Lt Mt / Pt = qt Z / Pt is kept 

constant over time.  
 
Paper cash reserve requirements – as those usually imposed on commercial banks’ – 

have no role – nor a money supply multiplier - in this economy: recall that all money needs, Mt, 

are currency, chosen optimally – solicited upon request – by the public subject to a cash 
conversion constraint… – at most we can admit that they influence h… We will relax the 
assumption in section 9. 

Also, a Keynesian government “money expenditure” could either be considered included 
in dBt/Qt; or added to (1.13) at the “expense” of real reserves (e.g., these are suddenly or partly 

allowed to be kept as securities, i.e., stockholdings of private capital – then part of the 
immobilization requirement would have disappeared…) 

 
. So far, we disregarded trading - or production delays – as those implicit in the Clower’s 

or conventional cash-in-advance constraint – which takes the form of (1.4), without insertion. A 
rationale advanced for it is severe borrowing constraints faced by consumers (that to explain (1.4) 
we extend to investors): expenditure-makers are constrained to use the (nominal) income they 
received – hence, that existed - in the previous period and Pt ct  + Pt it = Mt-1 / (1 + n) ; factors are 

fully paid at time t, but only purchase with that revenue at the next trading point - or factors are 
only paid after the product is sold (and cannot borrow), even if at pre-agreed real rates. Nominal 
prices only go down when dMt > 0 - and therefore average product increased – till Pt, formed 
after (1.2), equates the exchange rate that balances the value dMt and (because only Lt-1 Mt-1 is 

purchased) the increase in product; as factors are fully paid in real terms at that price, producers 
are resilient to let prices fall any further – in any case, payment and expenditure are simultaneous, 
producers only realize that there is excess supply at the current price level when trading time 
closes, as time goes by.  

Another, is that people do not foresee production changes before they actually occur in 
the market – at transaction clearing time, that occurs discretely; as they may not be satisfied with 
what has been produced, they only change balances after they confirm their willingness to buy – 
one would say that new products, innovations, are never found worthwhile borrowing to pay for 
them in the period they are launched... Yet another, is that to use money one has to request it one 
period of time in advance, or must hold the amount during one period; as it bears no interest, 
individuals/society must lose – pay in real goods -, are discouraged to produce, one unit of time 
of interest and money real depreciation for the utilized numeraire at a (final product) transaction. 

Absence of delays is consistent with the production function interpretation of the 
standard real growth model 

21
 – in which time to build 

22
 or trade would suggest the use of 

                                                 
21

 See Barro and Sala -i-Martin (1995) and Aghion and Howitt (1998) for recent surveys. 
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(1.14) ct + it + dyt  =  f(kt -1)  

 
where dyt = yt – yt-1 / (1 + n) rather than the commonly used identity, ct + it =  f(kt-1); 

then, ct + it =  f(kt-2) and current expenditure falls on previous period product - the hypothesis 

would have the same nature as that only past capital is operational for the current period 
production process, that Kt-1 rather than Kt is used as argument of F(., Lt) = Lt yt. The inclusion 
of dyt could as well meet a requirement of previous production relative to aggregate expenditure, 

consumption as investment – say, a production- in-advance type of hypothesis: if CIA assumes 
that “a seller/producer who sells his output this period for money will be able to use it only in the 
next period” 

23
, in a world with credit, we would more easily accept that what is produced this 

period is only available for consumption and investment next period - resources must be 
“allocated- in-advance” to the production process and immobilized until the final product is sold 
(that in (1.14) takes one period). Yet, one of the benefits of the use of money would be to offset, 
at least in part, such time costs. On the other hand, if they exist, their effects would hardly be 
monetized in a fiduciary world – that is, more appropriately, if (1.14) holds, we can just have Mt 
= Pt f(kt-2), with factors also being paid with one period lag. The Clower’s constraint would 

mirror, nevertheless, similar expected real effects. A 100% required real reserve ratio would 
approximate them as well in the models to follow – but only if reserves did not suffer real 
depreciation (or dyt also did).  

An obvious generalization considered below includes loss dyt factored by g’ (0 in usual 

models… We allow for depreciation); except in section 9, we assume it is included in rr – say rr = 
rr’ + g’, where rr’ denotes the required real reserve ratio that the central bank follows.  

 
. Immobilizations – and ignore for the moment time-to-build – waiting to be sold imply 

the existence of stocks: dMt / Pt in a Clower finance constraint (1.4) represent, induce, change in 
inventories. Let inventory (stock) per capita be denoted by zt and depreciate at rate dh; then a new 

state equation must be added to the general problem: 
 
(1.15) zt  =  zt-1 (1 – dh) / (1 + n)  +  dMt / Pt  

 
And zt ≥ 0 – a real or effective “no-Ponzi-game” condition or constraint... Even if dh = 1, 

we still should be aware of this constraint, lest we lose the meaning of an average product 
function, f(kt -1); that is, if a positive dMt / Pt could represent production losses, hardly a negative 

value – adding to production out of the air…- could be justified. 
                                                                                                                                            

22
 Or rather, time to produce; the device is more general and simple than, say, Kydland and Prescott’s 

(1982). 
23

 Eden (2005), p. 86. 
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Notice that total immobilization of resources from time t-1 to t implicit in (1.14) 
amounts to f(kt-2) – the corresponding “slack” stock may not require modelling – constraining… 

they may just be assumed deducted from current production, f(kt-1), and not necessarily adding to 

past inventories in (1.15) - because, naturally, f(.) > 0: if only these costs are involved, the 
identity (1.4) becomes ct + it =  f(kt-2), which therefore exists. The same can be said for reserves, 
once, due to the price equation, their change is rr [Mt / Pt – (Mt-1/ Pt-1) (1 – dr) / (1 + n)] = rr 
[f(kt) – f(kt -2) (1 – dr) / (1 + n) ] – the stock is always a fixed proportion of current product per 
capita, rr Mt / Pt = rr f(kt-1) – its depreciation having a similar nature as that of capital itself.  

The conversion process – (1.9) or (1.10) imposes practical state variable restrictions, but 
rather implies public budget management through taxes, transfers and debt issuances; if positive 
changes in the money stock occur, all is well; but negative ones imply “economic overheating” 
and the goods the government would be supposed to exchange for the undesired money balances 
can only come at the expense of property in the hands of the public. That means dMt / Pt - dbt 

would be bounded: the government can but switch resources into the system to the extent such 
goods exist and are idle; even if it could use inventories some now and then, it would not be able 
to play that game systematically – that would mean resources would flourish all the time… Then, 
we can impose dMt / Pt - dbt ≥ 0 - government cannot “invent” goods in excess of f(kt-1); or dMt 
/ Pt ≥ 0 and then in the first re- insertion mechanism, if dMt / Pt - dbt < 0, dMt-1 / Pt-1 must be 
(was) large… We can collapse both to dMt / Pt - dbt ≥ - Max{(1 – h) dMt-1 (1 – dh) / [(1 + n) Pt-
1], 0} or dMt / Pt ≥ Min{- dMt-1 (1 – dh) / [(1 + n) Pt-1], 0}; or admit that the mechanism works 

through inventories as well and imposes (independently, i.e., in absence of delays implicit in 
(1.15)…): 

 
(1.16) zt  =  zt-1 (1 – dh) / (1 + n)  +  dMt / Pt - dbt   

 
Again, zt ≥ 0... 

 
. Even if individuals can only purchase with previous period money balances and cannot 

- do not - borrow, at time t firms have to pay Mt Lt of resources in money; whatever is not met by 

current purchases, must be requested from the central bank. This implies that a conversion 
mechanism can be coupled, accumulate, with the previous – Clower’s - one. dMt/Pt = yt – yt-1 / (1 
+ n) (Pt / Pt-1) can therefore be factored by g – now including the nominal balances purchase; g = 

2 admits the full effective immobilization of current period’s output of the usual Clower 
constraint (with dBt/Qt then deducted to capture the real re- insertion). We would require zt  =  zt-1 
(1 – dh) / (1 + n)  +  g dMt / Pt - dbt ≥ 0; the national income identity has, therefore, a mirror 

representation involving change in inventories: 
 
(1.17) ct + it + g dMt/Pt – dbt  =  f(kt -1)  =  ct + it + zt – zt-1 (1 – dh) / (1 + n)    
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A value of g that differs from 2 when dbt is included can reproduce different timing of 

payments and conversion operations; it might mimic a different time span than 1 of the effective 
production function, or capture the inverse of income velocity of money (currency) demand - a 
concept that the finance constraint replaces: rather, with it, the unit time period is the one for 
which the money velocity, exogenously and technically determined, is one – the time interval at 
which money would perform a rotation, complete a payment cycle of the goods that the economy 
produces, and changes in its size are/can be demanded (noticed). In appendix A, we use the 
finance constraint to suggest – a Baumol-Tobin type – endogenous determination of the 
appropriate time spanning period(s) between transaction points; in the text, we assume it given. 

Lastly, notice that if money exchanges were performed continuously between t-1 and t – 
even if expenditure was only realized at the end of the (discrete) period -, one could argue that 

dMt/Pt should in fact be replaced by ∫
−

t

t

u

u

du
du
P

M
d

1

)(
 or )(

t

t

P
M

d  which equals dyt (That would be 

compatible with instant money…); then the money finance constraint gains real independence – 
and we can hope for money neutrality. Indivisibilities in the vertical production process implying 
accumulated flows being traded at discrete time intervals and/or at fixed price imply terms of the 
order of dMt / Pt in the flow equation – that, because money does not pay interest, cannot be 

“sterilized” by individuals: a change in stock over a stock; that will imply radical changes in the 
optimal paths of the economy – and real consequences of nominal fluctuations as are attributed to 
staggered contracts and/or price rigidity. 

 
. We will stage three economies - one with commodity reserve requirements and MA(1) 

type of adjustment (1.9); another with the infinite – AR(1) type - adjustment (1.10). Finally, lag 
structure (1.9) is superimposed to the economy without capital but with a storable good. In later 
developments, we will concentrate on the first case. Except in section 7, we will focus on 
efficient allocations, on a central planner’s view. 

 
 
2. Short-Run Dynamics and Steady-State Properties: A Mathematical Note 
 
. Let us stage the simple finance constraint. The planner’s problem is: 
 

 
, , , , ,t t t t t tc k dM M P z

Max   ∑
∞

=1t

tρ U(ct)  

(2.1) s.t:  (1 + n) kt  =  (1 – d) kt-1 + f(kt-1) - ct – dMt/Pt  
(2.2) Mt  =  Mt-1 / (1 + n) + dMt  
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(2.3) Mt  =  Pt f(kt-1)  
(2.4) zt  =  zt-1 (1 – dh) / (1 + n)  +  dMt / Pt  
(2.5) ct ≥ 0, kt ≥ 0, Mt ≥ 0, zt ≥ 0   
(2.6) Given k0, M0, z0  

 
As dMt/Pt = f(kt-1) – f(kt -2) Pt-1 / [Pt (1 + n)] there is always an advantage in providing 

for deflation – by (2.1), it would add to capital or consumption. In a steady-state, given (2.4) and 
that zt ≥ 0, an optimal solution would at best drive dMt / Pt to zero – reachable by setting Mt / Mt-

1 = 1 / (1 + n). Out of the steady-state, monetary policy would be ascribed to “sterilize” 

inventories, after turning first period stocks into potential capital: one would exhaust or convert 
zt, and set Mt / Mt-1 = 1 / (1 + n) – fix aggregate money balances - and the economy would be 

indistinguishable from that of the conventional real model – without inventories. In fact this is the 
solution we will get; let us prove that that is the case. 

Let us replace the price determination equation. Then: 
 

 
, , , ,t t t t tc k dM M z

Max  ∑
∞

=1t

tρ U(ct)   

(2.7) s.t:   (1 + n) kt  =  (1 – d) kt-1 + f(kt-1) - ct – dMt f(kt-1) / Mt   
(2.8) Mt  =  Mt-1 / (1 + n) + dMt  
(2.9) zt  =  zt-1 (1 – dh) / (1 + n)  +  f(kt-1) dMt / Mt  
 ct ≥ 0, kt ≥ 0, Mt ≥ 0, zt ≥ 0; given k0, M0, z0  

 
The money stock must always be non-negative – in fact, one would want it to be strictly 

non-negative. This implies bounds for dMt : Mt = dMt + Mt-1 / (1 + n) > 0 implies dMt > - Mt-1 / 
(1 + n); Mt-1 / (1 + n) = Mt - dMt > 0 implies dMt < Mt. Then, in the control problem, we can 
replace the restrictions on the sign on Mt for those on dMt :  - Mt-1 / (1 + n) < dMt < Mt. 

Likewise, zt ≥ 0 is going to require that  - zt-1 (1 – dz) / (1 + n) ≤ dMt / Pt ≤ zt. Yet, due 
to the previous paragraph and the price determination equation (2.3), - Mt -1 / [Pt (1 + n)] = - f(kt-

1) Mt -1 / [Mt (1 + n)] ≤ dMt / Pt ≤ Mt / Pt = f(kt-1). And at time t, the lower bound, i.e., zt ≥ 0, 
imposes dMt ≥ - zt-1 (1 – dh) Mt/[f(kt -1) (1 + n)], requiring Mt  ≥  Mt-1 / [{1 + zt-1 (1 – dh) /[f(kt-1) 

(1 + n)]} (1 + n)]. 
So, in fact, change in inventories are bounded to be between  - Min{zt-1 (1 – dz), f(kt-1) 

Mt-1 / Mt} / (1 + n) ≤  dMt / Pt ≤ Min[zt, f(kt-1)], or - Min{zt-1 (1 – dz) Mt / f(kt-1), Mt-1} / (1 + n) 
≤ dMt ≤ Mt Min[zt / f(kt -1), 1]. That will also make the collapse of the two state equation of an 

optimal programme possible – yet, we delay that for later manipulations. 
 
We can write the lagrangean form of the previous problem as: 
 



 17

(2.10) 
, , , , , , ,t t t t t t t tc k dM M z

Max
λ µ η

L = ∑
∞

=1t

tρ U(ct) + ∑
∞

=1t

λt [- (1 + n) kt  + (1 – d) kt-1 + f(kt -1) - ct - 

- dMt f(kt-1) /Mt ] + ∑
∞

=1t

µt [- Mt  +  Mt-1 / (1 + n) + dMt] + ∑
∞

=1t

ηt [- zt  +  zt-1 (1 – dh) / 

(1 + n) + f(kt -1) dMt / Mt ]   
(2.11) ct ≥ 0, kt ≥ 0, - Min{zt -1 (1 – dh) Mt/f(kt-1), Mt-1} / (1 + n) ≤ dMt ≤ Mt Min[zt / 

f(kt-1), 1] 

 
In the current form, the resolution may then follow the maximum principles – we take 

that ct ≥ 0, kt ≥ 0 are satisfied and these will naturally follow interior solutions. 

Transversality conditions must be imposed – replacing the requirement of a final level of 
the two variables 

24
, requiring lim

t →∞
 λt kt  =  lim

t →∞
 ρt Uc(ct) kt  = 0, lim

t →∞
 µt Mt  =  0 and lim

t →∞
 ηt zt  =  

0. We will assume transversality as SOC are always satisfied – the latter usually are for concave 
felicity and average product functions in real growth models. 

Notice that the implied Hamiltonian would be linear in the control dMt, usually 

generating bang-bang trajectories – switching over the limiting boundaries of the control – and/or 
singular solutions 

25
... The resolution, nevertheless, would obey the rules of FOC of any static 

program applied to (2.10) – or other lagrangean versions. And that is the type of path we will 
conclude for… 

We will suggest the interior solutions by replacing the restrictions: 
 

(2.12)
, , ,t t t tk M z
Max

η
∑

∞

=1t

tρ U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – [Mt – Mt-1 / (1+n)] f(kt -1) /Mt}+ 

 + ∑
∞

=1t

ηt {- zt  +  zt -1 (1 – dh) / (1 + n) + f(kt -1) [Mt – Mt-1 / (1 + n)] / Mt }   

 kt ≥ 0, Mt ≥ 0, zt ≥ 0;  given k-1, k0, M-1, M0, z0 

 
Restrictions were eliminated by successive replacement of “free” (non state) control 

variable. Let us ignore then the boundary constraints for the moment. F.O.C., along with the 
restriction, require, for t = 1, 2, 3,…: 

 

(2.13) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc(ct) + ρ Uc(ct+1) [(1 – d)+ f’(kt) {1 – [Mt+1 – Mt / (1 

+ n)] /Mt+1}] )  +  ηt+1 f’(kt) [Mt+1 – Mt / (1 + n)] / Mt+1  =  0   

                                                 
24

 For a finite horizon problem, t = 1,…, T, either the last (T-1-th) equations – FOC’s - would be 

changed or we would require two terminal values - for T and T + 1 – of each of the two variables. 
25

 See Clark (2005), for example. A well-known example occurs in the standard neoclassical one-sector 

growth model, our departing real economy, if felicity is linear – see Intriligator (1971), p. 413-415. 
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(2.14) 
t

W
M

∂
∂

  = { ρt [ - Uc(ct) (Mt-1 / Mt
2) f(kt-1) + ρ Uc(ct+1) (1 / Mt+1) f(kt)]  +  ηt 

f(kt-1) (Mt -1 / Mt
2)  -  ηt+1 f(kt) / Mt+1 } / (1 + n)  =  0   

 

(2.15) 
t

W
z

∂
∂

  =  -  ηt  +  ηt+1 (1 – dh) / (1 + n)  =  0 

 
If an interior solution for zt were possible, (2.15) would imply ηt+1 / ηt = (1 + n) / (1 – 

dh). On the one hand, (2.13) would suggest that then, for a steady-state, either 
- ηt is zero and the state equation irrelevant or redundant; (2.14) would imply that in an 

interior steady-state path ρt / Mt would be constant – with Mt changing at the negative rate ρ –1 

(or ρ (1 + n) – 1 if future generations are valued) - or vanish; as ρt / Mt  constant would require in 

(2.14) 
t

W
M

∂
∂

 = [ρt / Mt] [ ρ - 1/ρ ] = 0, it becomes impossible: we would have to have a trivial 

solution for Mt, Mt = 0. Then Mt / Mt-1 is indeterminate; as the state equation must be complied 
with, [Mt – Mt-1 / (1 + n)] / Mt-1 = 0 requiring Mt / Mt-1 = 1 / (1 + n) – 1.  

- or in (2.13), [Mt – Mt-1 / (1 + n)] / Mt-1 = 0. As, for an interior steady-state path (2.14) 

requires that ρt / Mt and ηt / Mt grow at the same rate or vanish; as ηt grows necessarily and ρt 

decreases, that is impossible. That implies the trivial – corner - solution Mt = 0, requiring 
t

W
M

∂
∂

 < 

0 in the steady-state.  

Otherwise, 
t

W
z

∂
∂

 < 0 and we get immediately to zt = 0 – or its bound. But then, the state 

equation implies [Mt – Mt-1 / (1 + n)] = 0 and per capita money balances decrease at the 
population growth rate. Or, the terms multiplying ηt  and ηt+1 in (2.13) must zero and [Mt+1 – Mt 

/ (1 + n)] = 0 for the equality of the expression to zero to apply while ρt / ηt does not tend to a 

constant… 
If z0 < M0 / P0,  zt > 0 will be more stringent than Mt > 0. zt = 0 would be reach as 

quickly as possible and zt  =  zt-1 = 0, as well as change in inventories, dMt / Pt = f(kt -1) dMt / Mt 
= 0. Then, because Mt  =  Mt-1 / (1 + n) + dMt implies  

 
(2.16) Mt / Pt = f(kt-1) = Mt-1 / [Pt (1 + n)] + dMt / Pt = Mt-1 f(kt-1) / [Mt (1 + n)] + dMt / 

Pt   

 
if dMt /  Pt = 0 and change in inventories is annulled, 1 = Mt-1 / [Mt (1 + n)]: the 

aggregate money stock is stabilized and per capita money balances decrease at the rate of 
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population growth: Mt / Mt-1 = 1 – 1/(1+n) in this case, we jump immediately to the Ramsey real 

world. 
If z0 > M0 / P0, because zt depreciates, we do not expect the opposite to occur and that 

Mt could become stringent more rapidly than zt. If it does, then Mt stabilizes (along with prices in 
a steady-state) and zt decreases at rate (1 – dz) / (1 + n) – 1, while dMt / Pt is “doomed” to be 
positive and a proportion 1 – 1 / (1 + n) of f(k*); or aggregate money balance stabilizes, Mt 
decreases at the rate of population growth – or 1 / (1 + n) – 1 - and zt decreases at rate dz. 

Notice that the fact that re-insertion is not allowed implies we cannot switch between 
inventories and the capital stock unless through money and the parallel dynamics of the two 
aggregates, money and inventories is therefore forceful…  

Also, due to the fact that (after…) zt goes to zero, both state equations – of zt and Mt - of 
the original form become redundant; given the previous reasoning, and as zt may be more 
stringent than Mt, the money state equation becomes redundant sooner than that of zt. We might 

as well have worked with: 
 

(2.17)   
,t tk z

Max ∑
∞

=1t

tρ  U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt –  zt  +  zt-1 (1 – dh) / (1 + n) }  

 s.t.:    kt ≥ 0,  zt ≥ 0  

 
while keeping in mind that Mt = Pt f(kt-1), Mt ≥ 0, and  

 
(2.18)   Mt = Mt-1 / (1+n) + Pt [zt  -  zt-1 (1 – dh) / (1 + n)] = Mt-1 / (1 + n) + Mt [zt - zt-1 

(1 – dh) / (1 + n)] / f(kt-1).  

 
The linearity of the discrete Hamiltonian with (two) state equations - on kt and zt - 

underlying (2.17) in the implicit control dzt  = zt  -  zt-1 (1 – dh) / (1 + n) is immediate: a bang-
bang result is  expected, with zt vanishing: using the bound in (2.11) – or setting z1 = 0 on (2.9) -, 
dM1 = - z0 (1 – dh) M1/[f(k0) (1 + n)], implying M1 = M0 / [{1 + z0 (1 – dh) /[f(k0) (1 + n)]} (1 + 
n)]; as then z1 = 0, Mt = Mt-1 / (1 + n), t = 2,3,… Then, aggregate money balances are constant – 

the per capita stock of money decreasing at the population growth rate - after t = 2: we get the 
Samuelson (1958) rule. 

Note that the two state equation become incompatible unless in trivial solutions. If in a 
particular solution zt > 0, then the state equation on zt would become redundant – one of the two, 
any way. We therefore proceed to the opposite case: replace dMt / Pt on the problems and keep 

the previous conclusion in mind. 
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The old as the new form would point to a drive of change in real inventories to zero – 
implementable with Pt and Mt decreasing at rate 1/(1+n) - 1. The marginal product of capital 

follows, with consumption: 
 
(2.19) f’(kt)  =  (1 + n) Uc(ct) / [Uc(ct+1) ρ] -  (1 – d)  

while 
(2.20)   ct  = - (1 + n) kt  + (1 – d) kt-1 + f(kt-1)  

 
that can be replaced in (2.19), generating the Ramsey real path – but for a starting capital 

stock k’0 that includes pre-existing inventories: in the first state equation (i.e., for t = 1), k0 (1 - d) 
is replaced by k’0 (1 - d) where k’0 solves k’0 (1 – d) = k0 (1 - d) + z0 (1 – dh) / (1 + n) + f(k0) – 
f(k’0). It is as if initial inventories are transformed into capital immediately (and kept at zero 

afterwards). The economy reaches the steady-state for which: 
 
(2.21) f’(k*)  =  (1 + n) / ρ -  (1 – d)  
 
The dynamics would imply that simply by depressing prices, people are wealthier and 

therefore buying immediately becomes affordable - by curtailing money supply when the product 
rises and thus inducing a decrease in the price level, the problem of different timing of “usable” 
income receipt, constrained at time t to that obtained by Lt-1 individuals, but shared by Lt, and 

expenditure is solved; but then transfers or loan planning would avoid the problem (if used in the 
purchase of investment goods, capital, it would be worthwhile…). The mechanism could be 
useful, though, to reproduce the presence of exogenous borrowing constraints: which would be 
realistic for private consumption, usually not backed by credit – and as traditional CIA models 
assume; or, say, rules conditioning aggregate real borrowing to increase at previous period 
growth…  

 
. Even with transfers or free individual borrowing, some delays can still arise in the 

conversion process: we get to the proposed re- insertion mechanisms. Assume the simplest one 
with a lag and assume the absence of the borrowing constraint of the previous problem – and the 
state equation ruling inventories in now (1.16). Then the planner’s problem is 

 

 
, , , , ,t t t t t tc k dM M P z

Max  ∑
∞

=1t

tρ  U(ct)   

(2.22) s.t: (1 + n) kt =  (1 – d) kt-1 + f(kt-1) - ct – (1 – h) dMt / Pt + (1 – h) dMt -1 (1 – dh) 
/ [(1 + n) Pt -1]  

(2.23) Mt  =  Mt-1 / (1 + n) + dMt  
(2.24) Mt  =  Pt f(kt-1)  
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(2.25) zt  = zt-1 (1 – dh) / (1 + n)  + (1 – h) dMt / Pt - (1 – h) dMt-1 (1 – dh) / [(1 + n) Pt-1]  
 ct ≥ 0, kt ≥ 0, Mt ≥ 0, zt ≥ 0; given k-1, k0, M-1, M0, z0 

 
The discrete Hamiltonian still exhibits a linearity in the control dMt - a bang-bang result 

could be expected – yet the lag structure is now much more complex. We can replace all the 
constraints in the objective function and derive: 

 

(2.26)
, , ,t t t tk M z
Max

η
∑

∞

=1t

tρ U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – (1 – h) [Mt – Mt-1 / (1 + n)] f(kt-

1) /Mt + (1 – h) (1 – dh) [Mt-1 – Mt-2 / (1 + n)] f(kt-2) / [(1 + n) Mt-1]} + 

+ ∑
∞

=1t

ηt {- zt  +  zt-1 (1 – dh) / (1 + n) + (1 – h) f(kt-1) [Mt – Mt-1 / (1 + n)] / Mt - (1 – h) 

f(kt-2) [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] / Mt-1 }   

 
FOC are 
 

(2.27) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc(ct) + ρ Uc(ct+1) [(1 – d)+ f’(kt) {1 – (1 – h) [Mt+1 – 

Mt / (1 + n)] /Mt+1}] + ρ2 Uc(ct+2) f’(kt) [(1 – dh) / (1 + n)] (1 – h) [Mt+1 – Mt / (1 + n) ] / Mt+1 ) 

+  f’(kt) { ηt+1 [Mt+1 – Mt / (1 + n)] / Mt+1 - ηt+2 [(1 – dh) / (1 + n)] [Mt+2 – Mt+1 / (1 + n)] / 
Mt+2 } =  0   

 

(2.28) 
t

W
M

∂
∂

  =  ρt { - (1 – h) Uc(ct) (Mt-1 / Mt
2) f(kt-1) + ρ Uc(ct+1) {(1 – h) (1 / 

Mt+1) f(kt) + (1 – h) (1 – dh) (Mt-1 / Mt
2) f(kt-1) / (1 + n)} - ρ2 Uc(ct+2) (1 – h) (1 – dh) (1 / Mt+1) 

f(kt) / (1 + n)  +  (1 – h) [ ηt f(kt -1) [(Mt-1 / Mt
2) -  ηt+1 f(kt) {(1 / Mt+1) + [(1 – dh) / (1 + n)] 

[(Mt-1 / Mt
2)} +  ηt+2 f(kt+1) [(1 – dh) / (1 + n)] (1 / Mt+1) ]  } / (1 + n) =  0   

 

(2.29) 
t

W
z

∂
∂

  =  -  ηt  +  ηt+1 (1 – dh) / (1 + n)  =  0 

 
Again, for an interior solution for (2.28), Mt had to grow faster than (1 + n) / (1 – dh) and 

Mt is trivial. If zt = 0 is kept, (
t

W
z

∂
∂

 < 0), capital evolves as in a real Ramsey world from t = 

1,2,3,…., with starting capital stock k’0 that solves k’0 (1 – d) + f(k’0) = k0 (1 - d) + z0 (1 – dh) / 
(1 + n) + f(k0). 

A zero inventory-driven monetary policy can be maintained following z1 = z0 (1 – dh) / 
(1 + n)  + (1 – h) f(k0) [M1 – M0 / (1 + n)] / M1 - (1 – h) dM0 (1 – dh) / [(1 + n) P0] = 0 and – for 
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zt = 0 afterwards - f(kt -1) [Mt – Mt-1 / (1 +n)] / Mt  =  f(kt -2) (1 – dh) [Mt-1 – Mt-2 / (1 + n)] / [Mt-1 

(1 + n)], a flow which will be rotating from t = 2,3,…  
That implies a path for t = 2,3,…: 
 
(2.30) [Mt – Mt-1 / (1 +n)] / Mt  =  [f(kt -2) / f(kt-1)] [(1 – dh) / (1 + n)] [Mt -1 – Mt-2 / 

(1 + n)] / Mt-1  =  [f(k0) / f(kt-1)] [(1 – dh) / (1 + n)]t-1 {[M1 – M0 / (1 + n)] / M1}   

 
with {[M1 – M0 / (1 + n)] / M1} f(k0)  =  dM0 (1 – dh) / [(1 + n) P0] - z0 (1 – dh) / [(1 + 

n) (1 – h)], provided the expression can be kept between – Mt-1 / (1 +n) ] / Mt and 1 (if z0 (1 – dh) 
/ [(1 + n) (1 – h)] – (1 – h) dM0 (1 – dh) / [(1 + n) P0] > 0, Mt will decrease from t = 0 to t=1, i.e., 
[M1 – M0 / (1 + n)] < 0, and, necessarily, the second bound will be complied with) and thus Mt ≥ 

0. We can manipulate the expression to: 
 
(2.31) Mt  =  [Mt-1 / (1 +n)] / (1 - [f(k0) / f(kt-1)] [(1 – dh) / (1 + n)]t-1 {[M1 – M0 / (1 

+ n)] / M1})  = 

=  [Mt-1 / (1 +n)] / (1 - [f(k0) / f(kt-1)] [(1 – dh) / (1 + n)]t-1 {[M1 – M0 / (1 + n)] / M1})  

or 
(2.32) 1 + mt = [1 / (1 + n)] / (1 - [f(k0) / f(kt-1)] [(1 – dh) / (1 + n)]t -1 {[M1 – M0 / (1 + 

n)] / M1}) - 1 

 
Then for Mt ≥ 0, [f(k0) / f(kt -1)] [(1 – dh) / (1 + n)]t-1 {[M1 – M0 / (1 + n)] / M1} ≤ 1 for t 

= 2,3,… For t = 2, it requires that dM0 (1 – dh) / [(1 + n) P0] - z0 (1 – dh) / [(1 + n) (1 – h)]  ≤ 
f(k1) (1 + n) / (1 – dh). Stability is guaranteed because, – 1 ≤ [(1 – dh) / (1 + n)] ≤ 1: in the steady-
state, the rate of change of Mt converges to 1 / (1 + n) – 1. In the short-run, for given t, mt 
increases – similarly to a Phillips curve - with f(kt-1) iff M1 – M0 / (1 + n) < 0; more precisely, it 

increases with f(kt-1) / [(1 – dh) / (1 + n)]t-1. 

It is easy to show – we will prove it for the more complex case of section 3.1 – that 
targeting zt = 0 and [Mt – Mt-1 / (1 + n)] = 0 for t = 2,3,… allowing z1 > 0 is not better, in real 

terms, than the current policy.  
 
. By targeting null inventories, the central authority would reach the same objective as 

with hypothetical money transfers – we are assuming that at most they can only be used in part (h 
of issued currency)… Time losses are neutralized. But money balances – and prices - vanish, a 
quite unpractical outcome. 

Adding taste for real balances as a second argument of the utility function – the usual 
MIU case - would not help us much, given that it amounts to introduce output itself as directly 
valued in felicity: the efficient long-run path would also imply a decreasing price level in the 
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presence of population growth. Introducing nominal money could – we leave its discussion for 
section 5. 

Imposing a real official reserve requirement will induce real but not significant nominal 
effects: it will not change the pattern of the optimal monetary policy. rr {f(kt-1) – f(kt-2) / [(1 – dr) 

(1 + n)]} is now deducted from the capital state equation – and will be accounted for in the real 
dynamic path.  

 
In some subsections, we will append the restriction - f(kt-2) / (1 + n)  ≤  f(kt-1) dMt/Mt  ≤ 

f(kt-1)or equivalent to cover for the inventory NPG one; the left bound implies that existing 

inventories cannot exceed previous period production – we assume it would have perished… Yet, 
we will not forget the effective bound it tries to represent – and look for paths where the new - 
artificial - bound is not stringent. 

 
 
3. Short-Run Dynamics and Steady-State Properties 
 
If we combine the three mechanisms of the previous section, the planner’s problem 

becomes: 

 
, , , , , ,t t t t t t tc k dM M db P z

Max  ∑
∞

=1

)(
t

t
t cUρ   

(3.1) s.t:  (1 + n) kt  =  (1 – d) kt -1 + f(kt -1) - ct + dbt - g dMt/Pt - rr [Mt / Pt – (Mt -1/ Pt-

1) (1 – dr) / (1 + n)]  
(3.2) dbt  =  h dMt/Pt + (1 - h) dMt-1/Pt-1 (1 – dh) / (1 + n)   
(3.3) Mt  =  Mt-1 / (1 + n) + dMt  
(3.4) Mt  =  Pt f(kt-1)  
(3.5) zt  = zt-1 (1 – dh) / (1 + n)  + (g – h) dMt / Pt - (1 – h) dMt-1 (1 – dh) / [(1 + n) Pt-1]  
 ct ≥ 0, kt ≥ 0, Mt ≥ 0, zt ≥ 0; given k-1, k0, M-1, M0, z0   

 
In lagrangean form with some replacements (db in (3.7) should be understood replaced 

by (3.2)): 
 

(3.6)
, , , , , , ,t t t t t t t tc k dM M z

Max
λ µ η

L = ∑
∞

=1t

tρ U(ct) + ∑
∞

=1t

λt {- (1 + n) kt  + (1 – d) kt-1 + f(kt-1) - ct - 

- (g – h) dMt f(kt-1) /Mt + (1 – h) [(1 – dh) / (1 + n)] dMt-1 f(kt-2) / Mt-1 - rr [Mt / Pt – 

(Mt-1/ Pt-1) (1 – dr) / (1 + n)]} + ∑
∞

=1t

µt [- Mt  +  Mt-1 / (1 + n) + dMt] +   

+ ∑
∞

=1t

ηt {- zt  +  zt-1 (1 – dh) / (1 + n) + (g – h) f(kt-1) dMt / Mt - (1 – h) f(kt-2) [(1 – dh) 

/ (1 + n)] dMt-1 / Mt-1 }   
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(3.7) - Min{zt -1 (1 – dh) Mt/f(kt-1) - dbt Mt/f(kt-1), Mt-1} / (1 + n) ≤ dMt ≤ Mt Min[zt / 
f(kt-1) + dbt Mt/f(kt-1), 1] 

 ct ≥ 0, (kt ≥ 0,)  

 
In the current form, the resolution may follow the maximum principles. Notice that the 

implied Hamiltonian would be linear in the control(s) dMt, as in section 2: even losing the 
inventory state equation, we will get to the same path as before, with dMt immediately set to zero 

(after z) and per capita money balances increasing at the rate of population growth. 
We will suggest the interior solutions by replacing the restrictions: 
 

(3.8) 
, , ,t t t tk M z
Max

η
 ∑

∞

=1t

tρ  U{(1 – d) kt -1 + f(kt-1) - (1 + n) kt – (g – h) [Mt – Mt-1 / (1 + n)] 

f(kt-1) /Mt + (1 – h) [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] f(kt-2) /Mt-1 - rr [f(kt-1) – f(kt-2) (1 – 
dr) / (1 + n)]} + 

+ ∑
∞

=1t

ηt {- zt  +  zt-1 (1 – dh) / (1 + n) + (g – h) f(kt-1) [Mt – Mt-1 / (1 + n)] / Mt - (1 – h) 

f(kt-2) [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] / Mt-1 }   
 kt ≥ 0, Mt ≥ 0, zt ≥ 0;  given k-1, k0, M-1, M0, z0 

 
Restrictions were eliminated by successive replacement of “free” (non state) control 

variable. Let us ignore then the boundary constraints for the moment. F.O.C., along with the 
restriction, require, for t = 1, 2, 3,…: 

 

(3.9) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc(ct) + ρ Uc(ct+1) [(1 – d)+ f’(kt) {1 – rr – (g – h) 

[Mt+1 – Mt / (1 + n)] /Mt+1}] + ρ2 Uc(ct+2) f’(kt){[(1 – dh) / (1 + n)] (1 – h) [Mt+1 – Mt / (1 + n)] 

/ Mt+1 + rr (1 – dr) / (1 + n) } )  + 
+  ηt+1 (g – h) f’(kt) [Mt+1 – Mt / (1 + n)] / Mt+1 - ηt+2 (1 – h) f’(kt) [(1 – dh) / (1 + n)] 

[Mt+1 – Mt / (1 + n)] / Mt+1 =  0   

 

(3.10) 
t

W
M

∂
∂

  =  ρt { - (g – h) Uc(ct) (Mt-1 / Mt
2) f(kt-1) + ρ Uc(ct+1) {(g – h) (1 / 

Mt+1) f(kt) + (1 – h) (1 – dh) (Mt-1 / Mt
2) f(kt-1) / (1 + n)} - ρ2 Uc(ct+2) (1 – h) (1 – dh) (1 / Mt+1) 

f(kt) / (1 + n)  +  [ ηt f(kt-1) (g – h) [(Mt-1 / Mt
2) -  ηt+1 f(kt) {(g – h) (1 / Mt+1) + (1 – h) [(1 – dh) 

/ (1 + n)] [(Mt -1 / Mt
2)} +  ηt+2 f(kt+1) (1 – h) [(1 – dh) / (1 + n)] (1 / Mt+1) ] } / (1 + n)  =  0   

 

(3.11) 
t

W
z

∂
∂

  =  -  ηt  +  ηt+1 (1 – dh) / (1 + n)  =  0 
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The system possesses identical properties to the second problem of section 2. We expect 
inventories to be annulled – (3.11) being no longer active and with terms factored by the lagrange 

multiplier and the expenditure leakages in 
t

W
k

∂
∂

 to disappear. 

In real terms, it would be as if we would tend to the steady-state solution of: 
 

(3.12) 
tk

Max  ∑
∞

=1t

tρ  U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt - rr [f(kt-1) – f(kt-2) (1 – dr) / (1 + 

n)]}  
 ct ≥ 0, kt ≥ 0,   Given k-1, k’0  

 
From FOC, we derive that capital and per capita consumption follow: 
 
(3.13) f’(kt)  =  [(1 + n) Uc(ct) - ρ Uc(ct+1) (1 – d)] / 

 { ρ Uc(ct+1) (1 – rr ) + ρ2 Uc(ct+2)  rr (1 – dr) / (1 + n) }   

and 
(3.14)  ct = (1 – d) kt-1 + f(kt-1) - (1 + n) kt – rr [f(kt-1) – f(kt-2) (1 – dr) / (1 + n)] 

 
with dynamics similar to the well-known Ramsey path – slightly more contracted 

because reserve formation depress the economy in the same way as capital depreciation does -, 
with an initial stock k’0 that solves k’0 (1 – d) + f(k’0) (1 – rr)  = k0 (1 - d) + z0 (1 – dh) / (1 + n) 
+ f(k0) (1 – rr). 

The zero- inventory policy would require setting M1 according to: 

 
(3.15) z1  =  z0 (1 – dh) / (1 + n)  +  g dM1 / P1 – db1  = 0 
=  z0 (1 – dh) / (1 + n)  +  (g – h) [M1 – M0 / (1 + n)] / [M1 f(k0)]  -  (dM0 / P0) (1 – h) (1 

- dh) / (1 + n)  

 
Afterwards, zt  =  0 for  t = 2,3,… implies then (g – h) dMt / Pt = (1 – h) (dMt-1 / Pt-1) (1 

- dh) / (1 + n) or: 

 
(3.16)  (g – h) [Mt – Mt -1 / (1 + n)] f(kt -1) / Mt  =  [(1 – h) (1 - dh) / (1 + n)] [Mt-1 – Mt-2 

/ (1 + n)] f(kt-2) / Mt-1  

Or 
Mt  =  [Mt-1 / (1 +n)] / (1 - [f(k0) / f(kt-1)] {[(1 – h) / (g – h)] [(1 – dh) / (1 + n)]}t-1 {[M1 

– M0 / (1 + n)] / M1})  = 

 
Mt  /  Mt-1  = 1 + mt, at given t, increases with f(kt-1) iff [M1 – M0 / (1 + n)] < 0. 
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One can easily show that an alternative path that would target z2 = 0 = z1 (1 – dh) / (1 + 
n) + (g – h) f(k1) [M2 – M1 / (1 + n)] / M2 - (1 – h) (1 – dh) [M1 – M0 / (1 + n)] f(k0) / [(1 + n) 
M1], allowing z1 = z0 (1 – dh) / (1 + n) + (g – h) f(k0) [M1 – M0 / (1 + n)] / M1 - (1 – h) dM0 (1 – 
dh) / [(1 + n) P0] and fixing the aggregate money stock after t = 1, i.e., let [M2 – M1 / (1 + n)] = 0 

as afterwards would be inferior. With it, at t=1, the capital state equation of the Ramsey’s world 
(but with reserves…) would be added of z0 (1 – dh) / (1 + n) – z1, and at t = 2, of z1 (1 – dh) / (1 + 
n); as the latter has to be non-negative (requiring (1 – h) dM0 / P0 > z0 > 0), as it depreciates, we 

would rather have inserted – not deducted - it in the first period – i.e., we be better-off just 
inserting z0 (1 – dh) / (1 + n) at t = 1 and let z1 = 0 = zt afterwards. 

kt is that of the path implied by (3.13) and (3.14). This means that monetary policy is “at 

the real service” – with the real sector variables’ path being determined independently and then 
imputed to generate the (zero-inventory) money supply trajectory. 

 
In a steady state, (3.16) implies that [Mt – Mt-1 / (1 + n)] would tend to zero – and Mt 

changes at rate m* = 1 / (1 + n) – 1 - the Samuelson (1958) rule, with a constant aggregate money 
stock. The real per capita consumption and capital would obey: 

 
(3.17) f’(k*)  =  [(1 + n) - ρ (1 – d)] / {ρ (1 – rr) + ρ2  [rr (1 – dr) / (1 + n) ]} 

and 
(3.18) c* = f(k*) {1 - rr [1 – (1 – dr) / (1 + n)]} – (n + d) k*  

 
Then, k* increases (the right hand-side of (3.17) decreases) with ρ. It decreases with n, 

d, rr, and dr. 

Note that vanishing money balances in the steady-state stem from the existence of terms 
associated with (Mt – Mt-1) / Pt – or its lags - of the felicity function and not from the official 

reserve requirement. Instead, the latter produces real effects on the steady-state level of capital. 
 
 
4. Extensions of MIU Modeling 
4.1. “Taste for Real-Nominal Balance” 
 
. A felicity function valuing both real consumption and nominal (per capita) money 

balances, U(ct, Mt) increasing – possibly, concave or quasi-concave, and/or with decreasing first 

derivatives for SOC to hold - in both arguments, is able to produce a constant c* and M* along an 
optimal path, with reasonable assumptions, of (ct/Mt) in the presence of technical progress; then, 
the general price level, Pt, will approach stability in the long-run. The planner’s problem 

becomes: 
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(4.1) 
,t tk M

Max  ∑
∞

=1t

tρ  U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – (g – h) [Mt – Mt-1 / (1 + n)] f(kt-1) 

/Mt + (1 – h) [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] f(kt-2) /Mt-1 - rr [f(kt-1) – f(kt-2) (1 – dr) / 
(1 + n)], Mt} 

 ct ≥ 0, Mt ≥ 0,  Mt/Mt-1  ≥  f(kt-1) / [(1 + n) f(kt-1) + f(kt -2)] 
 Given k-1, k0, M-1, M0(, z0) 

 
F.O.C., along with the restriction, require, for t = 1, 2, 3,…: 
 

(4.2) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc(ct, Mt) + ρ Uc(ct+1, Mt+1) [(1 – d)+ f’(kt) {1 – rr – 

(g – h) [Mt+1 – Mt / (1 + n)] /Mt+1}] + ρ2 Uc(ct+2, Mt+2) f’(kt) {[(1 – dh) / (1 + n)] (1 – h) [Mt+1 – 

Mt / (1 + n)] / Mt+1 + rr (1 – dr) / (1 + n)} )  =  0   

 

(4.3) 
t

W
M

∂
∂

  =  ρt (  { - (g – h) Uc(ct, Mt) (Mt-1 / Mt
2) f(kt -1) + ρ Uc(ct+1, Mt+1) [(g 

– h) (1 / Mt+1) f(kt) + (1 – h) (1 – dh) (Mt-1 / Mt
2) f(kt-1) / (1 + n)] - ρ2 Uc(ct+2, Mt+2) (1 – h) (1 – 

dh) (1 / Mt+1) f(kt) / (1 + n) } / (1 + n)  +  UM(ct, Mt)  )  =  0   

 
The dynamics of the system can be stated in terms of kt and Mt, using the two FOC and 

the identity by which ct was replaced by the state equation. For convenience, we keep also mt = 
Mt / Mt-1 –1 and write: 

 
(4.4)  - (1 + n) Uc(ct, Mt) + ρ Uc(ct+1, Mt+1) [ (1 – d)+ f’(kt) {1 – rr - (g – h) [(1 + n) 

mt+1 + n] / [(1 + mt+1) (1 + n)]} ] + ρ2 Uc(ct+2, Mt+2) f’(kt) { [(1 – dh) / (1 + n)] (1 – h) [(1 + n) 

mt+1 + n] / [(1 + mt+1) (1 + n)] + rr (1 – dr) / (1 + n)}  =  0   

 
(4.5) {  – (g – h) Uc(ct, Mt) f(kt-1) / (1 + mt)  + ρ Uc(ct+1, Mt+1) { (g – h) f(kt) / (1 + 

mt+1)  + (1 – h) [(1 – dh) / (1 + n)] f(kt-1) / (1 + mt) } - ρ2 Uc(ct+2, Mt+2) (1 – h) [(1 – dh) / (1 + 

n)] f(kt) / (1 + mt+1)  } / (1 + n)  +  Mt UM (ct, Mt) (1 + n)  } =  0   

or 
(4.6) f’(kt)  =  {(1 + n) Uc(ct, Mt) - ρ Uc(ct+1, Mt+1) (1 – d)} / 
(  ρ Uc(ct+1, Mt+1) {1 – rr  - (g – h) [(1 + n) mt+1 + n] / [(1 + mt+1) (1 + n)]} +  

+ ρ2 Uc(ct+2, Mt+2)  {[(1 – dh) / (1 + n)] (1 – h) [(1 + n) mt+1 + n] / [(1 + mt+1) (1 + n)] 

+ rr (1 – dr) / (1 + n) }  ) 

and  
(4.7) (1 + mt) / (1 + mt+1)  =   
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{f(kt-1) [(g – h) Uc(ct, Mt) - ρ Uc(ct+1, Mt+1) (1 – h) (1 – dh) / (1 + n)] – (1 + n) UM(ct, 

Mt) Mt
2 / Mt-1 } /  

{f(kt) [ρ Uc(ct+1, Mt+1) (g – h) - ρ2 Uc(ct+2, Mt+2)  (1 – h) (1 – dh) / (1 + n)]} 

 
The second equation is now active; there will be inventories, their build-up, involving 

expenditure leakage, is a price society pays for a stable value of currency… Out of steady state 
dynamics can be studied also embedding: 

 
(4.8) ct = (1 – d) kt-1 + f(kt-1) - (1 + n) kt – (g – h) {1 – 1 / [(1 + n) (1 + mt)]} f(kt-1) + (1 

– h) [(1 – dh) / (1 + n)] {1 – 1 / [(1 + n) (1 + mt -1)]} f(kt-2) - rr [f(kt -1) – f(kt-2) (1 – dr) / (1 + n)] 

 
Now, (4.6) and (4.7) would suggest a balanced path with a constant per capita capital 

stock, k*, zero growth of per capita money balances and zero inflation: m*  =  0 – inventories will 
accumulate. Then: 

 
(4.9) f’(k*)  =  [(1 + n) - ρ (1 – d)] / 
{ρ [1 – rr  - (g – h) n / (1 + n)] + ρ2  {[(1 – dh) / (1 + n)] [(1 – h) n / (1 + n)  ] + rr (1 – dr) 

/ (1 + n)} 
and 
(4.10)  M*  = [(1 - ρ) / (1 + n)] {(g – h) - ρ (1 – h) [(1 – dh) / (1 + n)]} [f(k*) Uc(c*, 

M*)] / UM(c*, M*) 

or 
P*  = [(1 - ρ) / (1 + n)] {(g – h) - ρ (1 – h) [(1 – dh) / (1 + n)]} Uc(c*, M*) / UM(c*, M*) 

 
As m* = 0 > 1 / (1 + n) – 1, (4.9) implies a smaller value of k* than (3.17). It increases 

with ρ, and now with h; it decreases with n, d, rr, dh, and dr and now, with g. And it is 

independent of taste parameters. 
If the marginat rate of substitution between M and c is constant – we may have a 

singular solution -, the general price level decreases with ρ, n, and h; it increases with g and dh. 

Also c* will then be smaller than implied under (3.18): now: 
 
(4.11)  c* = f(k*) {1 - rr [1 – (1 – dr) / (1 + n)]} – (n + d) k* - 
- f(k*) [(g – h) – (1 – h) (1 – dh) / (1 + n)] [1 – 1 / (1 + n)] 

 
c* / y*, and therefore the savings rate, will be independent of taste parameters. 
 
. A (pseudo…)phase diagram representation of the per capita capital stock and money 

balances growth rate can be easily deducted for the case of a felicity function linear in 
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consumption and additively separable in c and M, i.e., U(ct, Mt) = ct + V(Mt) 
26

. Then, mt+1 can 

be inferred as a – negatively sloped, even if rr = 0 - function of kt only, mt+1 = φ(kt) 
27

, from 

(5.6), depicted in Fig.1. For initial k0, next period’s growth rate of per capita money balances 

respond according to that function. As the system is stable, k will converge to k* over that 
function. (Yet, starting values of k-1,  k0,  M-1 and M0 may imply initial jumps of different 

direction than those of the light arrows depicted on the graph…) 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 
 
System dynamics can be defined between Mt and kt, using (5.7), over the optimal path: 

 
 (1 + mt) / (1 + mt+1)  =  [1 + φ(kt-1)] / [1 + φ(kt)]  = 
 {f(kt-1) [(g – h) - ρ (1 – h) (1 – dh) / (1 + n)] – (1 + n) VM(Mt) Mt [1 + φ(kt-1)]} /  

 {f(kt) [ρ (g – h) - ρ2 (1 – h) (1 – dh) / (1 + n)]} 

 
Yet, no single-time correspondence allows immediate graphical representation. If capital 

is low, one expects savings rate to be high – capital- labor ratio is increasing as well as 

                                                 
26

 We found no reason now – as it occurs in the conventional Ramsey real growth model with linear 

felicity - for a necessary bang-bang solution for ct… The presented solution would be, nevertheless, singular with 

respect to ct – and bang-bang paths (with zero consumption or consumption exhausting all capital net of 

inventories) may occur before it is reached… 
27

 For Portugal, 1980-1993 – combining information from Pinheiro et al (1997) e Neves (1994) -, the 

correlation coefficient between per capita currency growth rate and lagged per capita capital stock was found 

negative, -0.58617, and highly significant (2.8%). Sign changes (yet significance disappears) if we consider a 

longer sample period – but, of course, neither per capita money balances nor prices have systematically declined 

(between 1953 and 1995, currency per capita rose at 11.52% per year – per capita M1 at 12.50% - and the GDP 

deflator at 9.74%)... 

- 1 

mt+1

kt  

0 

k* 

mt+1  = φ(kt) 
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productivity and real per capita money balances. Per capita nominal balances may be increasing 
but at a decreasing rate, because capital is low and reserve accumulation and loss from delay only 
increasingly (with product and capital) burdening, not faster than in the steady-state. 

Using (1.3), and relying on mt+1 = φ(kt) and the above, we can conclude that: 

 
 (1 + π t+1)  =  (1 + mt+1) f(kt-1) / f(kt)  =  [1 + φ(kt)] f(kt-1) / f(kt)   

 
Inflation can move in the same or in opposite direction of kt and yt = f(kt-1) 

28
. 

Developing the expression before last: 
 
 f(kt-1) (1 + π t) / [(1 + π t+1) f(kt)]  =  [1 + φ(kt-1)] / [1 + φ(kt)]  = 
 {f(kt-1) [(g – h) - ρ (1 – h) (1 – dh) / (1 + n)] – (1 + n) VM(Mt) Mt [1 + φ(kt-1)]} /  

 {f(kt) [ρ (g – h) - ρ2 (1 – h) (1 – dh) / (1 + n)]} 

 
. A second possibility is to have taste for “real-nominal” balance: the consumer values 

the periodic real and nominal periodic consumption flow: U(ct, Pt ct), with positive first 
derivatives. An alternative interpretation would be that the consumer has a felicity function U’(ct, 
1 / Pt) that embeds distaste for 1 / Pt, for a large real purchasing power of one nominal unit (for 

the real size of what one, say, euro can buy…) – i.e., with a negative first derivative with respect 
to the second argument, 1 / Pt. Then, the planner’s problem is: 

 

(4.12) 
,t tk M

Max  ∑
∞

=1t

tρ  U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – (g – h) [Mt – Mt-1 / (1 + n)] f(kt-

1) /Mt + (1 – h) [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] f(kt-2) /Mt-1 - rr [f(kt -1) – f(kt-2) (1 – dr) 
/ (1 + n)], [Mt/f(kt-1)] c(.)} 

 ct ≥ 0, Mt ≥ 0,  Mt/Mt-1  ≥  f(kt-1) / [(1 + n) f(kt-1) + f(kt -2)] 
 Given k-1, k0, M-1, M0(, z0) 

 
c(.) denotes the same expression as included in the first argument. F.O.C., along with the 

restriction, require, for t = 1, 2, 3,…: 
 

(4.13) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) [Uc(ct, Pt ct) + Pt UPc(ct, Pt ct)] + ρ [Uc(ct+1, Pt+1 ct+1) 

+ Pt+1 UPc(ct+1, Pt+1 ct+1)] [(1 – d)+ f’(kt) {1 – rr – (g – h) [Mt+1 – Mt / (1 + n)] /Mt+1}] + ρ2 

                                                 
28

 The function φ(kt), with φ’(kt) < 0, would predict a relation between output, yt+1 = f(kt), and per capita 

nominal growth that we would expect opposite to that of the Phillips curve. The same divergence cannot be 

inferred for the inflation path. 



 31

[Uc(ct+2, Pt+2 ct+2) + Pt+2 UPc(ct+2, Pt+2 ct+2)] f’(kt) {[(1 – dh) / (1 + n)] (1 – h) [Mt+1 – Mt / (1 + 

n)] / Mt+1 + rr (1 – dr) / (1 + n)}  - ρ UPc(ct+1, Pt+1 ct+1) Mt+1 ct+1 f’(kt) / f(kt)
2  )  =  0   

 

(4.14) 
t

W
M

∂
∂

  =  ρt (  { - (g – h) [Uc(ct, Pt ct) + Pt UPc(ct, Pt ct)]  (Mt-1 / Mt
2) f(kt -1) 

+ ρ [Uc(ct+1, Pt+1 ct+1) + Pt+1 UPc(ct+1, Pt+1 ct+1)] [(g – h) (1 / Mt+1) f(kt) + (1 – h) (1 – dh) (Mt-1 

/ Mt
2) f(kt -1) / (1 + n)] - ρ2 [Uc(ct+2, Pt+2 ct+2) + Pt+2 UPc(ct+2, Pt+2 ct+2)] (1 – h) (1 – dh) (1 / 

Mt+1) f(kt) / (1 + n) } / (1 + n)  +  ct UPc(ct, Pt ct) / f(kt-1) )  =  0   

 
The dynamics of the system can be stated in terms of kt and Mt, using the two FOC and 

the identity by which ct was replaced by the state equation. For convenience, we keep also mt = 
Mt / Mt-1 –1 and write: 

 
(4.15)  - (1 + n) [Uc(ct, Pt ct) + Pt UPc(ct, Pt ct)] + ρ [Uc(ct+1, Pt+1 ct+1) + Pt+1 UPc(ct+1, 

Pt+1 ct+1)] [ (1 – d)+ f’(kt) {1 – rr - (g – h) [(1 + n) mt+1 + n] / [(1 + mt+1) (1 + n)]} ] + ρ2 

[Uc(ct+2, Pt+2 ct+2) + Pt+2 UPc(ct+2, Pt+2 ct+2)]  f’(kt) {[(1 – dh) / (1 + n)] (1 – h) [(1 + n) mt+1 + 
n] / [(1 + mt+1) (1 + n)] + rr (1 – dr) / (1 + n)} -  ρ UPc(ct+1, Pt+1 ct+1) Pt+1 ct+1 f’(kt) / f(kt)   =  0   

 
(4.16) {  – (g – h) [Uc(ct, Pt ct) + Pt UPc(ct, Pt ct)]  f(kt-1) / (1 + mt)  + ρ [Uc(ct+1, Pt+1 

ct+1) + Pt+1 UPc(ct+1, Pt+1 ct+1)] { (g – h) f(kt) / (1 + mt+1)  + (1 – h) [(1 – dh) / (1 + n)] f(kt-1) / 

(1 + mt) } - ρ2 [Uc(ct+2, Pt+2 ct+2) + Pt+2 UPc(ct+2, Pt+2 ct+2)] (1 – h) [(1 – dh) / (1 + n)] f(kt) / (1 

+ mt+1)  } / (1 + n)  +  Mt ct UPc(ct, Pt ct) / f(kt-1)  =  0   

or 
(4.17) f’(kt)  =  {(1 + n) [Uc(ct, Pt ct) + Pt UPc(ct, Pt ct)] - ρ [Uc(ct+1, Pt+1 ct+1) + Pt+1 

UPc(ct+1, Pt+1 ct+1)] (1 – d)  } / 
(  ρ [Uc(ct+1, Pt+1 ct+1) + Pt+1 UPc(ct+1, Pt+1 ct+1)] {1 – rr  - (g – h) [(1 + n) mt+1 + n] / 

[(1 + mt+1) (1 + n)]} +  

+ ρ2 [Uc(ct+2, Pt+2 ct+2) + Pt+2 UPc(ct+2, Pt+2 ct+2)]  {[(1 – dh) / (1 + n)] (1 – h) [(1 + n) 

mt+1 + n] / [(1 + mt+1) (1 + n)] + rr (1 – dr) / (1 + n) } - ρ UPc(ct+1, Pt+1 ct+1) Pt+1 ct+1 / f(kt)   ) 

and  
(4.18) (1 + mt) / (1 + mt+1)  =   
( f(kt -1) {(g – h) [Uc(ct, Pt ct) + Pt UPc(ct, Pt ct)] - ρ [Uc(ct+1, Pt+1 ct+1) + Pt+1 UPc(ct+1, 

Pt+1 ct+1)] (1 – h) (1 – dh) / (1 + n)} – (1 + n)  [ct UPc(ct, Pt ct) / f(kt-1)] Mt
2 / Mt-1 ) /  

{f(kt) [ρ[Uc(ct+1, Pt+1 ct+1) + Pt+1 UPc(ct+1, Pt+1 ct+1)] (g – h) - ρ2 [Uc(ct+2, Pt+2 ct+2) + 

Pt+2 UPc(ct+2, Pt+2 ct+2)]  (1 – h) (1 – dh) / (1 + n)]} 

 
Now, (4.17) and (4.18) would suggest a balanced path with a constant per capita capital 

stock, k*, and zero growth of per capita money balances and zero inflation: m*  =  0. Then: 
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(4.19) f’(k*)  =  [(1 + n) - ρ (1 – d) ] / 
( ρ [1 – rr  - (g – h) n / (1 + n)] + ρ2  {[(1 – dh) / (1 + n)] [(1 – h) n / (1 + n) ]+ rr (1 – dr) 

/ (1 + n)]} - ρ {P* c* UPc(c*, P* c*) / [Uc(c*, P* c*) + P* UPc(c*, P* c*)]} / f(k*) ) 

and 
(4.20)  M*  = [(1 - ρ) / (1 + n)] {(g – h) - ρ (1 – h) [(1 – dh) / (1 + n)]} f(k*)2 [Uc(c*, P* 

c*) + P* UPc(c*, P* c*)] / [c* UPc(c*, P* c*) ]   

or 
P*  = [(1 - ρ) / (1 + n)] {(g – h) - ρ (1 – h) [(1 – dh) / (1 + n)]} f(k*) [Uc(c*, P* c*) + P* 

UPc(c*, P* c*)] / [c* UPc(c*, P* c*) ]  

 
The expressions have, therefore similar structure as (5.9) and (5.10) – enjoying similar 

properties. (4.11) – as (4.8) – still hold. 
 
4.2. “Taste for Nominal Growth” 
 
. We allow now for inflation rate itself – or deflation rate… - to enter the felicity 

function. Let 1/(1 + mt) = m’. Then, Um’(c, m’) < 0 – equivalent to Um[c, 1/(1 + m)] > 0 - implies 

that individuals like nominal income growth – they “like inflation”. A similar formulation would 
display consumers’ felicity as a function U’(ct, Pt-1 / Pt) that embeds distaste for increases (and 
not only levels as in the previous section) in 1 / Pt-1, for increases in the real purchasing power of 

one nominal unit (of say, one euro…) – i.e., with a negative first derivative with respect to the 
second argument, Pt-1 / Pt. The inclusion of Pt-1 / Pt in felicity (as one might argue for that of 1/Pt 

before) would capture preferences for, attitudes towards, unit of account stability. 
The planner’s problem is: 
 

(4.21) 
,t tk M

Max  ∑
∞

=1t

tρ  U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – (g – h) [Mt – Mt-1 / (1 + n)] f(kt-

1) /Mt + (1 – h) [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] f(kt-2) /Mt-1 - rr [f(kt -1) – f(kt-2) (1 – dr) 
/ (1 + n)], Mt-1 / Mt} 

 ct ≥ 0, Mt ≥ 0,  Mt/Mt-1  ≥  f(kt-1) / [(1 + n) f(kt-1) + f(kt -2)] 
 Given k-1, k0, M-1, M0(, z0) 

 
F.O.C., along with the restriction, require, for t = 1, 2, 3,…: 
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(4.22) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc[ct, 1/(1 + mt)] + ρ Uc[ct+1, 1 / (1 + mt+1)] [(1 – d)+ 

f’(kt) {1 – rr – (g – h) [Mt+1 – Mt / (1 + n)] /Mt+1}] + ρ2 Uc[ct+2, 1 / (1 + mt+2)] f’(kt) {[(1 – dh) / 

(1 + n)] (1 – h) [Mt+1 – Mt / (1 + n)] / Mt+1 + rr (1 – dr) / (1 + n)} ) =  0   

 

(4.23) 
t

W
M

∂
∂

  =  ρt (  { - (g – h) Uc[ct, 1/(1 + mt)] (Mt-1 / Mt
2) f(kt-1) + ρ Uc[ct+1, 1 

/ (1 + mt+1)] {(g – h) (1 / Mt+1) f(kt) + (1 – h) (1 – dh) (Mt-1 / Mt
2) f(kt-1) / (1 + n)} - ρ2 Uc[ct+2, 

1 / (1 + mt+2)] (1 – h) (1 – dh) (1 / Mt+1) f(kt) / (1 + n) } / (1 + n)  – Um’(ct, Mt/Mt-1) (Mt-1 / Mt
2)  

+ ρ Um’(ct+1, Mt+1/Mt) (1 / Mt)   )  =  0   

 
. The dynamics of the system can be stated in terms of kt and mt = Mt / Mt-1 – 1 using 

the two FOC and the identity by which ct was replaced by the state equation as 

 
(4.24)  - (1 + n) Uc[ct, 1/(1 + mt)] + ρ Uc[ct+1, 1 / (1 + mt+1)] [ (1 – d)+ f’(kt) {1 – rr - (g 

– h) [(1 + n) mt+1 + n] / [(1 + mt+1) (1 + n)]} ] + ρ2 Uc[ct+2, 1 / (1 + mt+2)]  f’(kt) {[(1 – dh) / (1 + 

n)] (1 – h) [(1 + n) mt+1 + n] / [(1 + mt+1) (1 + n)] + rr (1 – dr) / (1 + n)} )  =  0   

 
(4.25) {  – (g – h) Uc[ct, 1/(1 + mt)] f(kt -1) / (1 + mt)  + ρ Uc[ct+1, 1 / (1 + mt+1)] { (g – 

h) f(kt) / (1 + mt+1)  + (1 – h) [(1 – dh) / (1 + n)] f(kt-1) / (1 + mt) } - ρ2 Uc[ct+2, 1 / (1 + mt+2)] (1 

– h) [(1 – dh) / (1 + n)] f(kt) / (1 + mt+1)  } / (1 + n)  – Um’[ct, 1 / (1 + mt)] / (1 + mt)  + ρ 
Um’[ct+1, 1 / (1 + mt+1)]  } =  0   

 
or 
(4.26) f’(kt)  =  {(1 + n) Uc[ct, 1/(1 + mt)] - ρ Uc[ct+1, 1 / (1 + mt+1)] (1 – d)} / 
(  ρ Uc[ct+1, 1 / (1 + mt+1)] {1 – rr  - (g – h) [(1 + n) mt+1 + n] / [(1 + mt+1) (1 + n)]} +  

+ ρ2 Uc[ct+2, 1 / (1 + mt+2)]  {[(1 – dh) / (1 + n)] (1 – h) [(1 + n) mt+1 + n] / [(1 + mt+1) 

(1 + n)] + rr (1 – dr) / (1 + n) }  ) 

and  
(4.27) (1 + mt) / (1 + mt+1)  =   
(f(kt-1) {(g – h) Uc[ct, 1/(1 + mt)] - ρ Uc[ct+1, 1 / (1 + mt+1)] (1 – h) (1 – dh) / (1 + n)  } + 

Um’[ct, 1 / (1 + mt)] )/  

(  f(kt) {ρ Uc[ct+1, 1 / (1 + mt+1)] (g – h) - ρ2 Uc[ct+2, 1 / (1 + mt+2)] (1 – h) (1 – dh) / (1 

+ n) }  + ρ Um’[ct+1, 1 / (1 + mt+1)]  ) 

 
Out of steady state dynamics can be studied also embedding: 
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(4.28) ct = (1 – d) kt-1 + f(kt-1) - (1 + n) kt – (g – h) {1 – 1 / [(1 + n) (1 + mt)]} f(kt-1) + 
(1 – h) [(1 – dh) / (1 + n)] {1 – 1 / [(1 + n) (1 + mt-1)]} f(kt-2) - rr [f(kt -1) – f(kt-2) (1 – dr) / (1 + 

n)] 
 
From the system: 
 
kt = k[mt, mt+1, mt+2, c(kt, kt-1, kt-2, mt, mt-1), c(kt+1, kt, kt-1, mt+1, mt), c(kt+2, kt+1, kt, 

mt+1, mt+2)] 
mt = m[mt, mt+2, mt+1, c(kt, kt-1, kt-2, mt, mt -1), c(kt+1, kt, kt-1, mt+1, mt), c(kt+2, kt+1, kt, 

mt+1, mt+2)] 

 
The equations entail forward- looking (with respect to kt-2, kt-1, mt-2 and mt-1) as 

backward- looking elements (with respect to kt+1, kt+2, mt+1 and mt+2). We could derive an 

autonomous system of autonomous equations in canonical forward- looking form – which would 
involve solving the system, and not only each equation, with respect to the highest leads of the 
two variables present: 

 
kt+2 = k1(mt -1, mt, mt+1, kt-2, kt-1, kt, kt+1) 
mt+2 = m1(mt -1, mt, mt+1, kt-2, kt-1, kt, kt+1) 

 
It can be transformed in a system of seven first-order difference equations 

29
. We could 

then inspect its eigenvalues 
30

 to inquire about stability. Being a higher than a 2x2 system, the 
task becomes cumbersome – and possibly generating many special cases; phase diagram analysis 
becomes blurred. 

 
. (4.27) would suggest – again – a balanced deceleration such that (1 + mm*)  = (1 + 

mt+1) / (1 + mt)  =  ρ. However, steady-state values of m*, k* and c* are compatible with (5.22) – 

and (5.23) -, requiring: 
 
(4.29) f’(k*)  =  [(1 + n) - ρ (1 – d)] / 
(  ρ {1 – rr  - (g – h) [(1 + n) m* + n] / [(1 + m*) (1 + n)]} +  
+ ρ2  {[(1 – dh) / (1 + n)] (1 – h) [(1 + n) m* + n] / [(1 + m*) (1 + n)] + rr (1 – dr) / (1 + 

n) }  ) 
and 

                                                 
29

 See Azariadis (1993),  p. 6. 
30

 See Azariadis (1993), p. 59. 
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(4.30)   {(g – h) - ρ (1 – h) [(1 – dh) / (1 + n)]} f(k*)  = - (1 + n) Um’[c*, 1/(1+m*)] / 
Uc[c*, 1/(1+m*)] 

 
In general, the steady-state (1 + m*) is expected to be compatible with the inequality 

constraints, which therefore lose their active role. Also, a priori, m* is unrestricted: it can be 
positive or negative, depending on the shape of U(c, m’). Yet, an interior solution generating a 
steady-state value of m* lower than 1 / (1 + n) – 1 could imply a reversion to the path of the 
standard felicity function, U(c) – i.e., of section 3. Then, for m* > 1 / (1 + n) – 1, (4.29) implies a 
smaller value of k* than (3.17). Also c* will then be smaller than implied under (3.18): now: 

 
(4.31)  c* = f(k*) {1 - rr [1 – (1 – dr) / (1 + n)]} – (n + d) k* - 
- f(k*) [(g – h) – (1 – h) (1 – dh) / (1 + n)] {1 – 1 / [(1 + m*) (1 + n)]} 

 
g > 1 and 1 / [(1 + m*) (1 + n)] < 1 imply that the last term is negative. As f’(k*) {1 - rr 

[1 – (1 – dr) / (1 + n)]} > n + d (easily proven for rr = 0), its effect adds to that of the already 

smaller k*. 
 
. One could wonder what possible features would U[c, 1/(1+m)] exhibit. A possibility – 

that would not contend with balanced growth steady-states in the presence of the usual exogenous 
technical progress – would include general functions of the product of powers of the two 

arguments U(ct, Mt-1/Mt) = U[
b

t

ta
t M

M
c

−

−







 1 ]. Then the marginal rate of transformation between 

the two, - Um’[ct, 1/(1+mt)] / Uc[ct, 1/(1+mt)] = (b/a) ct (1 + mt), convenient for the second 

equation.  

Likewise, U[ 







− −

t

ta
t M

M
bc 1exp ] implies - Um’[ct, 1/(1+mt)] / Uc[ct, 1/(1+mt)] = (b/a) ct.  

An alternative would extend the commonly used constant intertemporal elasticity of 
substitution felicity function to incorporate Mt/Mt -1 at the elasticity itself. Say: 

 

(4.32) U(ct, Mt-1/Mt)  =  

t

t

M
M

a
t

M
M

a

c t

t

1

)
1

(

1

1

−

−

−

−

σ

σ
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Then, Uc(ct, Mt-1/Mt)  =  )
1

1( 1

t

t

M
M

a
tc

−−−
σ  and  Um’(ct, Mt-1/Mt)  =  

2

1

)
1

(1

1

)log(
1

1
1









−

















−−

−

−−
−

t

t

M
M

a
tt

t

t

M
M

a

cc
M

M
a t

t

σ
σ

σ
σ

.  

 
. With inflation –in – utility, the problem would not change much. Moreover, we could 

argue that if price increases were the driving motive, their effect should nevertheless be weighted 
by the appropriate quantity index – and we would thus recover the nominal balance increase 
formulation. 

 
. In a steady-state of an economy with only a storable good, per capita money balances 

with taste for inflation should grow at the same rate as the general price level and at rate π* = m*. 
And 

 
(4.33) kz* = (f – c*) / (n + d) + f {(1 – h) (1 – rr) (1 – dh) / (1 + n) - [1 – h (1 - rr)]} [m* 

+ n /(1 + n)] / [(n + d) (1 + m *)]   
 
. A (completely different…) alternative rationalization of inflation in utility would 

justify its introduction to represent hypothetical non-monetized consumption of part of inventory 
stocks – as charity, take-home goods: if full changes in inventories are not consumed, partial 
consumption of it would be observed and be aligned with dMt /Pt; as worse products would be left 
in warehouses, the utility derived from this consumption differs from that of ct, and a differential 
inclusion in felicity, that would take the form U(ct, dMt/Pt) = U{ct, f(kt-1) – f(kt-2) Pt-1 / [Pt (1 + 

n)]}, would be justified. Hypothetically, those inventories could be sold at lower than market 
prices – in an attempt to release them “in low season”, in sales; then, paradoxically, the pursuit of 
a good bargain – of lower prices and consumption of such items … - by consumers would lead 
the economy to inflation… 

A generalization that would allow for full inventory change recovery in this fashion 
would allow for a felicity U{ct, zt – zt-1 [(1 – dh) / (1 + n)]}. 

Nevertheless, such interpretations of the meaning of inflation in utility would inspire us 
again to suggest the convenience of an additional (now a third) argument in felicity, a nominal 
per capita aggregate – nominal per capita money balances, or nominal per capita consumption -, 
to proxy taste for price – unit account real size - stability.  

Overall, the welfare maximizer central planner facing inflation- in-utility appears 
compatible with a central monetary authority oriented by an ad-hoc objective function with 
inflation and output as arguments - as sometimes assumed in economic research. 
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4.3. Discounted Nominal Utility 
 
An alternative formulation would consider that the appropriate felicity function would 

have nominal consumption as argument – having or not Mt as a second argument - consistently, 

being discounted by a “nominal” discount factor, )( 1

t

t

P
P−ρ  for period t 

31
, so that individuals 

maximize: 

(4.34)  Max ∑ ∏
∞

= =

−









1 1

1

t

t

s s

st

P
P

ρ  U(Pt ct) 
32

  =  ∑
∞

=1t

tρ  
tP

P0  U(Pt ct)   

 
After the replacement of the transactions money demand constraint and dividing by P0: 

 

(4.35)  
,t tk M

Max  ∑
∞

=1t

tρ  
t

t

M
kf )( 1−  U(

)( 1−t

t

kf
M

 ct)  

or   
,t tk M

Max  ∑
∞

=1t

tρ  
t

t

M
kf )( 1−  U(

)( 1−t

t

kf
M

{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – (g – h) [Mt – Mt-

1 / (1 + n)] f(kt-1) /Mt + (1 – h) [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] f(kt-2) /Mt-1 - rr [f(kt-1) – 
f(kt-2) (1 – dr) / (1 + n)]}) 

 Given k-1, k0, M-1, M0(, z0) 

 

If 
t

tt

P
cPU )(

 increases with Pt – i.e., whenever Upc(Pt ct) Pt ct > U(Pt ct), the elasticity of 

U(.) with respect to the argument is larger than 1 - implies that individuals prefer small real size 

of the nominal unit, 
tP

1
. F.O.C., along with the restriction, require, for t = 1, 2, 3,…: 

 

(4.36) 
t

W
k

∂
∂

  =  ρt  ( - (1 + n)  Upc(Pt ct) + ρ  Upc(Pt+1 ct+1) [(1 – d)+ f’(kt) {1 – rr – 

(g – h) [Mt+1 – Mt / (1 + n)] /Mt+1}] + ρ2 Upc(Pt+2 ct+2) f’(kt) {[(1 – dh) / (1 + n)] (1 – h) [Mt+1 – 

Mt / (1 + n)] / Mt+1 + rr (1 – dr) / (1 + n)}  +  ρ f’(kt) [U(Pt+1 ct+1) / Mt+1 - 2
1

)( t

t

kf
M +  Pt+1 ct+1 

Upc(Pt+1 ct+1)]  ) =  0   
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 ρ is still a real discount factor… 

32
 If we used ∑

∞

=

−









1

1

t

t

t

tt

P
P

ρ U(Pt ct) instead, we would generate time inconsistency – FOC would 

depend on t. (As is well known, the comment also applies in the presence of variable discount factors if use the 

power of the period’s discount factor instead of the factored product of all previous ones to discount each term…) 



 38

(4.37) 
t

W
M

∂
∂

  =  ρt (  { - (g – h) Upc(Pt ct) (Mt-1 / Mt
2) f(kt-1) + ρ Upc(Pt+1 ct+1) [(g 

– h) (1 / Mt+1) f(kt) + (1 – h) (1 – dh) (Mt-1 / Mt
2) f(kt-1) / (1 + n)] - ρ2 Upc(Pt+2 ct+2) (1 – h) (1 – 

dh) (1 / Mt+1) f(kt) / (1 + n) } / (1 + n)  +  [ct Upc(Pt ct) / Mt - U(Pt ct) f(kt -1) / Mt
2] )  =  0   

 
A steady-state might be possible.  

If U(x) = A xc, c > 0 and A constant, as 
t

tt

P
cPU )(

 = A Pt
(c-1) ct

c and the typical term of 

the welfare function ρt Pt
(c-1) A ct

c, Pt
(c-1) ρt could tend to a constant along the optimal path, i.e., 

Pt
(c-1) / Pt-1

(c -1) would tend to 1 / ρ; then, (Pt / Pt-1)* = (Mt / Mt-1)* = 1 + m* = ρ1/(1-c) (provided, 

ρ1/(1-c) > 1 / (1 + n)). Then, if c < 1, m* < 0: if the intertemporal elasticity of substitution (1/(1 – 
c)) is larger than 1, per capita money balances and price level decrease and at a faster pace than 
the Friedman’s rule (ρ1/(1-c) < ρ < 1); if c > 1 (provided SOC still hold…), m* will be positive – 
and also steady-state inflation. 

 
. With nominal growth –in – production - say, making inventories to be sold more easily; 

or (unmodelled) intermediate products cheaper, we could attain similar dynamics. As with 
felicity, the direct use of unsold inventories in the own firm production process – as inferior 
capital goods - could justify the inclusion of similar terms – say, inflation itself – as a second 
argument of (now) the average product function, for example, admit f(kt-1, 1 – Pt-1/Pt) (with a 

positive partial derivative with respect to the second argument, implying a positive impact of 
inflation). f[kt-1, zt - zt -1 (1 – dh) / (1 + n)] could represent the full use of change in inventories as 
an intermediate product. f(kt-1, zt) would be another interesting possibility, with zt as a 

“differentiated” capital factor… 
The inclusion of the conversion mechanism and Clower’s delay assumption provide an 

accountingly consistent argument generating inventory build-up. Rationales as those of the 
previous paragraph – or those for inflation in utility forwarded at the end of sub-section 4.2 – 
would suggest ways in which the economy would circumvent, at least in part, the implied losses. 
Implicitly, they entail some surpassing of the need for full expenditure monetization – even if not 
that of income, if (1.2) is maintained… 

 
 
5. Equilibrium: Wages, Rental Prices, and Interest Rates 
5.1. (Inefficiency of the) Competitive Equilibrium 
 
. Let us briefly outline the possible outcomes of a decentralized economy with a central 

authority with which the public also can exchange goods for money (and vice versa...). The 
underlying real world is that of section 3. Assume firms are instantaneous (or rather, periodic…) 



 39

and individuals own factors that rent to them. Let Wt  denote the wage rate and Rt the rental price 

of capital paid at time t. If they are paid in advance, due to the CRS assumption, marginal product 
factor pricing, Rt = Pt f’(kt-1) and Wt = Pt [f(kt -1) - kt-1 f’(kt-1) / (1 + n)], guarantees: 

 
(5.1) Pt Lt f(kt-1)  =  Wt Lt + Rt Kt-1   

 
Firms will make no profits. Hence, any money management costs will be borne by 

individual consumers/investors. Individuals trade money for goods and goods for money in the 
economy; then they are also bound to do it with the central authority to avoid frauds… Because to 
obtain money they must have capital to collateralize borrowing – provide mortgages -, and then 
they have to pay interest when they do, it is as if they sell capital to the central bank for the 
money demanded. Loans, money loans, always pay interest – there is no way to distinguish net 
borrowers from individuals requesting intermediation… The real interest rate in the economy – 
the one at which individuals – or rather, households - discount consumption, or are willing to 
trade t’s consumption/real goods for t+1 ones and therefore ask for to lend – is the marginal rate 
of substitution between (Lt+1 ct+1) and (Lt ct) over the individuals welfare function minus 1 

33
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where ρ was replaced by ρ = ρ’ (1 + n) and ρ’ denotes the individuals’ discount factor 

when future household members are valued - rt differs from and implies the time structure of 

                                                 
33

 In the Ramsey’s model, the real rate of return to savings is – equated to - rt = f’(kt-1) – d = Rt/Pt – d – 

see Barro and Sala-i-Martin (1995), p. 63-69. The term (1 – d) (Pk,t – Pk,t-1) / Pk,t-1 should be added – see 

footnote 11. p. 69 of the same reference - when Pk,t is the price of capital in units of consumables – in the one-

sector model, fixed to 1. 
34

 Notice that discount factors variable in time, say the maximand is ∑
∞

=1t
∏

=

t

j 1

ρj U(ct), would equate 
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 - 1  =  rt. The solution for the conventional Ramsey model would require 
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1'

1

+tρ
 = (1 – d) + f’(kt); a steady state for c or k would hardly exist once the state equation (1 + n) kt = (1 

– d) kt-1 + f(kt ) - ct must also be complied with and 
])f(k  k d)  (1  k n)  (1[

])f(k  k d)  (1  k n)  (1[

1tt1t

t1-tt

++ +++−
+++−

c

c

U
U

 
1'

1

+tρ
 = (1 – d) + 

f’(kt). The problem here is not pure time consistency, but of a characterization – existence - of steady-state solution. 
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interest rates). Then, we can collapse the private system, assume it behaves as a price-taker 
towards the money aggregate that must meet Mt = Pt f(kt-1) – price-takers towards Mt, facing 
exogenous 1 / Pt…  

The individuals recognize money operating costs, but the re- insertion is inadequately 
apprehended. They recognize taxes – reproducing the real reserve creation costs net of re-
insertion “profits” of the central authority -,  Tt, the sequence of which the government pre-

announces, but those are taken as exogenous by the private sector. 
 

 
,t tc k

Max   ∑
∞

=1t

tρ  U(ct) 

(5.3) s.t: (1 + n)  kt = (1 – d) kt-1 + f(kt-1) - ct – g {f(kt -1) – f(kt-2) Pt-1/[Pt (1 + n)]} – Tt   

or 

(5.4) 
tk

Max ∑
∞

=1t

tρ U( (1 – d) kt-1 + f(kt-1) - (1 + n)  kt  – g {f(kt-1) – f(kt-2) Pt-1/[Pt (1 + 

n)]} – Tt ) 

 
The inventory state equation does not necessarily restrain the private sector – its 

dynamics are dictated by the, exogenous from the private sector perspective, inflation rate and re-
insertion, and we assume the former is not smaller than 1 / (n + 1) - 1… 

(If nominal money balances were also valued, and the individuals’ felicity function of 
form U(ct, Mt), the ex ante money demand equation, Mt = Pt f(kt-1), would be internalized – i.e., 
we could replace the felicity in the problem above by U[ct, Pt f(kt-1)] to derive the private sector’s 

FOC.)  
The central bank, through head taxes, then requests taxes: 
 
(5.5) Tt  =  rr [f(kt-1) – f(kt-2) (1 – dr) / (1 + n)] – dbt  = 
=  rr [f(kt-1) – f(kt-2) (1 – dr) / (1 + n)] – h {f(kt-1) – f(kt-2) Pt-1/[Pt (1 + n)]} - (1 – h) 

{f(kt-2) – f(kt-3) Pt-2/[Pt-1 (1 + n)]}  (1 – dh) / (1 + n)   

 
One can think that the bank rather requests T’t = Tt + [Mt / Pt – (Mt-1 / Pt-1) (1 – d) / (1 + 

n)] of taxes (net of increase in real value of outstanding loans with the central bank) and 
announces a real value increase of [Mt / Pt – (Mt-1 / Pt-1) (1 – d) / (1 + n)] - so that the individuals 
know that society – they… - additionally owns that capital, Mt / Pt, - real backup of the paper 

people carry around, entrusted to the central authority - that is included in the one used in 
production; transfers of the pertaining profits, are internalized by individuals, and total capital kt 

enters their state equation. That would make eventual negative changes of money supply appear 
more immediate, not ex-ante dependent on taxes, specially if rr = 0. (We should no t have T’ = T 
+ (1 – rr) [Mt  / Pt – (Mt-1 / Pt-1) (1 – d) / (1 + n)] if money was issued against loans: then interest 
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ends up being paid who knows whom...) The overall outcome is that of inserting (7.5) in (7.3) and 
(7.4) – and in conditional demands. 

 
. FOC for problem (5.4) generate: 
 

(5.6) 
t

W
k

∂
∂

  =  ρt { - (1 + n) Uc(ct) + ρ Uc(ct+1) [(1 – d) + f’(kt) – g f’(kt)] + ρ2 Uc(ct+2) g 

f’(kt) Pt-1/[Pt (1 + n)]} =  0   

or 
(5.7)f’(kt) = {[(1 + n) / ρ] Uc(ct) - (1 – d) Uc(ct+1)} / {Uc(ct+1) (1 – g) + ρ  Uc(ct+2) g Pt-

1/[Pt (1 + n)] 

 
With the state equation, they allow for implicit relations between the kt’s answering to 

sequences of Pt’s, kt = k(Pt, Pt+1,  Pt+2,…, Tt,  Tt+1,  Tt+2,…), and therefore, also of yt’s. They 

imply money demands Mt
d = Pt y(Pt, Pt+1, Pt+2,… Tt, Tt+1, Tt+2…). By supplying – fixing – the 

Mt’s (by canceling or conceding money loans), the central authority determines prices. 

Consumption will obey – after replacement - (3.1). 
If a steady-state is going emerge, condition (5.7) implies: 
 
(5.8) f’(keq*)  =  {[(1 + n) / ρ] - (1 – d)} / [(1 – g) + ρ g (Pt-1/Pt)* / (1 + n)] 

 
But now, if the money authority can but fix Mt - and Pt – through (5.8), it can never 

achieve the first best of 3.1: the optimal inflation rate, that guarantees equality between (5.8) and 
(3.17), the optimal one k* that obeys: 

 
(5.9) f’(k*)  =  [(1 + n) - ρ (1 – d)] / {ρ (1 – rr) + ρ2  [rr (1 – dr) / (1 + n) ]} 

 
is not 1 / (1 + n) 

35
… And as 

 
(5.10) zt  =  zt-1 (1 – d) / (1 + n) + (g – h) f(k*) [Mt – Mt-1 / (1 + n)] /Mt - (1 – h) 

[(1 – dh) / (1 + n)] f(k*) [Mt-1 – Mt-2 / (1 + n)] /Mt-1  

 
if g > 1, Mt / Mt-1 > 1 / (1 + n) – if rr = 0, the individual’s discount rate (accounting for 

future generations) had to be smaller than population growth for it to be possible (n could not be 
zero if 1/ρ = 1 / [ρ’ (1 + n)] > 1…) - would imply inventories.  
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 The model does not imply price indeterminacy – see Dalziel (2000) for an historical discussion on the 

subject -, but sub-optimality of an “almost” free banking system… 
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If g = 1, any path that started with some inventories and out of the steady-state might be 
impossible or non-optimal... 

Nor in nor out of the steady-state can the two optimality conditions be compatible. 
Then, the central authority could therefore fix (Pt/Pt-1)* = 1 / (1 + n), and, because then: 

 
(5.11)   f’(keq*)  =  {[(1 + n) / ρ] - (1 – d)} / [(1 – g) + ρ g]  

 
implying keq* < k* if (1 – g) + ρ  g < (1 – rr) + ρ  [rr (1 – dr) / (1 + n)]: subsidize capital 

services if g (1 - ρ) > rr {1 - ρ  (1 – dr) / (1 + n)} – i.e., grant a subsidy s to firms per unit of 
profit, so that they equa te (1 – s) Rt Kt to f’(kt-1) and extract that fiscal revenue from them in a 
lump-sum fashion (or capital owners’ income, adding the implicit per capita revenue to Tt…); 
otherwise, tax them. (If g > 1, one would expect keq* < k*.)  

Notice that individuals do not internalize the induced zero inventory balance policy – 
inventories are outside their control, only perceived by the central authority. Therefore, we cannot 
presume, when the monetary authority targets m* = 1 / (1 + n) – 1, a steady-state where the 
private sector acts as if g = 0 and f’(keq*)  =  [(1 + n) / ρ] - (1 – d) (which in any case would not 

be optimal in the presence of official reserves.) 
 
If there were no reserve requirement – after all, the central authority owns capital or lent 

money requiring mortgages -, (Pt/Pt-1)* = ρ / (1 + n), or rather – replacing ρ by ρ = ρ’ (1 + n) to 

value future generations - (Pt/Pt-1)* = ρ’ (ρ’ (1 + x)c  if there was exogenous technical progress 

and the utility function is homogeneous of degree c in the argument), the Friedman rule 
36

, would 
generate the optimal f’(k*) but would not guarantee zero inventories or the optimal consumption, 
not even if g = 1, which induce the same problems as before. 

The central authority could therefore fix (Pt/Pt-1)* = 1 / (1 + n), and, because: 

 
(5.12)  f’(keq*)  =  {[(1 + n) / ρ] - (1 – d)} / [(1 – g) + ρ g] > {[(1 + n) / ρ] - (1 – d)} 

 
implying keq* < k*, subsidize capital services. 

 
. Eventually, in an alternative world: cash in the economy is deposited in commercial 

banks and all cash payments are made through bank transfers – yet cash must be there in advance. 
Then, whoever kept the money from period t to t-1 is known. This would allow the central 
authority to follow the efficient money stock policy and: 

- obtain loans from the general (private…) public, paying the current nominal interest 
rate, to finance reserve formation – or buy them… 
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 A zero nominal rate of interest. 
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- pay to whomever proves he held cash balances from t-1 to t, approximately (1 – rr) rt’ 
per nominal unit – rt’ denoting a nominal interest rate -, transferring the implicit capital revenues 
it obtained net of depreciation, (1 – rr) {Rt (Mt -1 Lt-1) / Pt-1 + (Mt-1 Lt -1) [(1 – d) / Pt-1 - 1 / Pt]} – 
rr dr Mt-1 Lt -1) / Pt-1 in real terms, to those who would have owned the capital from t-1 to t if the 

economy was a barter – deducting the official reserves loss 
37

… 
 
. A slightly different allocation of money management costs would assign net losses (g + 

1) {f(kt-1) – f(kt-2) Pt-1/[Pt (1 + n)]} – ( h {f(kt -1) – f(kt-2) Pt-1/[Pt (1 + n)]} - (1 – h) {f(kt-2) – f(kt-

3) Pt-2/[Pt -1 (1 + n)]} (1 – dh) / (1 + n)  ) to the private sector – instead of g {f(kt-1) – f(kt-2) Pt-

1/[Pt (1 + n)]}, deducted in (7.3) -, with government taxes, i.e., (7.5), Tt becoming rr [f(kt-1) – 
f(kt-2) (1 – dr) / (1 + n)] – {f(kt-1) – f(kt-2) Pt-1/[Pt (1 + n)]} = rr [Mt / Pt – (Mt -1 / Pt-1) (1 – dr) / (1 
+ n)] – dMt / Pt. Conclusions would not alter significantly, even though the efficient subsidies and 

tax rates would slightly. 
The aggregate private sector problem would not alter if we assumed that at time t factor 

owners – consumers, expenditure makers - receive lagged income, Pt Lt f(kt-1) - dMt  /Pt =  Wt Lt 
+ Rt Kt-1 - dMt /Pt = Wt-1 Lt-1 + Rt-1 Kt-2 – then, only (g – 1) dMt /Pt is left to bear from other 

leakages or seigniorage rights. 
A different seigniorage rights assignment when all money issuances are made against 

private borrowing would suggest that the central authority in real terms is left with real taxes to 
collect: 

 
(5.13)  T”t  =  rr [f(kt-1) – f(kt-2) (1 – dr) / (1 + n)] – {Mt / Pt – Mt-1 / [Pt (1 + n)] + (Rt 

/Pt) Mt-1 / Pt-1 / (1 + n)}  +  [Mt / Pt – Mt-1/Pt-1 (1 – d) / (1 + n)] = 
=  rr [f(kt-1) – f(kt-2) (1 – dr) / (1 + n)] – {f(kt-1) – f(kt-2) [Pt-1 / Pt - f’(kt-1)] / (1 + n)]}  +  

[Mt / Pt – Mt-1/Pt-1 (1 – d) / (1 + n)] 

 
Firms still pay factors at marginal product and Rt /Pt = f’(kt-1). Profits from money 

transactions plus income received from capital holdings are channeled back to the private system 
– the term in curly brackets. The authority keeps titles or credit outstanding over the private 
sector of real value Mt  / Pt  – what the private sector thinks Mt is worth - at the end of transaction 
time t; as it had Mt -1/Pt-1 (1 – d) / (1 + n), the last term in squared brackets is collected (or 
deducted from what is returned…). Then the private sector – who works, at time t, with capital kt-

1 but only owns kt-1 – Dt-1 / (1 + n) where Dt = Mt / Pt and is seen exogenous - state equation 

becomes: 
(5.14) s.t: (1 + n)  [kt – Dt / (1 + n)] = (1 – d) [kt-1 - Dt-1 / (1 + n)] + f(kt-1) - ct – (g + 1 – 

h) {f(kt-1) – f(kt -2) Pt-1/[Pt (1 + n)]} + (1 – h) {f(kt-2) – f(kt-3) Pt-2/[Pt-1 (1 + n)]}(1 – dh) / (1 + n) 
-  Dt-1 f’(kt-1) / (1 + n)]}  – T”t   
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 This would be consistent with demand deposits – as noted for old NOW accounts… - paying interest. 
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(To have just money covered by real asset value is another alternative. Then: T”t = rr 

[f(kt-1) – f(kt -2) (1 – dr) / (1 + n)] – {Mt / Pt – Mt-1 / [Pt (1 + n)] + (Rt /Pt) Mt-1 / Pt-1 / (1 + n)}  + 
(1 – rr) [Mt / Pt – Mt-1/Pt-1 (1 – d) / (1 + n)]. f’(kt-1) is multiplied by (1 – rr) in (7.14) and Dt = Mt 
/ Pt (1 – rr). However, if money creation is processed through loans, the other alternative also 

appears reasonable.) 
The equilibrium solution would be more complex that the previous one – involving 

second derivatives of the average product function. Still, because by selling the private sector 
may in fact impose some constraints on the central authority – with a partial “do it yourself”, or 
discouragement argument – some scope for bargaining between the two extremes may occur. 

 
Finally, we should stress the fact that if individuals realize the government/central bank 

budget constraint, (5.5), and internalize it, we should replace it in (5.4) before individuals’ 
optimization. FOC then allow for the first-best solution, provided the government just follows the 
a monetary policy oriented towards exhausting inventories. That recognition may, in practice, be 
blurred or distorted due to the existence of different sides of economic activity - that were 
collapsed in our simple world - and uncertain incidence of taxes… 

 
. Notice also that without, or with instantaneous, money a slightly different – we can say, 

fully “leaded” – pricing system than usual would satisfy an efficient solution of a “production-in-
advance” economy. Say that expenditure leads production according to: 

 
(5.15) ct + it + dyt  =  f(kt -1)  =  yt   

At time t, what is exchanged is  
(5.16) ct + it  =  yt-1 / (1 + n)  =  f(kt-2) / (1 + n) 

 
With CRS, a reasonable pricing system of factors used in the production of (Lt-1 yt-1), 

which is exchange at time t, will obey: 
 
(5.17) Pt (ct + it) (1 + n)  =  Pt yt-1  =  Pt f(kt-2)  =  (Wt Lt-1 + Rt Kt-2) / Lt-1   

 
As the sale of the change in product is postponed, what effectively is paid today is 

yesterday’s production factor use. Of course, one might argue that money requirements will 
(should…) respond to lagged production, i.e., the current transactions money demand is replaced 
by: 

(5.18) Mt  =  Pt yt-1 / (1 + n)  =  Pt f(kt-2) / (1 + n) 
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Then, under (5.17), i.e., without CIA restrictions (or with immediate re- insertion) or 
official reserves, we recover money neutrality. 

Note that he definitions of ct – argument of the utility function - and it are left as per 
capita values of population existing at time t, Lt – therefore assuming redistribution by the current 

population at time t. 
 
 
5.2 Infinitely Lived Firms and Long-Term Contracts: Q-Theories of Ins talled 

Capital and Old Labor Contracts 
 
. As dY = FK(K, L) dK + FL(K, L) dL, an obvious analogy with Tobin’s (1969) q-theory 

of investment in the presence of adjustment costs can be made and an extension proposed 
38

 Let 
Mt = Lt Mt and Mt = Pt F(Kt-1, Lt) be replaced and allow wages to be measured in terms of real 

output units (new investment price is, thus, 1). Firms maximize the present value of accumulated 
long-term profits; they purchase new capital – investment – and pay wages being – as collateral 
(capital) holders - responsible for initial money issuances. Assume that rr multiplies dYt – i.e., 
neither reserves while such, nor the time to produce term depreciate, so that dYt = FK(Kt-1, Lt) 

dKt-1 + FL(Kt-1, Lt) dLt 
39

. Then, we could state a productive system problem as: 

 

(5.19)
, , , , ,t t t t t tI dL dM K L M

Max   ∑ ∏
∞

= =








+1 1 1
1

t

t

s tr
 {F(Kt-1, Lt)  - Wt Lt – It – g F(Kt-1, Lt) dMt/Mt – rr 

[FK(Kt-1, Lt) (It-1 – d Kt-2) + FL(Kt-1, Lt) dLt]}  
 s.t:     Kt  =  (1 – d) Kt-1 + It  
 Lt  =  Lt-1  +  dLt   
 Mt  =  Mt-1 + dMt  
 … ≥ 0, Mt ≥ 0,  - F(Kt-2, Lt-1)  ≤  F(Kt-1, Lt) dMt/Mt  ≤  F(Kt-1, Lt)  
 Given K-1, K0, L0 and M0  

The lagrangean form becomes: 
 

(5.20)
1 2 3, , , , , , , ,t t t t t t t t tI dL dM K L M q q q

Max  ∑ ∏
∞

= =








+1 1 1
1

t

t

s sr
 {F(Kt-1, Lt)  - Wt Lt – It – g F(Kt-1,  Lt) 

dMt/Mt – rr [FK(Kt-1, Lt) (It-1 – d Kt-2) + FL(Kt-1, Lt) dLt]}  

+ ∑
∞

=1t

ν1t [- Kt + (1 – d) Kt-1 + It] + ∑
∞

=1t

ν2t (- Lt + Lt-1 + dLt) + ∑
∞

=1t

ν3t (- Mt + Mt-1 + 

dMt) 
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 We follow Barro and Sala-i-Martin (1995), p. 119-127. 
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 With exogenous technical progress, an “autonomous” term would be added. 



 46

ct ≥ 0, Mt ≥ 0,  - F(Kt-2, Lt-1) ≤ (Mt – Mt-1) / Pt ≤ F(Kt-1, Lt);  given K-1, K0, L0 and M0  

 
FOC imply: 
 

(5.21) 
t

L
I

∂
∂

 =  ∏
=









+

t

s sr1 1
1

 [- 1 - rr 
11

1

++ tr
 FK(Kt-1, Lt)] + ν1t  = 0    

(5.22) 
t

L
dL
∂

∂
 =  – ∏

=








+

t

s sr1 1
1

 rr FL(Kt-1, Lt) + ν2t  = 0    

(5.23) 
t

L
dM
∂

∂
 =  - ∏

=








+

t

s sr1 1
1

 g F(Kt-1, Lt) / Mt + ν3t  = - ∏
=









+

t

s sr1 1
1

 g / Pt + ν3t  = 0    

(5.24) 
t

L
K

∂
∂

 =  - ν1t  + (1 - d) ν1t+1 + ∏
+

=








+

1

1 1
1t

s sr
 {FK(Kt, Lt+1) (1 - g dMt+1/Mt+1) - rr 

[FKK(Kt, Lt+1) (It – d Kt-1) – d 
21

1

++ tr
 FK(Kt+1, Lt+2) + FLK(Kt, Lt+1) dLt+1]} = 0    

(5.25) 
t

L
L

∂
∂

 =  - ν2t  +  ν2t+1 +  ∏
=









+

t

s sr1 1
1

 {FL(Kt-1,  Lt) (1 - g dMt/Mt) – Wt - rr 

[FKL(Kt-1, Lt) (It-1 – d Kt-2) + FLL(Kt-1, Lt) dLt]} = 0    

(5.26) 
t

L
M
∂

∂
 =  - ν3t  +  ν3t+1 -  ∏

=








+

t

s sr1 1
1

  g F(Kt-1, Lt) dMt/Mt
2  = 0    

 

Let qjt ∏
=









+

t

s sr1 1
1

 = νjt, the present value of the shadow price of state variable j, j = 

1,2,3. Then: 
 

(5.27) q1t  =  1 + rr 
11

1

++ tr
 FK(Kt-1, Lt)   

(5.28) q2t  =  rr FL(Kt-1, Lt)   
(5.29) q3t  =  g F(Kt-1, Lt) / Mt  =  g / Pt   
(5.30) q1t (1 + rt+1) - (1 - d) q1t+1  =  FK(Kt, Lt+1) (1 - g dMt+1/Mt+1) - rr [FKK(Kt, 

Lt+1) (It – d Kt-1) – d 
21

1

++ tr
 FK(Kt+1, Lt+2) + FLK(Kt, Lt+1) dLt+1]    

(5.31) (1 + rt+1) q2t  -  q2t+1  =  (1 + rt+1) {FL(Kt-1,  Lt) (1 - g dMt/Mt) - Wt - rr 
[FKL(Kt-1, Lt) (It-1 – d Kt-2) + FLL(Kt-1, Lt) dLt]}     

(5.32) (1 + rt+1)  q3t  -  q3t+1  =  (1 + rt+1) g F(Kt-1, Lt) dMt/Mt
2  =  (1 + rt+1) g 

(dMt/Mt) / Pt     

 
The first establishes the price of installed capital owned by the firm at time (also referred 

at time t). The second, the price of a unitary labor contract held by the firm at time t (referred at 
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time t) – what she will ask to another firm (over the mere release of the wage) just to grant a unit 
of its labor. The third, of the money balances the firm owns. 

The last three equations imply: 
 
(5.33) rt+1 =  (q1t+1 - q1t) / q1t - d q1t+1 / q1t  + { FK(Kt, Lt+1) (1 - g dMt+1/Mt+1) - rr 

[FKK(Kt, Lt+1) (It – d Kt-1) – d 
21

1

++ tr
 FK(Kt+1, Lt+2) + FLK(Kt, Lt+1) dLt+1]} / q1t   

 
(5.34) Wt  =  q2t+1/(1 + rt+1) - q2t  +  {FL(Kt-1, Lt) (1 - g dMt/Mt) - rr [FKL(Kt-1, Lt) 

(It-1 – d Kt-2) + FLL(Kt-1, Lt) dLt]}  

And 
(5.35) Pt  =  g (dMt/Mt) / [q3t+1/(1 + rt+1) – q3t]  = (dMt /Mt) / [(1 / Pt+1) / (1 + rt+1) - 

1 / Pt]  

or 
(5.36)  (Pt / Pt+1) / (1 + rt+1)  =  (dMt/Mt)+ 1  

or 
(5.37) q3t+1/q3t  =  Pt / Pt+1  =  (1 + rt+1) [(dMt/Mt)+ 1]    

 
The first establishes the well-known relation between the interest rate: equal to the 

adjusted marginal product of capital plus the expected appreciation minus depreciation of pre-
existing real assets. The wage rate contains the adjusted marginal product of labor and the 
appreciation of pre-existing labor contracts. The last equation - – note that the term that generates 
it disappears if cash purchases are passed on to consumers... - can be read as [(dMt/Mt)+ 1] = 1 / 
[(1 + rt+1) Pt+1 / Pt]: the aggregate money stock increases at a rate symmetric to the (level of the) 

nominal interest rate. If aggregate money supply is kept fixed, the Friedman rule is reproduced – 
but then, in a steady-state, the real interest rate would be equal to the population growth rate (plus 
the growth rate of output per capita). However, with null Mt, condition (5.23) disappears, 

transformed in an inequality. And we should add ∑
∞

=1t

ν4t (- Zt + Zt-1 (1 – dh) + g F(Kt-1,  Lt) 

dMt/Mt) to the problem to generate an efficient solution… 

 
. Yet, one can argue that firms are indeed general-price takers. So the aggregate 

maximand should be set as 
40

: 
 

                                                 
40

 One could argue that official reserves are set in nominal terms and therefore we should distinguish rr’ 

(Mt/Pt – Mt-1/Pt-1) + g’ dYt. That is irrelevant for the argument we pursue here in regarding the term 

multiplying rr, which deals with the last effect only – costs associated with dYt. 
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(5.38) 
, , , , ,t t t t t tI dL dM K L M

Max   ∑ ∏
∞

= =








+1 1 1
1

t

t

s tr
 {F(Kt-1, Lt)  - Wt Lt – It – g dMt/Pt – rr [FK(Kt-1, 

Lt) (It -1 – d Kt-2) + FL(Kt-1, Lt) dLt]}  

 
with Pt exogenously (ex-post) equal to F(Kt-1, Lt) / Mt. Then 

 

(5.39) q1t  =  1 + rr 
11

1

++ tr
 FK(Kt, Lt+1)   

(5.40) q2t  =  rr FL(Kt-1, Lt)   
(5.41) q3t  =  g / Pt   
(5.42) q1t (1 + rt+1) - (1 - d) q1t+1  =  FK(Kt, Lt+1) - rr [FKK(Kt, Lt+1) (It – d Kt-1) – 

21
1

++ tr
 d FK(Kt+1, Lt+2) + FLK(Kt, Lt+1) dLt+1]    

(5.43) (1 + rt+1) q2t  -  q2t+1  =  (1 + rt+1) {FL(Kt-1, Lt) - Wt - rr [FKL(Kt-1, Lt) (It-1 – 
d Kt-2) + FLL(Kt-1, Lt) dLt]}     

(5.44) (1 + rt+1)  q3t  -  q3t+1  =  0   

 
The last three equations imply: 
 
(5.45) rt+1 =  (q1t+1 - q1t) / q1t - d q1t+1 / q1t  + { FK(Kt, Lt+1) - rr [FKK(Kt, Lt+1) (It – d 

Kt-1) – d 
21

1

++ tr
 FK(Kt+1, Lt+2) + FLK(Kt, Lt+1) dLt+1]} / q1t   

 
(5.46) Wt  =  q2t+1/(1 + rt+1) - q2t  +  {FL(Kt-1, Lt) - rr [FKL(Kt-1, Lt) (It-1 – d Kt-2) + 

FLL(Kt-1, Lt) dLt]}  

and, with (7.40), 
(5.47) q3t+1/q3t  =  1 + rt+1  =  Pt / Pt+1   

 
The last equation establishes that the (real, once the maximand is in real output units) 

shadow-prices of nominal money balances rise – and Pt = g / q3t decreases, (evolving at rate 1 / (1 
+ rt+1) – 1) - at the real interest rate – the present value shadow prices (referred to time 0), ν3t, 
will be fixed. The price of money, 1 / Pt, increases at rate rt. The rule differs from (7.35) and one 

recognizes the Friedman rule: a zero nominal rate of interest. 
 
. At time t the value of the firm gives to his owner profits pt, the general term of the 

objective functions of the firm; the real value of the firm at time 0 for his owner in terms of good 

y is A’0 = ∑ ∏
∞

= =








+1 1 1
1

t

t

s tr
pt = 

11
1

r+
 p1 + ∑ ∏

∞

= =








+2 1 1
1

t

t

s tr
pt = 

11
1

r+
 p1 + 

11
1

r+
 A’1. Let At = A’t / 
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Lt; the consumer has At-1 in period t and decides what to keep, At, accounting for future 

additional family members, i.e.: 

(5.48) 
,t tc A

Max   ∑
∞

=1t

tρ U(ct)  

 s.t:   w1 + A0 (1 + r1) =  c1 + A1 (1 + n)    … 
(5.49) wt + At-1 (1 + rt) =  ct + At (1 + n)  

 
Each period, the household starts with At -1 in real terms, units of an asset that yields real 

interest rt in period t, and ends with At (1 + n) within the budget constraint, implying he buys 

consumption and receives wages from labor. 
 

(5.50) 
, ,t t tc A

Max
η

 ∑
∞

=1t

tρ U(ct) + ∑
∞

=1t

ηt [wt + At-1 (1 + rt) -  ct -  At (1 + n)]   

 

(5.51) 
t

W
c

∂
∂

  =  ρt Uc(ct) - ηt =  0     implying ηt+1 / ηt = ρ Uc(ct+1) / Uc(ct) 

(5.52) 
t

W
A

∂
∂

  =  - ηt (1 + n)  + (1 + rt) ηt+1  =  0   

 

Then ρ Uc(ct+1) / Uc(ct) = 
tr

n
+
+

1
1

; if future generations equally valued, ρ is replaced by ρ 

= ρ’ (1 + n) and 1 + rt = [Uc(ct) / Uc(ct+1)] / ρ’. In a steady-state, it will equal the individuals’ 

felicity discount rate. 
 
 
6. Optimal Fiscal and Monetary Policies; Money (M1) vs. Cash (Currency) -in-

Advance 
6.1. Endogenous Policy Parameters: Generalities 
 
. As noted in section 1, we could admit that (money…) transfers Trt  =  h dMt are given 

to private citizens per period – or that the central bank makes direct purchases from the private 
sector of that amount. It still had to be the case that (dMt - Trt) would be requested loans by the 

private sector, to be reinserted next period – or cash deposits of the central bank in commercial 
banks (against interest)... (1.9) would become: 

 
(9.1) dBt/Qt  =  Trt/Pt + (dMt-1 – Trt-1)/Pt-1 (1 – dh)  
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with exogenous Trt but without (or replacing the role of exogenous) h… Yet, they would 
alter the model once Trt cannot be then different than 0 – or pegged to dMt - in an hypothetical 

steady-state... 
 
. If one relies on (1.10), and allows h to be a time-variant exogenous parameter 
 
(9.2) dBt/Qt  =  (1 – ht -1) (1 - dh) (dBt-1/Qt-1 – Trt-1) + ht dMt/Pt + (1 – ht) Trt  

 
the optimal monetary and fiscal policies require:  
 
(9.3) ht  =  dh / [1 - ρ (1 – dh)]  

and 
(9.4) dMt/Pt + (1 – ht) Trt  =  ρ (1 - dh) (dBt/Qt – Trt)  

Then: 
(9.5) Trt  =  dBt/Qt  ρ [1 - ρ (1 – dh)] / [1 - ρ2 (1 – dh)]  

 
ht increases with ρ and decreases with dh. Also [Trt / (dBt/Qt)] increases with ρ and 

decreases with dh. 

(In the presence of exogenous technical progress and population growth, they should be 
slightly adapted.) 

 
Commercial banks ask loans to the central authority in response to the public’s demand. 

They keep reserves in proportion ht. Government issues nominal transfers Trt. Trt and ht are here 

the (sole) government intervention parameters. 
 
 
6.2. High-Powered Money Supply Multipliers  
 
. Let Ht denote high powered money – currency plus (commercial banks) cash reserves; 

ht is the required reserve ratio at time t, defined as the proportion of total deposits that must be 
kept in cash by the bank, or cannot be lent; out of newly created cash, ft is kept by the public – 
currency -, the rest, (re-)deposited, allowing further loaning. In the following period, (1 – ft) is re-
deposited – and (1 – ht) of it, again loaned. Then, creation of nominal supply of money is ruled 

by: 
 
(9.6) Mt – Mt-1 / (1 + n) = Trt + (1 – ht) (dHt – Trt) + (1 – ht-1) (1 – ft -1) [Trt-1 + (1 – ht-

1) (dHt-1 – Trt-1)] / (1 + n) + (1 – ht-1) (1 – ht-2) (1 – ft-1) (1 – ft-2) [Trt-2 + (1 – ht-2) (dHt-2 – Trt-
2)] /[(1 + n) (1 + n)] + ... = 
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 =  (1 – ht -1) (1 – ft-1) dMt-1 / (1 + n) + (1 – ht) dHt + ht Trt  

 
Trt denotes the part of high-powered money spent by the government in nominal 

transfers or direct open market operations; it deposits (dHt – Trt), in cash (but in return of 

interest…), in, or grant loans to, commercial banks… We admit that is a fixed proportion of the 
change in high-powered money: Trt = γ dHt – and γ is an exogenously fixed parameter. If all 

money/cash requirements are operated through the banking system, γ = 0. Note that even if γ = 1 - 
– only direct transfers affect high-powered money creation - would be speedier, it may not be 
feasible: due to (unmodelled…) economic system practices, tight money balances may firstly be 
felt through loans request – which the central authority in other than the deterministic 
environment we stage, may not even have foreseen; on the other hand, the (politically…) allowed 
transfers channel may not be direct: people who get the transfers may consume immediately, but 
to realize investment purchases, they must do it through a firm... 

We could consider that in (9.6) ft = Pt ct / Mt, or preferably, ft = [Pt ct – Pt-1 ct-1 / (1 + 

n)]/ [Mt – Mt-1 / (1 + n)]. Or more familiarly, ft = Pt ct / (Pt yt) 
41

, or ft = [Pt ct – Pt-1 ct-1 / (1 + 

n)]/ [Pt yt – Pt-1 yt-1 / (1 + n)]: currency in the public’s hands meets the conventional cash-in-

advance (towards consumption) assumption. (In fact, if annual income – GDP, based on 
regression of per capita values – velocity of currency is 16.3533 – of M1, 4.06849; of M2, 
1.42521 -, the coefficient of the regression, without intercept, of private consumption on currency 
is 11.0360 and of total consumption of 13.7251, suggesting a monthly rotation period, as wage 
payments usually are.) We could then combine a CIA requirement for consumption expenditures, 
fuelled by currency 

42
, with a high-powered money multiplier effect – the remaining M1, narrow 

money supply - for investment 
43

… Instead, we assume it a fixed proportion of issued currency, 
answering to potential investment transaction and property exchange – required at least by natural 
population turnover - needs. 

Then the multiplier dynamics – money creation – is represented by: 
 
(9.7) dMt  =  (1 – h) (1 – f) dMt-1 / (1 + n) + [1 – h (1 - γ)] dHt  

 

                                                 
41

 For Portugal, 1953-1995, the coefficient of the regression (without intercept, which was found non-

significant) of private consumption on GDP (both per capita) was 0.675456; of private and public consumption 

expenditures, 0.841775. 
42

 Nevertheless, a currency conversion requirement does not necessarily imply Clower’s delay. 
43

 We focus on a transactions demand for money balances – very liquid assets. In the economy, savings and 

time deposits would just allow services of personal property management… Yet, it is understood that by making a 

currency deposit, a person would be in fact acquiring capital… 
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with dMt  =  Mt – Mt-1 / (1 + n) and dHt  =  Ht – Ht-1 / (1 + n). It is a second-order 
differential version of the monetary base multiplier. In a model where dMt  – or rather Mt - is 
required at time t, with previous settlement of Mt’ and Ht’ of earlier periods, (9.7) provides the 
required dHt. 

On the one hand, if in a steady state, dMt grows at the same rate, m*, as real per capita 
money balances, as then (dMt / dMt-1)* = 1 + m*, - and dMt and dHt cannot be systematically 

negative - (9.7) implies an implicit long-run money multiplier obeying 
 
(9.8) dMt  =  [1 – h (1 - γ)] dHt  / {1 - (1 – h) (1 – f) / [(1 + m*) (1 + n)]} 

 
If γ = 1, dMt / dHt = 1 / {1 - (1 – h) (1 – f) / [(1 + m*) (1 + n)]}.  

 
On the other, (9.7) comes from an aggregate definition; it suggests – integrating – that 

44
: 

 
(9.9) Mt  =  a / Lt + (1 – h) (1 – f) Mt-1 / (1 + n) + [1 – h (1 - γ)] Ht  

 
(Again we can confirm the long-run multiplier (9.8) if Mt grows at a stable rate m*…) 
Given past values of H0, M-1 and, M0, if the mechanism is exogenous and stable, M0  =  

a / L0 + (1 – h) (1 – f) M-1 / (1 + n) + [1 – h (1 - γ)] H0 and, therefore,  

 
(9.10) a / L0 = M0 - (1 – h) (1 – f) M-1 / (1 + n) - [1 – h (1 - γ)] H0. 

 
a = 0 occurs iff L0 M0 = (1 – h) (1 – f) L-1 M-1 + [1 – h (1 - γ)] L0 H0. Being that the 

case, (9.9) – without the first term of the right hand-side – can replace (9.7), and we can say we 
have a first-order form of the multiplier. 

When (9.7) is introduced in a model targeting mt, or is staged in the presence of 
exogenous dynamics of Lt Ht : 

1) If a / (Ht Lt) = 0, or tends to zero, i.e., Ht Lt tends to infinity and (Ht/Mt tends to a 

constant) 1 + m* > 1 / (1 + n) so that aggregate money balances increase continually, (9.8) and 
(9.9) also suggest a constant long-run – steady-state - ratio (H / M): 

 
(9.11) (H / M)*  =  {1 - (1 – h) (1 – f) / [(1 + m*) (1 + n)]} / [1 – h (1 - γ)] 
 
(H / M)* increases with h, f, m* and n; it decreases with γ. 

                                                 
44

 For Portugal, 1948-1995 – using information from Pinheiro et al (1997) -, the intercept of the aggregate 

regression was found insignificant (with a p-value of 17.9% - 18.6% when per capita aggregates were used); 

coefficients of the regression (without intercept, 1954-1995) (9.9) using M1 – currency plus demand deposits – in 

per capita terms  were, respectively, 1.06769 – which should be smaller than 1… - and 0.062594. 
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2) If a / (Ht Lt) tends to infinity – because (Ht Lt) tends to zero (say, m* < 1 / (1 + n) – 1) 

-, (H / M)* will tend to {1 - (1 – h) (1 – f) / [(1 + m*) (1 + n)]} / {a / (Lt Ht) + [1 – h (1 - γ)]}, 

which will tend to zero. 
 
3) Finally, if (Ht Lt) tends to a constant different than zero, (Ht Lt)* - suggesting m* = 1 

/ (n + 1) – 1 exactly - , (H / M)* will tend to [1 - (1 – h) (1 – f)] / {a / (Lt Ht)* + [1 – h (1 - γ)]}. It 
then increases with (Lt Ht)*. 

 
. Provided a steady state supports m* > 1 / (1 + n) - 1, (9.7), the second-order differential 

equation of the multiplier can be used. If not, the first difference one could (if justified 
empirically…), (9.9) with a = 0.  

An alternative process can be justified by a distributed lag adjustment similar to (9.6) but 
working in levels instead of changes: suppose that new issued monetary base, out of which γ is 
immediately added to money as currency – by transfers or direct purchases of the central bank - 
and (1 – h) of the remainder lent to the private sector – h of that remainder left as commercial 
banks reserves -, accrues to previous money balances. In period t, adjustment of previous money 
balances to a fixed proportion of past monetary base, such that they equal Ht -1 times the long-run 

multiplier (under constant aggregate supply), is already accomplished – all the accumulated effect 
of total Ht-1 is achieved in one period of time -, and added of new currency so that 

45
 
46

: 

 
(9.12) Mt  =  Ht-1 {[1 – h (1 - γ)] / [1 - (1 – h) (1 – f)]} / (1 + n) + [1 – h (1 - γ)] dHt  = 
 =  [1 – h (1 - γ)] (Ht  +  {[(1 – h) (1 – f)] / [1 - (1 – h) (1 – f)]} Ht-1 / (1 + n)) 

 
The new multiplier if H and M are to grow at the same rate m* is - the same as that of 

the second-order difference one -, therefore: 
 
(9.13) (M / H)* = [1 – h (1 - γ)] (1 +  [(1 – h) (1 – f)] / {[1 - (1 – h) (1 – f)] / [(1 + n) (1 + 

m*)] }) 

                                                 
45

 For Portugal, 1954-1995 – using information from Pinheiro et al (1997) -, the intercept of the aggregate 

regression was found almost significant (with a p-value of 10.8% when per capita aggregates were used); 

coefficients of the regression (without intercept, 1954-1995) (9.12) using M1 – currency plus demand deposits – 

in per capita terms were, respectively, 0.386621 of Ht and 1.01356 of Ht-1. 
46

 For Portugal, 1954-1995 – using information from Pinheiro et al (1997) -, the intercept of the aggregate 

regression was found insignificant (with a p-value of 29.6% when per capita aggregates were used); coefficients 

of the regression (without intercept, 1954-1995) (9.12) using M2 – currency plus demand deposits – in per capita 

terms  were, respectively, 0.833438 of Ht and 3.16575 of Ht-1. 
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. Finally, notice that real reserve creation is considered outside the high-powered money 

supply process. Under full convertibility, an additional multiplier – linked to the real required 
reserved ratio rr - could generate high-powered money creation through the commercial banking 
system, stemming from official real reserve changes – deposits of which, or species itself - 
solicited by the government in exchange for currency… If the nominal unit is not indexed in 
species, seigniorage would stem from its appreciation, from currency depreciation; if it is 
(“break” in currency not allowed…), theoretically, there are no seigniorage rights - provided gold 
depositors receive interest, as any other, that the central bank would also ask for cash loans…)… 

 
 
6.3. Money-in-Advance  
6.3.1. “Unit-of-Account Neutrality”  
 
. The mechanism (9.6) can reproduce money dynamics – with a required cash reserve 

constraint - in an economy where transactions can be operated through bank transfers of 
individuals’ accounts balances. Suppose money transaction requirements – embedded in (1.2) - 
do not have to be met by currency, yet they must by money: to make a purchase of final product, 
ft is paid in advance in cash – which is withdrawn from the commercial bank deposits and out of 
them for the period; people do not have to hold the (1 – ft) proportion in cash, but must have, 

prove they have it – or rather, its worth – in advance; then, they just have to keep this proportion 
deposited – immobilized - in the bank during the period. 

The model replaces (1.6) by: 
 
(9.14) ct + it + rrt Ht /Pt – rrt-1 Ht -1/Pt-1 (1 - dr) + (g – 1) dMt /Pt + g’ [f(kt-1) - f(kt-2) (1 

– dy) / (1 + n)]  =  f(kt-1)  

 
g’ denotes the hypothetical adjustment losses with the production system operation – 

now, we can no longer consider them added to the required reserve ratio (i.e., rr = rr’ + g’ for 
comparison purposes), which we now denote rr’... Still, (g – 1) dMt/Pt represents for g = 2 a 

“money-in-advance” assumption that can still be superimposed: the money creation and 
conversion mechanism would replace (dBt/Qt – g dMt /Pt) of the previous generalized CIA 
modeling by (g – 1) dMt/Pt. We leave g” = (g – 1). g’ [f(kt -1) - f(kt-2) (1 – dy) / (1 + n)] is 

considered accruing to inventory build-up – and added to its state equation; we could have just 
assumed them a loss to production instead (i.e., deduct the term from the capital state equation 
but not add them to the inventory one.). 

One could think that cash- in advance delays no longer apply to total money balances but 
only to newly issued currency, i.e., that g” dMt /Pt should eventually be replaced by g” dHt/Pt; yet, 
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(9.6) rules the money supply process: it may still be the case that transactions delay are 
(technologically) demand induced by production operating rhythm. Conversion delays could still 
imply an expenditure leakage working through (1 - γ) dHt/Pt only – and we could then deduct (1 - 
h) (1 - γ) [dHt/Pt - dHt-1/Pt-1 (1 - dh) / (1 + n)] from the capital state equation; but could also 
apply to total new money, Mt, creation – or yet to [dMt - γ dHt]/Pt... (Seigniorage would only 

need to be modeled to derive an equilibrium, not the efficient allocation. It only stems from high-
powered money – provided commercial bank deposits pay interest…) To simplify matters, we 
ignore then. 

The multiplier is introduced in a second-order differenced form 
47

. The planner’s 
problem becomes: 

 

 
, , , , , , ,t t t t t t t tc k dH H dM M P z

Max  ∑
∞

=1t

tρ  U(ct) 

(9.15) s.t:  (1 + n) kt = (1 – d) kt-1 + f(kt-1) – ct – g” dMt/Pt – g’ [f(kt-1) - f(kt-2) (1 – dy) / 
(1 + n)] – rr’ [Ht/Pt – Ht-1/Pt-1 (1 - dr) / (1 + n)] 

(9.16) dMt  =  (1 – h) (1 – f) dMt-1 / (1 + n) + [1 – h (1 - γ)] dHt  
(9.17) Ht  =  Ht-1 / (1 + n) + dHt  
(9.18) Mt  =  Mt-1 / (1 + n) + dMt  
(9.19) Mt  =  Pt f(kt-1)  
(9.20) zt  =  zt-1 (1 – dh) / (1 + n) + g” dMt/ Pt + g’ [f(kt -1) - f(kt-2) (1 – dy) / (1 + n)] 
 ct ≥ 0, kt ≥ 0, Mt ≥ 0, Ht ≥ 0, zt ≥ 0,   - f(kt-2) / (1 + n)  ≤  dMt / Pt  ≤  f(kt-1)  
 Given k-1, k0, H0, M0, dM0, P0, z0   

 
The Hamiltonian analog would be linear in dMt but also in dHt. Then we do not expect 

in compact forms of the problem interior solutions for either Mt or Ht. And if Ht is just dictated 
by Mt and not a corner (i.e., different from 0), we must (or rather, may: we are applying rules of a 

first-order Hamiltonian…) be in the presence of a singular solution for H. 
It can be further simplified to: 
 

                                                 
47

 For Portugal, 1949-1995 – using information from Pinheiro et al (1997) -, the coefficients of the 

regression (without intercept) (9.16) using M1 – currency plus demand deposits – as the money aggregate were, 

respectively, 0.940591 – approaching (1 – h) (1 – f) for an annual revolving period - and 0.00788682 (if one uses 

the interpretation of appendix B, and regress accordingly, [(1 – h) (1 – f)]j equals 0.958267; yet the second term is 

negative even if insignificant). The long run ratio (using per capita aggregates) (M1 / H) for 1953-1995 was 

1.32133. 
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(9.21) 
, ,t t tk H M
Max  ∑

∞

=1t

tρ  U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – g” f(kt-1) [Mt - Mt-1 / (1 + 

n)]/Mt - g’ [f(kt -1) - f(kt-2) (1 – dy) / (1 + n)] – rr’ [f(kt-1) Ht / Mt – f(kt-2) (Ht-1/ Mt-1) (1 – dr) / (1 

+ n)]} 
(9.22)  s.t.:  Mt  =  Mt-1 / (1 + n) + [(1 – h) (1 – f)/(1 + n)] [Mt -1 - Mt-2 / (1 + n)] + [1 – h 

(1 - γ)] [Ht - Ht-1 / (1 + n)]   
(9.23) zt  =  zt-1 (1 – dh) / (1 + n) + g” dMt/ Pt + g’ [f(kt -1) - f(kt-2) (1 – dy) / (1 + n)] 
 ct ≥ 0, Ht ≥ 0, Mt ≥ 0, zt ≥ 0;  given k-1, k0, H0, M-1, M0, z0 

 
Looking at the  structure of the objective function, one immediately concludes that Ht / 

Mt is consumption detracting. 

 

(9.24) 
, , ,t t t tk H M
Max

µ
  L = ∑

∞

=1t

tρ U{(1 – d) kt-1 + f(kt -1) - (1 + n) kt – g” f(kt-1) [Mt - Mt-1 / 

(1 + n)]/Mt - g’ [f(kt-1) - f(kt-2) (1 – dy) / (1 + n)] – rr’ [f(kt-1) Ht / Mt – f(kt-2) (Ht-1/ Mt -1) (1 – dr) 

/ (1 + n)]} + ∑
∞

=1t

µt (Mt  -  {Mt -1 / (1 + n) + [(1 – h) (1 – f) / (1 + n)] [Mt -1 - Mt-2 / (1 + n)] + [1 – 

h (1 - γ)] [Ht - Ht-1 / (1 + n)]}  ) + ∑
∞

=1t

ηt {- zt  +  zt-1 (1 – dh) / (1 + n) + g” f(kt-1) [Mt – Mt-1 / (1 

+ n)] / Mt + g’ [f(kt -1) - f(kt-2) (1 – dy) / (1 + n)]  }   

 
FOC generate: 
 

(9.25) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc(ct) + ρ Uc(ct+1) [(1 – d)+ f’(kt) {1 – g’ - g” [Mt+1 – 

Mt / (1 + n)] /Mt+1 - rr’ Ht+1 / Mt+1 }] + ρ2 Uc(ct+2) f’(kt) [ rr’ (1 – dr) / (1 + n) Ht+1/ Mt+1 + g’ 

(1 – dy) / (1 + n)] ) + ηt+1 f’(k t) {g” [Mt – Mt-1 / (1 + n)] / Mt + g’} - ηt+2 g’ f’(k t) (1 – dy) / (1 + 

n) =  0   
 

(9.26) 
t

W
H

∂
∂

  =  ρt { - rr’ Uc(ct) (1 / Mt) f(kt-1) + ρ Uc(ct+1) rr’ f(kt -1) (1 / Mt) (1 - 

dr) / (1 + n)}  - µt [1 – h (1 - γ)]  +  µt+1 {[1 – h (1 - γ)] / (1 + n)}    =  0   

 

(9.27) 
t

W
M

∂
∂

  =  ρt { [- g” Mt-1 / (1 + n) + rr’ Ht] Uc(ct) (1 / Mt
2) f(kt -1) + ρ 

Uc(ct+1) { [g” / (1 + n)] f(kt) / Mt+1 - rr” f(kt-1) (Ht / Mt
2) (1 – dr) / (1 + n)}  +  µt   - µt+1 [(1 – h) 

(1 – f)] / (1 + n) + µt+2 [(1 – h) (1 – f)] / (1 + n)2  +  ηt { g” f(kt-1) (Mt-1 / Mt
2) / (1 + n) -  ηt+1 { 

g” f(kt) (1 / Mt+1) / (1 + n) =  0   
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(9.28) 
t

W
z

∂
∂

  =  -  ηt  +  ηt+1 (1 – dh) / (1 + n)  =  0 

 
For a steady-state with a constant k*, it is suggested that dMt/Pt should be constant. 

Then dMt would grow at the same rate as the general price level. Being f constant, that would 
imply that dMt would also grow at the same rate as real per capita money balances, or be zero. 

Then the implicit long-run money multiplier obeys (9.8) and – if a = 0 or similar – (9.11) will 
hold. 

Reasoning as in section 2, one would be led to the conclusion that a pursuit of null 
inventories could be an optimal policy; yet, due to the structure of the official reserve deduction, 
dependent on Ht and Mt and lags, there may be paths where – at least temporarily - trade-offs 

between that term and inventory build-up may dictate interior solutions for the latter. 
Nevertheless, monetary growth is expected to harm welfare prospects doubly in the long-run – 
through inventories, but also through H/M which, in a steady-state, increases with m; and any 
attempt to drive m down will always be bounded from below by the non-negative inventory 
requirement… 

Under null inventories – from (9.25) - capital, kt, and consumption, ct, follow a path 

consistent with: 
 
(9.29) f’(kt)  =  [(1 + n) Uc(ct) - ρ Uc(ct+1) (1 – d)] / 

[ρ Uc(ct+1) (1 – rr’ Ht+1 / Mt+1) + ρ2 Uc(ct+2) rr’ Ht+1 / Mt+1 (1 – dr) / (1 + n)]   

and 
(9.30)  ct = (1 – d) kt-1 + f(kt-1) – (1 + n) kt - rr’ [f(kt-1) Ht/Mt – f(kt-2) Ht-1/Mt -1 (1 - dr) / 

(1 + n)] 
 
The zero inventory policy can be accomplished if the central authority targets M1 such 

that 
 
0 = z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1  +  g’[f(k0) – f(k-1) (1 

– dh) / (1 + n)]  
fixing thus H1 such that  
[M1 – M0 / (1 + n)]  =  (1 – h) (1 – f) dM0 / (1 + n) + [1 – h (1 - γ)] [H1 – H0 / (1 + n)]  

 
For t = 2,3... zt = 0 the authority sets Mt such that: 

 
(9.31) g” f(kt-1) [Mt – Mt -1 / (1 + n)] / Mt  =  - g’ [f(kt-1) – f(kt-2) (1 – dh) / (1 + n)]   

or 
(9.32) Mt  =  [Mt-1 / (1 + n)] / (1 +  (g’/g”) {1 – [f(kt-2)/ f(kt-1)] (1 – dh) / (1 + n)}) 
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systematically requiring Ht derived from: 

 
(9.33) [Ht – Ht-1 / (1 + n)]  =  {[Mt – Mt-1 / (1 + n)] - (1 – h) (1 – f) [Mt -1 – Mt-2 / (1 + 

n)] / (1 + n)} / [1 – h (1 - γ)]  =  (g’/g”) ( - Mt {1 – [f(kt-2)/ f(kt-1)] (1 – dh) / (1 + n)} + [(1 – h) (1 
– f) / (1 + n)] Mt -1 {1 – [f(kt-3)/ f(kt-2)] (1 – dh) / (1 + n)} ) / [1 – h (1 - γ)]   

 
(9.32) suggests that for a null inventory sequence in the long-run, Mt / Mt-1 would tend 

to 1 / [1 + n + (g’ / g”) (n + dh)] < 1 / (1 + n); but then (9.33) would imply that we will achieve 
zero dHt – after which the zero inventory policy is no longer attainable. Then the inventory state 

equation is no longer relevant and we would apply: 
 
(9.34) f’(kt)  =  [(1 + n) Uc(ct) - ρ Uc(ct+1) (1 – d)] / 
{ ρ Uc(ct+1) [1 – rr’ Ht+1 / Mt+1 - g’] +  

+ ρ2 Uc(ct+2) [g’ (1 – dy) / (1 + n) + rr’ (Ht+1 / Mt+1) (1 – dr) / (1 + n)] } 

and 
(9.35)  ct = (1 – d) kt-1 + f(kt-1) – (1 + n) kt - rr’ [f(kt-1) Ht/Mt – f(kt-2) Ht-1/Mt -1 (1 - dr) / 

(1 + n)] – g’ [f(kt -1) – f(kt-2) (1 - dy) / (1 + n)]   

 
In the steady-state: 
 
(9.36)  f’(k*)  =  [(1 + n) - ρ (1 – d)] / 
{  ρ [1 – g’ – rr’ (H/M)*] + ρ2  [rr’ (H/M)* (1 – dr) / (1 + n) + g’ (1 – dy) / (1 + n)]  } 

 
(9.37) c* = f(k*) {1 - rr’ (H/M)* [1 – (1 – dr) / (1 + n)] - g’ [1 – (1 – dy) / (1 + n)]} – (n 

+ d) k* 
 
From then, we conclude that steady-state capital as per capita consumption would 

decrease with (H/M)*, g’ and dy. 

But if H reached zero, (H / M)* may have been driven to zero (case 2 of end of previous 
sub-section is not a possibility…), eventually replaceable in the above… 

 
. Interesting variants or special cases of the problem present dilemmas with respect to the 

multiplier: 
1) If g’ = 0, we could infer H1 and M1 – in a policy where inventories are set to zero as 

soon as possible - from: 
 
0  =  z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1 
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[M1 – M0 / (1 + n)]  =  (1 – h) (1 – f) dM0 / (1 + n) + [1 – h (1 - γ)] [H1 – H0 / (1 + n)]  

 
Then H2 would obey: 

 
0  =  [M2 – M1 / (1 + n)]  =  (1 – h) (1 – f) [M1 – M0 / (1 + n)]  / (1 + n) + [1 – h (1 - γ)] 

[H2 – H1 / (1 + n)]  

 
(and 
0  =  [M3 – M2 / (1 + n)]  =  (1 – h) (1 – f) [M2 – M1 / (1 + n)]  / (1 + n) + [1 – h (1 - γ)] 

[H3 – H2 / (1 + n)]  =  [H3 – H2 / (1 + n)] ...) 

 
Ht Lt would then be kept fixed at the level (H2 L2); Mt Lt, at level L2 M2 (then M2 = M1 

/ (1 + n)) – we could deduct the ratio to apply in (9.29). The steady-state would then not be 
independent of initial conditions – and would differ from the Ramsey result: 

 
(9.38)  f’(k*)  =  [(1 + n) / ρ - (1 – d)] / {1 – rr’ (Ht / Mt)* [1 - ρ (1 – dr) / (1 + n)]}   

and 
(9.39)   c*  =  f(k*) {1 - rr’ (Ht/Mt)* [1 – (1 - dr) / (1 + n)]} – (d + n) k*  

 
Moreover, there may be now a trade-off between change in inventories and in official 

reserves that the planner may be able to exploit – the Hamiltonian is no longer linear in, now, 
dHt. 

Targeting zt = 0, t = 2,3,… and allowing z1 to be positive instead would require: 

 
[M1 – M0 / (1 + n)]  =  (1 – h) (1 – f) dM0 / (1 + n) + [1 – h (1 - γ)] [H1 – H0 / (1 + n)]  

 
[M2 – M1 / (1 + n)]  =  (1 – h) (1 – f) [M1 – M0 / (1 + n)]  / (1 + n) + [1 – h (1 - γ)] [H2 – 

H1 / (1 + n)]  = 0 

 
z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1  
0  =  z2  =  z1 (1 – dh) / (1 + n)   

 
The last two equations determine z1 and M1. Then the first two determine H1 and H2. 

We have a similar problem… 
 
2) Suppose a delayed re-insertion mechanism – now of all money creation - is in place. 

We have a term h” (1 – dh) / (1 + n) dMt-1 /Pt-1 added to the state equation – g’ is set to zero. 
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Then, the zero inventory driven policy can be accomplished if the central authority targets M1 

such that 
 
0 = z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1  -  h” (1 – dh) / (1 + n) 

dM0 /P0   
fixing thus H1 such that  
[M1 – M0 / (1 + n)]  =  (1 – h) (1 – f) dM0 / (1 + n) + [1 – h (1 - γ)] [H1 – H0 / (1 + n)]  

 
For t = 2,3... zt = 0 the authority sets Mt such that: 

 
g” [Mt – Mt-1 / (1 + n)] f(kt-1) / Mt  =  h” [(1 – dh) / (1 + n)] [Mt-1 – Mt-2 / (1 + n)] f(kt-2) 

/ Mt-1   

or 
[Mt – Mt-1 / (1 + n)] / Mt  =  [f(k0)/ f(kt-1)] {[(h”/g”) (1 – dh) / (1 + n)]}t-1 {[M1 – M0 / 

(1 + n)] / M1}  

or 
Mt  = [Mt-1 / (1 + n)] / (1 - [f(k0)/ f(kt-1)] {[(h”/g”) (1 – dh) / (1 + n)]}t-1 {[M1 – M0 / (1 

+ n)] / M1}) 

 
systematically requiring Ht : 

 
[Ht – Ht-1 / (1 + n)]  =  {[Mt – Mt-1 / (1 + n)] - (1 – h) (1 – f) [Mt-1 – Mt-2 / (1 + n)] / (1 + 

n)} / [1 – h (1 - γ)]  =  f(k0) { [Mt / f(kt-1)] [(h”/g”) (1 – dh) / (1 + n)] – [(1 – h) (1 – f) / (1 + n)] 

[Mt-1 / f(kt -2)] } {[(h”/g”) (1 – dh) / (1 + n)]}t-2 {[M1 – M0 / (1 + n)] / M1}  / [1 – h (1 - γ)]    

or 

Ht  =  f(k0) {[M1 – M0 / (1 + n)] / M1} ∑
−

=

2

1

t

j

{[Mt-j+1 / f(kt-j+1-1)] [(h”/g”) (1 – dh) / (1 + 

n)] – [(1 – h) (1 – f) / (1 + n)] [Mt-j+1-1 / f(kt -j+1-2)]} {[(h”/g”) (1 – dh) / (1 + n)]}t-j+1-2 / {[1 – h 

(1 - γ)]j (1 + n) j-1}  +  H1 / (1 + n)  

 
Mt / Mt-1 will tend to 1 / (1 + n); we will end-up with (H / M)* given by: 

 
(9.40) (H / M)*  =  [1 - (1 – h) (1 – f)] / [1 – h (1 - γ)] 
 
that can therefore be replaced in (9.34) and (9.35) (for g’ = 0). 
 
3) Finally, note that if the term g’ [f(kt-1) - f(kt -2) (1 – dy) / (1 + n)] is a pure production 

loss (or enhancement if negative) and does not represent storable items, it is not added to the 
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inventories. Then, a zero- inventory target leads to H2 and M2 of case 1) and the economy follows 
the real path (9.34) and (9.35); the steady-state is given by (9.36) and (9.37) for Ht = H2 and Mt = 
M2. 

 
. Suppose, therefore, that we stage instead a first-order difference multiplier. The 

planner’s problem is: 

 
, , , , , , ,t t t t t t t tc k dH H dM M P z

Max  ∑
∞

=1t

tρ  U(ct) 

(9.41) s.t:  (1 + n) kt = (1 – d) kt-1 + f(kt-1) – ct – g” dMt/Pt – g’ [f(kt-1) - f(kt-2) (1 – dy) / 
(1 + n)] – rr’ [Ht/Pt – Ht-1/Pt-1 (1 - dr) / (1 + n)] 

(9.42) Mt  =  (1 – h) (1 – f) Mt-1 / (1 + n) + [1 – h (1 - γ)] Ht  
(9.43) Mt  =  Mt-1 / (1 + n) + dMt  
(9.44) Mt  =  Pt f(kt-1)  
(9.45) zt  =  zt-1 (1 – dh) / (1 + n) + g” dMt/ Pt + g’ [f(kt -1) - f(kt-2) (1 – dy) / (1 + n)] 
 ct ≥ 0, kt ≥ 0, Mt ≥ 0, Ht ≥ 0, zt ≥ 0,   - f(kt-2) / (1 + n)  ≤  dMt / Pt  ≤  f(kt-1)  
 Given k-1, k0, H0, M0, dM0, P0, z0   

 
The economy’s new optimal path would be attainable with the second-order process if a 

= 0 – i.e., if initial stocks allow (9.10) to be zero. 
(9.29) and (9.30) hold with a zero inventory policy; it can be accomplished if the central 

authority targets M1 such that 

 
0 = z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1  +  g’[f(k0) – f(k-1) (1 

– dh) / (1 + n)]  
fixing thus H1 such that  
M1  =  (1 – h) (1 – f) M0 / (1 + n) + [1 – h (1 - γ)] H1  

 
For t = 2,3... zt = 0 the authority sets Mt such that: 

 
(9.46) g” f(kt-1) [Mt – Mt -1 / (1 + n)] / Mt  =  - g’ [f(kt-1) – f(kt-2) (1 – dh) / (1 + n)]   

or 
(9.47) Mt  =  [Mt-1 / (1 + n)] / (1 +  (g’/g”) {1 – [f(kt-2)/ f(kt-1)] (1 – dh) / (1 + n)}) 

 
systematically requiring Ht derived from: 

 
(9.48)  Ht  =  Mt - (1 – h) (1 – f) [Mt-1 / (1 + n)] / [1 – h (1 - γ)]  = 
 =  [Mt-1 / (1 + n)] {1 / (1 +  (g’/g”) {1 – [f(kt-2)/ f(kt-1)] (1 – dh) / (1 + n)}) –  

  (1 – h) (1 – f) / [1 – h (1 - γ)]   }  = 
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=  Mt { 1  - (1 – h) (1 – f) (1 +  (g’/g”) {1 – [f(kt-2)/ f(kt-1)] (1 – dh) / (1 + n)}) / [1 – h (1 

- γ)] } 
 
Then, m* = 1 / [1 + n + (g’/g”) (n + dh)] – 1 < 1 / (1 + n) – 1, and it is possible to 

converge to: 
 
(9.49)  (Ht / Mt)* = (1  - (1 – h) (1 – f) {1 + (g’/g”) [(n + dh) / (1 + n)]}) / [1 – h (1 - γ)]   

 
provided it is larger than 0. In that case, : 
 
(9.50) f’(k*)  =  [(1 + n) - ρ (1 – d)] / {ρ [1 – rr’ (H/M)*] + ρ2  [rr’ (H/M)* (1 – dr) / (1 + 

n) ]} 
 
As ρ (1 – dr) / (1 + n) < 1, k* decreases with (H/M)* - because f”(k) < 0; therefore (not 

unexpectedly…) it decreases with f and h and it increases with γ. As (H/M)* < 1 – and comparing 
with (3.17) for rr = rr’ + g’ -, k* is expected to be higher with a high-powered money supply for a 
required (commercial) reserve ratio h < 1 (and f < 1): the mechanism saves in terms of required 
“real” official reserves… 

Consumption could be obtained from: 
 
(9.51)    c* = f(k*) {1 - rr’ (H/M)* [1 – (1 – dr) / (1 + n)]} – (n + d) k* 

 
It will be larger than (3.18) not only because k* is larger, but also because the term 

deducting required reserves is now smaller. 
If not, somewhere dMt = 0 will be hit and the aggregate money stock fixed. Afterwards, 

 
(9.52) (H / M)*  =  [1 - (1 – h) (1 – f)] / [1 – h (1 - γ)] 
 
The economy will then follow the path (9.34) and (9.35) tending towards 
 
(9.53)   f’(k*)  =  [(1 + n) - ρ (1 – d)] / 
{  ρ [1 – g’ – rr’ (H/M)*] + ρ2  [rr’ (H/M)* (1 – dr) / (1 + n) + g’ (1 – dy) / (1 + n)]  } 

 
(9.54)   c* = f(k*) {1 - rr’ (H/M)* [1 – (1 – dr) / (1 + n)] - g’ [1 – (1 – dy) / (1 + n)]} – (n 

+ d) k* 
 
. We can examine again variants and special cases when the first-difference equation 

(9.9) with a = 0 holds.  
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1) Let g’ = 0; then, H1 and M1 – in a policy where inventories are set to zero – can be 

obtained from: 
 
0  =  z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1  

 
M1  =  (1 – h) (1 – f) M0 / (1 + n) + [1 – h (1 - γ)] H1   

 
For t = 2,3,... zt = 0 imply: 

 
g” [Mt – Mt-1 / (1 + n)] f(kt-1) / Mt  = 0 

 
and therefore, determines Mt = Mt-1 / (1 + n); the monetary base multiplier sets then Ht 

such that 
 
Mt  =  (1 – h) (1 – f) Mt-1 / (1 + n) + [1 – h (1 - γ)] Ht   

i.e., 
Ht / Mt  =  [1 - (1 – h) (1 – f)] / [1 – h (1 - γ)]   

 
Then an immediate jump to the steady-state of (H / M) is accomplished. The economy 

follows (9.29) and (9.30). 
 
2) Let g’ = 0. If a lagged term h” (1 – dh) / (1 + n) dMt-1 /Pt -1 were added to the capital 

state equation – deducted from the inventory one -, the zero inventory policy can be accomplished 
if the central authority targets M1 such that 

 
0 = z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1  -  h” (1 – dh) / (1 + n) 

dM0 /P0   
fixing thus H1 such that  
M1  =  (1 – h) (1 – f) M0 / (1 + n) + [1 – h (1 - γ)] H1   

 
For t = 2,3... zt = 0 the authority sets Mt such that: 

 
g” [Mt – Mt-1 / (1 + n)] f(kt-1) / Mt  =  h” (1 – dh) / (1 + n) [Mt-1 – Mt-2 / (1 + n)] f(kt-2) / 

Mt-1   

or 
[Mt – Mt-1 / (1 + n)] / Mt  =  [f(k0)/ f(kt-1)]  [(h”/g”) (1 – dh) / (1 + n)]t -1 {[M1 – M0 / (1 

+ n)] / M1}   

or 



 64

Mt = [Mt-1 / (1 + n)] / (1 - [f(k0)/ f(kt-1)] [(h”/g) (1 – dh) / (1 + n)]t-1 {[M1 – M0 / (1 + 

n)] / M1}) 

 
systematically requiring Ht : 

 
Ht  =  [Mt - (1 – h) (1 – f) Mt-1 / (1 + n)] / [1 – h (1 - γ)]  

 
3) Again, if g’ [f(kt-1) - f(kt -2) (1 – dy) / (1 + n)] represents pure loss and do not affect 

inventories: 
 f’(k*)  =  [(1 + n) - ρ (1 – d)] / 
  {ρ [1 – g’ – rr’ (H/M)*] + ρ2  [rr’ (H/M)* (1 – dr) / (1 + n) + g’ (1 – dy) / (1 + n)]} 

 
. With the first-order multiplier (9.12) – replacing (9.42) -, the dynamic properties of the 

optimal path would not change much. (9.29) and (9.30) still hold with a zero inventory policy; it 
can be accomplished if the central authority targets M1 such that 

 
0 = z1  =  z0 (1 – dh) / (1 + n) +  g” [M1 – M0 / (1 + n)] f(k0) / M1  +  g’[f(k0) – f(k-1) (1 

– dh) / (1 + n)]  
fixing thus H1 such that  
M1  =  [1 – h (1 - γ)] (H1  +  {[(1 – h) (1 – f)] / [1 - (1 – h) (1 – f)]} H0 / (1 + n)) 

 
For t = 2,3... zt = 0 the authority sets Mt such that: 

 
(9.55) g” f(kt-1) [Mt – Mt -1 / (1 + n)] / Mt  =  - g’ [f(kt-1) – f(kt-2) (1 – dh) / (1 + n)]   

or 
(9.56) Mt  =  [Mt-1 / (1 + n)] / (1 +  (g’/g”) {1 – [f(kt-2)/ f(kt-1)] (1 – dh) / (1 + n)}) 

 
systematically requiring Ht derived from (9.12): 

 
(9.57)   Ht  =  Mt / [1 – h (1 - γ)]-  {[(1 – h) (1 – f)] / [1 - (1 – h) (1 – f)]} Ht -1 / (1 + n)) 

 
Then it is possible to converge to a growth rate m* = 1 / [1 + n + (g’/g”) (n + dh)] – 1 < 1 

/ (1 + n) – 1, and to (9.49): 
 
(9.58)  (Ht / Mt)* = (1  - (1 – h) (1 – f) {1 + (g’/g”) [(n + dh) / (1 + n)]}) / [1 – h (1 - γ)]   

 
provided it is larger than 0. In that case (9.50) still applies: 
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(9.59) f’(k*)  =  [(1 + n) - ρ (1 – d)] / {ρ [1 – rr’ (H/M)*] + ρ2  [rr’ (H/M)* (1 – dr) / (1 + 

n) ]} 
 
Special cases would suggest the same deviations in the short-run monetary path relative 

to those of the other (first-order) multiplier, but not in the long run. 
In any case, vanishing per capita nominal money balances – and also monetary base – 

are not avoided…  
 
6.3.2. Taste for Real-Nominal Balance  
 
If we include money – nominal per capita money balances – in the utility function, the 

problem supports easily a second-order differenced multiplier. The planner’s problem becomes: 
 

 
, , , , , ,t t t t t t tc k dH H dM M P

Max  ∑
∞

=1t

tρ  U(ct, Mt) 

(9.55) s.t:  (1 + n) kt = (1 – d) kt-1 + f(kt-1) – ct – g” dMt/Pt – g’ [f(kt-1) - f(kt-2) (1 – dy) / 
(1 + n)] – rr’ [Ht/Pt – Ht-1/Pt-1 (1 - dr) / (1 + n)] 

(9.56) dMt  =  (1 – h) (1 – f) dMt-1 / (1 + n) + [1 – h (1 - γ)] dHt  
(9.57) Ht  =  Ht-1 / (1 + n) + dHt  
(9.58) Mt  =  Mt-1 / (1 + n) + dMt  
(9.59) Mt  =  Pt f(kt-1)  
 ct ≥ 0, kt ≥ 0, Mt ≥ 0, Ht ≥ 0 (, zt ≥ 0),   - f(kt-2) / (1 + n)  ≤  dMt / Pt  ≤  f(kt-1)  
 Given k-1, k0, H0, M0, dM0, P0(, z0)  

 
The inventory equation can now become redundant – (at least around the steady state) as 

long as m* > 1 / (n + 1) – 1; we therefore ignore it.  
The Hamiltonian analog would be linear in dHt. If Ht is just dictated by Mt and not a 

corner (i.e., different from 0), we must (may… we are applying rules of a first order 
Hamiltonian…) be in the presence of a singular solution for H. The problem can be further 
simplified to: 

 

(9.60) 
, ,t t tk H M
Max  ∑

∞

=1t

tρ  U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – g” f(kt-1) [Mt - Mt-1 / (1 + 

n)]/Mt - g’ [f(kt -1) - f(kt-2) (1 – dy) / (1 + n)] – rr’ [f(kt-1) Ht / Mt – f(kt-2) (Ht-1/ Mt-1) (1 – dr) / (1 
+ n)], Mt} 

(9.61)  s.t.:  Mt  =  Mt-1 / (1 + n) + [(1 – h) (1 – f)/(1 + n)] [Mt -1 - Mt-2 / (1 + n)] + [1 – h 
(1 - γ)] [Ht - Ht-1 / (1 + n)]   

 ct ≥ 0, Ht ≥ 0, Mt ≥ 0, Ht ≥ 0, Mt/Mt-1  ≥  f(kt -1) / [(1 + n) f(kt-1) + f(kt-2)] 
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 Given k-1, k0, H0, M-1, M0(, z0) 

with lagrangean form: 

(9.62) 
, , ,t t t tk H M
Max

µ
  L = ∑

∞

=1t

tρ U{(1 – d) kt-1 + f(kt-1) - (1 + n) kt – g” f(kt-1) [Mt - Mt-1 / 

(1 + n)]/Mt - g’ [f(kt-1) - f(kt-2) (1 – dy) / (1 + n)] – rr’ [f(kt-1) Ht / Mt – f(kt-2) (Ht-1/ Mt -1) (1 – dr) 

/ (1 + n)], Mt} + ∑
∞

=1t

µt (Mt  -  {Mt-1 / (1 + n) + [(1 – h) (1 – f) / (1 + n)] [Mt -1 - Mt-2 / (1 + n)] + 

[1 – h (1 - γ)] [Ht - Ht-1 / (1 + n)]}  )   

 

(9.63) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc(ct, Mt) + ρ Uc(ct+1, Mt+1) [(1 – d)+ f’(kt) {1 – g’ - 

g” [Mt+1 – Mt / (1 + n)] /Mt+1 - rr’ Ht+1 / Mt+1 }] + ρ2 Uc(ct+2, Mt+2) f’(kt) [ rr’ (1 – dr) / (1 + n) 

Ht+1/ Mt+1 + g’ (1 – dy) / (1 + n)] )  =  0   

or 
 f’(kt)  =  [(1 + n) Uc(ct, Mt) - ρ Uc(ct+1, Mt+1) (1 – d)] / 
(ρ Uc(ct+1, Mt+1) {1 – rr’ Ht+1/ Mt+1 - g’ – g” [(1 + n) mt+1 + n] / [(1 + mt+1) (1 + n)]} +  

+ ρ2 Uc(ct+2, Mt+2) [g’ (1 – dy) / (1 + n) + rr’ Ht+1 / Mt+1 (1 – dr) / (1 + n)]  ) 

 

(9.64) 
t

W
H

∂
∂

  =  ρt { - rr’ Uc(ct, Mt) (1 / Mt) f(kt -1) + ρ Uc(ct+1, Mt+1) rr’ f(kt-1) (1 / 

Mt) (1 - dr) / (1 + n)}  - µt [1 – h (1 - γ)]  +  µt+1 {[1 – h (1 - γ)] / (1 + n)}    =  0   

 

(9.65) 
t

W
M

∂
∂

  =  ρt { [- g” Mt-1 / (1 + n) + rr’ Ht] Uc(ct, Mt) (1 / Mt
2) f(kt-1) + ρ 

Uc(ct+1, Mt+1) { [g” / (1 + n)] f(kt) / Mt+1 - rr” f(kt-1) (Ht / Mt
2) (1 – dr) / (1 + n)  +  UM(ct, Mt)  }  

+  µt  - µt+1 [(1 – h) (1 – f)] / (1 + n) + µt+2 [(1 – h) (1 – f)] / (1 + n)2  =  0   

 
 
. The dynamics of the system could be stated in terms of kt and mt = Mt / Mt-1 –1 and lt 

= Ht / Ht-1 –1 using the two FOC and the identity by which ct was replaced, the capital state 

equation.  
Dynamic characteristics of the balanced path of the problem are analogous to those of 

section 5.1., but exhibit a more complex pattern. In the steady-state, we expect m* to tend to 0 - 
and therefore, - as a / (Ht Lt) tends now to zero – according to (9.9): 

 
(9.66) (H / M)*  =  [1 - (1 – h) (1 – f) / (1 + n)] / [1 – h (1 - γ)] 
 
and from (9.63) 
(9.67) f’(k*)  =  [(1 + n) - ρ (1 – d)] / 
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  {ρ [1 – g’ – g” n / (1 + n) - rr’ (H/M)*] + ρ2  [rr’ (H/M)* (1 – dr) / (1 + n) + g’ (1 – dy) 

/ (1 + n)]} 
 
As (H/M)* < 1 – and comparing with (3.17) for rr = rr’ + g’ -, k* is expected to be 

higher with a high-powered money supply for a required (commercial) reserve ratio h < 1 (and f < 
1), only if g” and population growth is not too high… 

Consumption could be obtained from: 
 
(9.68)   c* = f(k*) {1 - rr’ (H/M)* [1 – (1 – dr) / (1 + n)] - g’ [1 – (1 – dy) / (1 + n)] – g” 

n / (1 + n)} – (n + d) k* 
 
It will be larger than (3.18) (provided g’, g” = 0, or not too large) not only because k* is 

larger, but also because the term deducting required reserves is now smaller. 
 
 
6.4. Money-in-Utility  
 
. Suppose we now wish to extend the model to also encompass savings and time deposit 

formation, i.e., M2. Those are however only means to transfer capital management to – or rather, 
through… - commercial banks.  

Then, we no longer have that output equals real money balances – which means that the 
price level determination equation (1.2) is abandoned. One could replace it by 

 
(9.69) Mt  =  Pt [f(kt-1) + (1 – d) kt -1] 

 
All the wealth in the economy would be “monetized”. But now, the finance constraint 

term representing transactions delay could only loosely be linked to changes in M – in M2… 
Rather, it could be linked to change in value of production. 

The system dynamics would become more complicated but generate the same type of 
predictions. 

But now, one can provide a rationale for wealth holdings as money to enter the felicity 
function along with non-wealth ones. Say that Pt ct must be held as money. Then, Mt - Pt ct is the 
amount held as time deposits and – neglecting official reserves etc. - Pt kt - Mt + Pt ct is wealth 

held as securities. If there is no preference for monetized wealth, of course it won’t ever be… But 
as there are now services for capital management transfer, one can assume a felicity function 
U(ct, Mt/Pt - ct, kt – Mt/Pt + ct), with Uj(c, r, k) > 0, j = c, r, k, implying, in general form, U(ct, 
Mt/Pt, kt), with Uj(c, r, k) > 0, c, r, k – guaranteeing preference of consumption relative to wealth, 
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and, to some extent, money over capital (even if only Uc(c, r, k) > 0 should be required – and 
potentially Uk(c, r, k) = 0, but then Ur(c, r, k) = Ur(c, r)  > 0).  

We further allow for the possibility that nominal money balances enter the felicity 
function, which appears with a fourth argument, U(ct, Mt/Pt, kt, Mt). Notice that, because real 

money balances also appear as argument, taste for balanced real-nominal growth is compatible 

with a negative fourth derivative of U(.) and a negative 
t

U
M

∂
∂

 = Um(ct, Mt/Pt, kt, Mt) / Pt + UM(ct, 

Mt/Pt, kt, Mt): we are reproducing the same effects as including Pt as a fourth argument with 
positive fourth derivative, UP(ct, Mt/Pt, kt, Pt) > 0, but not sufficiently positive to off-set its effect 

through real money balances, i.e., maintaining 
t

U
P

∂
∂

 = - Um(ct, Mt/Pt, kt, Pt) / Pt
2 + UP(ct, Mt/Pt, 

kt, Pt) < 0. The problem becomes 
48

: 

 

(9.70) 
, , , , , ,t t t t t t tc k dH H dM M P

Max   ∑
∞

=0t

tρ  U(ct, Mt/Pt, kt, Mt) 

(9.71) s.t:  (1 + n) kt = (1 – d) kt-1 + f(kt-1) – ct – g” [Mt - Mt-1 / (1 + n)]/Pt – g’ [f(kt-1) - 
f(kt-2) (1 – dy) / (1 + n)] – rr’ [Ht/Pt – Ht-1/Pt-1 (1 - dr) / (1 + n)] 

(9.72) dMt  =  (1 – h) (1 – f) dMt-1 / (1 + n) + [1 – h (1 - γ)] dHt  
(9.73) Ht  =  Ht-1 / (1 + n) + dHt  
(9.74) Mt  =  Mt-1 / (1 + n) + dMt  
(9.75) zt  =  zt-1 (1 – dh) / (1 + n) + g” [Mt - Mt-1 / (1 + n)]/Pt + g’ [f(kt-1) - f(kt -2) (1 – 

dy) / (1 + n)] 
 ct ≥ 0, kt ≥ 0, Pt ≥ 0, Ht ≥ 0, 0 ≤ Mt ≤ Pt [f(kt-1) + (1 – d) kt-1]   
 Given k-1, k0, H0, M0, dM0, P0, z0 

 
Pt is constrained to adjust – administratively set – in such a way that upper bound for the 

real value of Mt is all existing wealth 
49

. Money transaction costs, reflected in inventory rotation, 

are represented by the term g” [Mt - Mt-1 / (1 + n)]/Pt.  

The problem can be further simplified to: 
 

                                                 
48

 For Portugal, 1949-1995 – using information from Pinheiro et al (1997) -, the coefficients of the 

regression (without intercept) (9.72) using M2 – M1 plus savings and time deposits – as the money aggregate 

were, respectively, 0.943682 – approaching (1 – h) (1 – f) for an annual revolving period - and -0.046057 (the 

second term is insignificant). The long run ratio (using per capita aggregates) (M2 / H) for 1953-1995 was 

3.75289. 
49

 Notice that there is no direct price determination equation – neither the usual (1.2), nor (9.69) unless we 

hit the bound. Pt is targeted such that it guarantees an adequate balance between monetized and non-monetized 

real wealth as dictated by the individuals’ tastes or shape of utility function. 
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(9.76) 
, , ,t t t tk H M P
Max  ∑

∞

=1t

tρ  U{(1 – d) kt -1 + f(kt-1) - (1 + n) kt – g” [Mt - Mt-1 / (1 + n)]/Pt - g’ 

[f(kt-1) - f(kt-2) (1 – dy) / (1 + n)] – rr’ [Ht / Pt – (Ht-1/ Pt-1) (1 – dr) / (1 + n)], Mt/Pt, kt, Mt} 
(9.77)  s.t.:  Mt  =  Mt-1 / (1 + n) + [(1 – h) (1 – f)/(1 + n)] [Mt -1 - Mt-2 / (1 + n)] + [1 – h 

(1 - γ)] [Ht - Ht-1 / (1 + n)]   
(9.78) zt  =  zt-1 (1 – dh) / (1 + n) + g” [Mt - Mt-1 / (1 + n)]/Pt + g’ [f(kt-1) - f(kt -2) (1 – 

dy) / (1 + n)] 
 kt ≥ 0, Pt ≥ 0, Ht ≥ 0, 0 ≤ Mt ≤ Pt [f(kt-1) + (1 – d) kt-1]   
  Given k-1, k0, H0, M-1, M0, P0, z0 

 
If UM(ct, Mt/Pt, kt, Mt) ≠ 0, the inventory equation can become redundant. Then, we can 

write the Lagrangean of the problem as: 
 

(9.79) 
, , , ,t t t t tk H M P
Max

µ
  L = ∑

∞

=1t

tρ U{(1 – d) kt -1 + f(kt-1) - (1 + n) kt – g” [Mt - Mt-1 / (1 + 

n)]/Pt  - g’ [f(kt-1) - f(kt-2) (1 – dy) / (1 + n)] – rr’ [Ht / Pt – (Ht-1/ Pt-1) (1 – dr) / (1 + n)], Mt/Pt, kt, 

Mt} + ∑
∞

=1t

µt (Mt  -  {Mt-1 / (1 + n) + [(1 – h) (1 – f) / (1 + n)] [Mt-1 - Mt-2 / (1 + n)] + [1 – h (1 - 

γ)] [Ht - Ht-1 / (1 + n)] }  )   

 
FOC are: 
 

(9.80) 
t

W
k

∂
∂

  =  ρt ( - (1 + n) Uc(ct, Mt/Pt, kt, Mt) + ρ Uc(ct+1, Mt+1/Pt+1, kt+1, 

Mt+1) [(1 – d)+ f’(kt) (1 – g’)] + ρ2 Uc(ct+2, Mt+2/Pt+2, kt+2, Mt+2) f’(kt) g’ (1 – dy) +  Uk(ct, 

Mt/Pt, kt, Mt) )   =  0   

 

(9.81) 
t

W
H

∂
∂

  =  ρt { - rr’ Uc(ct, Mt/Pt, kt, Mt) (1 / Pt)  + ρ Uc(ct+1, Mt+1/Pt+1, kt+1, 

Mt+1) rr’ (1 / Pt) (1 - dr) / (1 + n)}  - µt [1 – h (1 - γ)]  +  µt+1 {[1 – h (1 - γ)] / (1 + n)}  =  0   

 

(9.82) 
t

W
M

∂
∂

  =  ρt {- g” (1 / Pt) Uc(ct, Mt/Pt, kt, Mt)  + ρ Uc(ct+1, Mt+1/Pt+1, kt+1, 

Mt+1)  [g” / (1 + n)] (1 / Pt+1) + Um(ct, Mt/Pt, kt, Mt) / Pt +  UM(ct, Mt/Pt, kt, Mt)  +  µt  - µt+1 [(1 

– h) (1 – f)] / (1 + n) + µt+2 [(1 – h) (1 – f)] / (1 + n)2 } =  0   
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(9.83) 
t

W
P

∂
∂

  =  ρt ( {g” [Mt - Mt-1 / (1 + n)] + rr’ Ht} Uc(ct, Mt/Pt, kt, Mt) (1 / Pt
2) - 

ρ Uc(ct+1, Mt+1/Pt+1, kt+1, Mt+1) rr” Ht  (1 / Pt
2) (1 – dr) / (1 + n) - Um(ct, Mt/Pt, kt, Mt) (Mt / Pt

2)  

)  =  0   
 
From (9.81) and (9.82): 
 
(9.84) ρ-t µt  =  {g” (1 / Pt) Uc(ct, Mt/Pt, kt)  - ρ Uc(ct+1, Mt+1/Pt+1, kt+1)  [g” / (1 + n)] 

(1 / Pt+1) + Um(ct, Mt/Pt, kt) / Pt + UM(ct, Mt/Pt, kt, Mt) }  + ρ-t [µt+1 + µt+2 / (1 + n)] [(1 – h) (1 

– f) / (1 + n)]  =  {g” (1 / Pt) Uc(ct, Mt/Pt, kt)  - ρ Uc(ct+1, Mt+1/Pt+1, kt+1)  [g” / (1 + n)] (1 / Pt+1) 
+ Um(ct, Mt/Pt, kt) / Pt + + UM(ct, Mt/Pt, kt, Mt) }  + ρ  [(1 – h) (1 – f)] / (1 + n)  { - rr’ Uc(ct+1, 
Mt+1/Pt+1, kt+1) (1 / Pt+1)  + ρ Uc(ct+2, Mt+2/Pt+2, kt+2) rr’ (1 / Pt+1) (1 - dr) / (1 + n)} / [1 – h (1 - 

γ)]  
 
Then, replacing (9.84) in (9.81), for example: 
 
(9.85) { - rr’ Uc(ct, Mt/Pt, kt, Mt) (1 / Pt)  + ρ Uc(ct+1, Mt+1/Pt+1, kt+1, Mt+1) rr’ (1 / Pt) 

(1 - dr) / (1 + n)}   

= ρ-t µt [1 – h (1 - γ)]  - ρ-t µt+1 {[1 – h (1 - γ)] / (1 + n)}  = 

= ( [1 – h (1 - γ)]  {g” (1 / Pt) Uc(ct, Mt/Pt, kt, Mt)  - ρ Uc(ct+1, Mt+1/Pt+1, kt+1, Mt)  [g” / 
(1 + n)] (1 / Pt+1) + Um(ct, Mt/Pt, kt, Mt) / Pt + UM(ct, Mt/Pt, kt, Mt)}  + ρ  [(1 – h) (1 – f)] / (1 + 
n)  { - rr’ Uc(ct+1, Mt+1/Pt+1, kt+1, Mt+1) (1 / Pt+1)  + ρ Uc(ct+2, Mt+2/Pt+2, kt+2, Mt+2) rr’ (1 / 
Pt+1) (1 - dr) / (1 + n)}  ) – 

- ρ ( [1 – h (1 - γ)] {g” (1 / Pt+1) Uc(ct+1, Mt+1/Pt+1, kt+1, Mt+1)  - ρ Uc(ct+2, Mt+2/Pt+2, 
kt+2, Mt+2)  [g” / (1 + n)] (1 / Pt+2) + Um(ct+1, Mt+1/Pt+1, kt+1, Mt+1) / Pt+1 + UM(ct+1, Mt+1/Pt+1, 
kt+1, Mt+1)}  + ρ  [(1 – h) (1 – f)] / (1 + n)  { - rr’ Uc(ct+2, Mt+2/Pt+2, kt+2, Mt+2) (1 / Pt+2)  + ρ 
Uc(ct+3, Mt+3/Pt+3, kt+3, Mt+3) rr’ (1 / Pt+2) (1 - dr) / (1 + n)}  )  / (1 + n) 

 
The steady-state dynamics of the system allow for constant c*, (Mt/Pt)*, (Pt/Pt-1)*, 

(Ht/Mt)*, and k*. Some of their features can be inferred after equations (from (9.80) and (9.83)):  

 
(9.86)    (1 + n) - ρ [(1 – d)+ f’(k*) (1 – g’)] - ρ2 f’(k*) g’ (1 – dy) / (1 + n)  =  Uk(c*, 

Mt/Pt, k*, M*) / Uc(c*, Mt/Pt, k*, M*)   

 
(9.87)   g” [Mt - Mt-1 / (1 + n)] / Mt  + rr’ [1 - ρ (1 – dr) / (1 + n)] (Ht/Mt)*  =  Um(ct, 

Mt/Pt, kt, M*) / Uc(c*, Mt/Pt, k*, M*)    

 
(9.88)   { - rr’ + ρ rr’ (1 - dr) / (1 + n)}   
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= ( [1 – h (1 - γ)]  {g” - ρ  [g” / (1 + n)] (Pt / Pt+1) + [Um(ct, Mt/Pt, kt, Mt) + Pt UM(ct, 
Mt/Pt, kt, Mt)] / Uc(ct, Mt/Pt, kt, Mt) }  + ρ  [(1 – h) (1 – f)] / (1 + n)  { - rr’ (Pt / Pt+1)  + ρ rr’ (Pt / 
Pt+1) (1 - dr) / (1 + n)}  ) – 

- ρ ( [1 – h (1 - γ)] {g” (Pt / Pt+1)  - ρ  [g” / (1 + n)] (Pt / Pt+2) + [Um(ct+1, Mt+1/Pt+1, 
kt+1, Mt+1) + Pt+1 UM(ct+1, Mt+1/Pt+1, kt+1, Mt+1)] / Uc(ct, Mt/Pt, kt, Mt) (Pt / Pt+1)}  + ρ  [(1 – 
h) (1 – f)] / (1 + n)  { - rr’ (Pt / Pt+2)  + ρ rr’ (Pt / Pt+2) (1 - dr) / (1 + n)}  )  / (1 + n) = 

= [1 - ρ Pt / Pt+1 / (1 + n)]   ( [1 – h (1 - γ)]  { g” - ρ  [g” / (1 + n)] (Pt / Pt+1) + [Um(ct, 
Mt/Pt, kt, Mt) + Pt UM(ct, Mt/Pt, kt, Mt)] / Uc(ct, Mt/Pt, kt, Mt) } + 

+  ρ  [(1 – h) (1 – f)] / (1 + n) (Pt / Pt+1)  [ - rr’ + ρ rr’ (1 - dr) / (1 + n)] )   

 
and (H/M)* of (9.11), with 1 + m* replaced by (Pt/Pt-1)*. Given the utility function, M, 

k, c and M/P should be constant; the only m* satisfying such requirement would be zero, 
implying that in fact (9.86) holds along with: 

 
(9.89) (H / M)*  =  [1 - (1 – h) (1 – f) / (1 + n)] / [1 – h (1 - γ)] 
 
(9.90)  g” [1 – 1 /(1 + n)] +  rr’ [1 - ρ (1 – dr) / (1 + n)] (H/M)*  = Um(c*, M*/P*, k*, 

M*) / Uc(c*, M*/P*, k*, M*)    

 
(9.91)   { - rr’ + ρ rr’ (1 - dr) / (1 + n)} {1 - [1 - ρ / (1 + n)] ρ [(1 – h) (1 – f)] / (1 + n)} 
= [1 - ρ / (1 + n)]   ( [1 – h (1 - γ)]  { g” - ρ  [g” / (1 + n)] + [Um(c*, M*/P*, k*, M*) + 

P* UM(c*, M*/P*, k*, M*)] / Uc(c*, M*/P*, k*, M*) } )   

 
From the last expression, we conclude that [Um(c*, M*/P*, k*, M*) + P* UM(c*, 

M*/P*, k*, M*)] – and therefore UM(c*, M*/P*, k*, M*)] - would have to be negative for an 

interior solution. 
 
. If UM(ct, Mt/Pt, kt,  Mt) = 0 and therefore we can write U(ct, Mt/Pt, kt, Mt) = U(ct, 

Mt/Pt, kt), the problem has a similar dynamic pattern as that of section 9.3.1. A zero inventory 

target leads to convergence awkwardness, solvable with a first-order monetary base multiplier 
50

 
instead of (9.72). If then also g’ = 0, we return to m* = 1 / (1 + n) – 1. 

 
 
 

                                                 
50

 For Portugal, 1948-1995 – using information from Pinheiro et al (1997) -, the intercept of the first-order 

regression was found insignificant (p-value of 17.4%, 18.0% when per capita aggregates were used); coefficients 

of the regression (without intercept, 1954-1995) (9.9) using M2 – M1 plus savings and time deposits – in per 

capita terms were, respectively, 1.05587 – which should be smaller than 1… - and 0.255662. 
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Conclusion 
 
We analyzed the effects of interpreting money creation channels – say, nominal transfers 

or direct central bank purchases and lending – as having differentiated speed. Money was 
rationalized as a complete transaction device, and the finance constraint re- interpreted – enlarged 
- to encompass the purchase or borrowing of cash-balances by individuals. Official reserves were 
introduced. Cash balances and money creation through credit – fuelled by high-powered money - 
were distinguished. 

Optimal monetary policies minimize idle inventory build-up, this induced by 
discontinuities in the demand for money creation and delays in the conversion process, or due to 
vertical ones in the physical production activity itself. Efficient and equilibrium solutions were 
distinguished - basic inefficiency of competitive factor price formation was highlighted. Q- 
theories of both investment and – now also – employment and money balances were recovered.  

Possible convenience of the introduction of taste-for-inflation at the felicity or 
production function level was noted. Also, that presence of nominal per capita money balances, 
as nominal consumption value – along with real consumption – as arguments of the felicity 
function were able to produce stable prices in the long-run optimum. 

Obvious extensions are the introduction of uncertainty and forward expectations, 
staggered contracts – both suggesting unemployment generation –, and application of the 
conversion-delay principle at the international trade finance level. 
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Appendix A. 
 
The replication or partition of the flow equation (1.6) over Tt units of time may not 

involve proportionality for all the terms. One would expect such proportionality for expenditure 
items – ct and it. But firstly, the  average product per unit of time may itself depend on the 
production span, so that yt = f(kt-1, Tt). Secondly, terms measuring changes in stocks such as g” 
dMt/Pt should not rise proportionally to Tt – probably, will not change with it. 

Finally, there may be additional costs to be added to the expenditure – not accounted in 
(1.6) – directly affected by the choice of Tt; part of these costs maybe autonomous – Tt g(Tt) -, 
part proportional to the average product or real money balances - h(Tt) Mt/Pt = h(Tt) Tt f(kt-1, Tt) 

-, and yet another parcel proportional to the change in stock from beginning to end of period - 
v(Tt) [Mt – Mt-1 / (1 + n)]/Pt (g” and v(T) may, in fact, interact; that is, v(T) may multiply g” – or 
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replace it all together, depending on the interpretation.). To account for losses changes due to dyt 
we would add to the left hand-side equation – and we should consider z(Tt) [Tt f(kt -1, Tt) – Tt-1 
f(kt-2, Tt-1) / (1 + n)] (to some extent we are compounding to such effect by considering that f(kt-

1, Tt) depends on Tt.) – z(.) has correspondence to g’ + rr’ of the main text. 

Then (1.6) – and later equalities - is replaced by: 
 
(A.1)  Tt (ct + it) + [g” + v(Tt)] [Mt – Mt-1 / (1 + n Tt-1)]/Pt + Tt g(Tt) + h(Tt) 

Mt/Pt + z(Tt) [Tt f(kt-1, Tt) – Tt-1 f(kt-2, Tt-1) / (1 + n Tt-1)]  =  Tt yt  =  Tt f(kt-1, Tt)   

 
Differently from the usual Baumol’s (1952) 

51
 transactions argument generating 

inventory money demand, we do not stress the flow of the stock from one side of the economic 
system to the other; in here, it is assumed that the stock flows “to itself” – from income earners to 
producers and then back to the former again. Instead, by relying on Clower’s constraint, we focus 
on currency (circulation) and model the time interval at which an increment in the stock is 
required by the whole system from the issuing authority, which coincides with the interval 
between transactions (or payments) themselves – its inverse, with the concept of money velocity. 
Yet, we are assuming that for the time unit used – which is exogenous and assumed known and 
tied to the adequate U(ct) -, we know how f(kt -1, Tt) relates to Tt of those units... Also, in 
practice, Tt* would coincide with the minimal time interval required for a bank deposit of any 

sort to pay interest, or for interest payments on a bank loan to be due in the economy – and within 
which no interest compounding would be generated 

52
. 

The revolving period may also affect the relevant utility in various ways. From (A.1), it 
is defined in such a way that it represents the appropriate – to be optimized by rational agents - 

interval between money stock changes. Then, consumers may consume smoothly between ∑
−
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1

1

t

u
uT  

and ∑
−
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1

1

t

u
uT  + Tt even if purchases are not: the per unit of time consumption ct is repeated – Tt 

times; then, the representative agent maximizes: ∑ ∑
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 See also Jovanovic (1982). 
52

 One can argue that such unit of time should be the one to which felicity is referred to – if between 0 and 

Tt transactions were allowed (possibly, with minimal time interval of one unit of time in which t is measured). 

That would then suggest a “term structure” of interest rates… 
53

 Ignoring the fact that Tt does not have to be an integer… Yet, the approximation is valid for continuous 

time. 
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∑
+

=

1

1
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tT

j
jtc  =  Tt ct. Another alternative is that they optimize ∑ ∏

∞

= =1 1

)(
t

tt
T

t

u

cTUuρ : the period also 

conditions the consumption span at the utility level.  
Obviously, the per unit of time felicity functional may be itself dependent on the time 

span – negatively – and ∑
∞

= −
−∑

−

=
+

1 1
1
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t

TT t

t

u
u

ρ
ρ

ρρ U(ct, Tt) or ∑ ∏
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= =1 1
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t

ttt
T

t

u

TcTUuρ  be more adequate, 

with the derivative relative to the second argument negative. This extra refinement would just 
produce a consistent effect and therefore we shall not include it. 

 
. Consider the third functional and let nominal money stock eventually enter the felicity 

function. The planner’s problem becomes: 
 

(A.2) 
, , , , ,t t t t t tc k dM M P T

Max   ∑ ∏
∞

= =1 1t

T
t

u

uρ U(Tt ct, Mt)  = ∑
∞

=

∑
=

1

1

t

T
t

u
u

ρ  U(Tt ct, Mt) 

(A.3) s.t:  (1 + n Tt) kt =  (1 – d Tt) kt-1 + Tt f(kt -1, Tt) - Tt ct – Tt g(Tt) – h(Tt) Mt/Pt - 
[g” + v(Tt)] [Mt – Mt-1 / (1 + n Tt-1)]/Pt - z(Tt) [Tt f(kt -1, Tt) – Tt-1 f(kt -2, Tt-1) / (1 + n Tt-1)]  

(A.4) Mt  =  Mt-1 / (1 + n Tt-1) + dMt  
(A.5) Mt  =  Pt Tt f(kt-1, Tt)  
(A.6) zt  =  (1 – d Tt) zt-1 (1 + n Tt)  +  [g” + v(Tt)] [Mt – Mt-1 / (1 + n Tt-1)]/Pt  
 ct ≥ 0, Mt ≥ 0, Tt ≥ 0, zt ≥ 0 
 Given k-1, k0, M0, T0, z0  

 
(We could equivalently add the term z(Tt) [Tt f(kt-1, Tt) – Tt-1 f(kt-2, Tt-1) / (1 + n Tt-1)] 

to the inventory equation and impose zt ≥ z(Tt) [Tt f(kt-1,  Tt) – Tt-1 f(kt-2, Tt-1) / (1 + n Tt-1)]. 
Implicitly we are assuming that there is another, separate, inventory equation ruling dyt that does 

not become binding – or that implicit losses are just deducted, inflicted, from current 
production…) 

As nominal money enters felicity, we can neglect the inventory equation. The problem 
can be further simplified to: 

 

(A.7) 
, ,t t tk M T

Max  ∑
∞

=

∑
=

1

1

t

T
t

u
u

ρ  U{(1 – d Tt) kt-1 + [1 - h(Tt) - g” - v(Tt) - z(Tt)] Tt f(kt-1, Tt) - (1 

+ n Tt) kt - Tt g(Tt) + Tt [g” + v(Tt)] [Mt-1 / (1 + n Tt-1)] f(kt-1, Tt) / Mt  + z(Tt) Tt-1 f(kt-2, Tt-1) / 
(1 + n Tt-1), Mt}  

 ct ≥ 0, Mt ≥ 0, Tt ≥ 0, (zt ≥ 0) Mt/Mt-1  ≥  f(kt-1) / [(1 + n) f(kt-1) + f(kt-2)] 
 Given k-1, k0, M0, T0(, z0) 
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(The restriction on inventories is mimicked by Mt/Mt -1  ≥  f(kt-1) / [(1 + n) f(kt-1) + f(kt-

2)]. It will play no role in the analysis though…) 

F.O.C., along with the restriction, require, for t = 1, 2, 3,…: 
 

(A.8) 
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1ρ  ( - (1 + n Tt) Uc(Tt ct, Mt) + 1+tTρ  Uc(Tt+1 ct+1, Mt+1) [ (1 – d 

Tt+1) + fk(kt, Tt+1) Tt+1 {1 – h(Tt+1) - g” - v(Tt+1) - z(Tt+1) + [g” + v(Tt+1)] [Mt / (1 + n Tt)] / 
Mt+1} ]  + 21 ++ + tt TTρ  Uc(Tt+2 ct+2, Mt+2) z(Tt+2) Tt+1 fk(kt, Tt+1) / (1 + n Tt+1)  )  =  0   
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Tt) / Mt + z’(Tt) Tt-1 f(kt -2, Tt-1) / (1 + n Tt-1) + {[1 - h(Tt) - g” - v(Tt) - z(Tt)] + [g” + v(Tt)] [Mt-

1 / (1 + n Tt-1)] / Mt} Tt fT(kt-1, Tt) )  + 
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2] f(kt, Tt+1) / Mt+1 – n z(Tt+1) Tt f(kt-1, Tt) / (1 + n Tt)

2 + z(Tt+1) f(kt-1, Tt) / (1 + n Tt) 

+ z(Tt+1) Tt fT(kt-1, Tt) / (1 + n Tt)} +  ln(ρ) ∑
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[
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u
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The dynamics of the system can be stated in terms of kt and mt = Mt / Mt-1 –1: 

 
(A.11)  fk(kt, Tt+1)  =  [(1 + n Tt) Uc(Tt ct, Mt)  - 1+tTρ  Uc(Tt+1 ct+1, Mt+1)  (1 – d Tt+1)] / 
 / ( 1+tTρ  Uc(Tt+1 ct+1, Mt+1) Tt+1 {[1 – h(Tt+1) - g” - v(Tt+1) - z(Tt+1)] + [g” + 

v(Tt+1)] [Mt / (1 + n Tt)] / Mt+1 } + 21 ++ + tt TTρ  Uc(Tt+2 ct+2, Mt+2) z(Tt+2) Tt+1 / (1 + n Tt+1) )  

 
(A.12)  [(1 + mt+1) / (1 + mt)] (Tt/ Tt+1) [(1 + n Tt) / (1 + n Tt -1)]  =  [f(kt, Tt+1) / f(kt-1, 

Tt)]  1+tTρ  Uc(Tt+1 ct+1, Mt+1)] [g” + v(Tt+1)] / {Uc(Tt ct, Mt) [g” + v(Tt)]} +  
+  UM(Tt ct, Mt) Mt+1 (1 + n Tt) / {f(kt -1, Tt) Tt+1 Uc(Tt ct, Mt) [g” + v(Tt)]}  

 

(A.13)  
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g(Tt) – Tt g’(Tt)  – Tt [h’(Tt) + z’(Tt)]  f(kt -1, Tt)  - v’(Tt) Tt [Mt – Mt-1 / (1 + n Tt -1)] f(kt-1, Tt) / 
Mt + z’(Tt) Tt-1 f(kt-2, Tt-1) / (1 + n Tt-1) + {[1 - h(Tt) - g” - v(Tt) - z(Tt)] + [g” + v(Tt)] [Mt-1 / (1 
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+ n Tt-1)] / Mt} Tt fT(kt-1, Tt) )  + 
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Consider the steady-state in which m* = 1 / (1 + n T*) – 1; or that U(Tt ct, Mt) = U(Tt ct) 

(and therefore (A.12) would not be active…), which would imply it. Developing the last 
equation: 

 
(A.14)  *tTρ  Uc(T* c*, M*) { - (d + n) k* + [1 - h(T*) - g” - v(T*) - z(T*)] f(k*, T*) - 

g(T*) – T* g’(T*)  – T* h’(T*) f(k*, T*) + [1 - h(Tt) - z(Tt)] T* fT(k*, T*) }  +  *)1( Tt+ρ  Uc(T* 

c*, M*) {- n T* [g” + v(T*)] [1 / (1 + n T*)] f(k*, T*) – n T* z(T*) f(k*, T*) / (1 + n T*)2 + 
z(T*) f(k*, T*) / (1 + n T*) + z(T*) T* fT(k*, T*) / (1 + n T*)} =   

 = -  ln(ρ) ∑
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[ *jTρ  U(T* c*, M*)]  =  -  ln(ρ) U(T* c*, M*) 
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1 T
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ρ
ρ
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Or  
(A.15)  { - (d + n) k* + [1 - h(T*) - g” - v(T*) - z(T*)] f(k*, T*) - g(T*) – T* g’(T*)  – 

T* h’(T*) f(k*, T*) + [1 - h(Tt) - z(Tt)] T* fT(k*, T*) }  +  *Tρ  {- n T* [g” + v(T*)] [1 / (1 + n 

T*)] f(k*, T*) – n T* z(T*) f(k*, T*) / (1 + n T*)2 + z(T*) f(k*, T*) / (1 + n T*) + z(T*) T* 
fT(k*, T*) / (1 + n T*)}  = 

 = - 
*1
)ln(
Tρ

ρ
−

 U(T* c*, M*) / Uc(T* c*, M*)   

 
In the steady-state: 
 
(A.16) fk(k*, T*)  =  [(1 + n T*) - *Tρ  (1 – d T*)] / 
 / (T* *Tρ  { [1 – h(T*) - z(T*)] + *Tρ  z(T*) / (1 + n T*)} )  

 
As h(T*) > 0, k* will tend to be smaller than in the absence of such – due to the cash 

conversion delay – costs (per unit of – optimal - revolving period duration…. Yet, T* may press 
fk(kt, T*) down if T* > 1... 

 
. Let us examine now the alternative specification: 
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[1 - h(Tt) - g” - v(Tt) - z(Tt)] f(kt -1, Tt) - (1 + n Tt) kt / Tt - g(Tt) + [g” + v(Tt)] [Mt -1 / (1 + n Tt-

1)] f(kt-1, Tt) / Mt + z(Tt) (Tt -1 / Tt) f(kt-2, Tt-1) / (1 + n Tt-1), Mt}  
 ct ≥ 0, Mt ≥ 0, Tt ≥ 0, (zt ≥ 0,) Mt/Mt-1  ≥  f(kt-1) / [(1 + n) f(kt-1) + f(kt-2)] 
 Given k-1, k0, M0, T0 (, z0)  

 
Now the period duration FOC generates: 
 

(A.18)  
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or 
)1( tTρ−  Uc(ct, Mt) ( - (1 / Tt

2) kt-1 + (1 / Tt
2) kt – g’(Tt) – [h’(Tt) + z’(Tt)]  f(kt-1, Tt)  - 

v’(Tt) [Mt – Mt-1 / (1 + n Tt-1)] f(kt-1, Tt) / Mt + z’(Tt) (Tt-1/Tt) f(kt -2, Tt-1) / (1 + n Tt -1) - z(Tt) 

(Tt-1 / Tt
2) f(kt-2, Tt-1) / (1 + n Tt-1) + {[1 - h(Tt) - g” - v(Tt) - z(Tt)] + [g” + v(Tt)] [Mt -1 / (1 + n 

Tt-1)] / Mt} fT(kt-1, Tt) )  )  + )1( 1+− tt TT ρρ  Uc(ct+1, Mt+1) {- n [g” + v(Tt+1)] [Mt / (1 + n Tt)
2] 

f(kt, Tt+1) / Mt+1 – n z(Tt+1) (Tt / Tt+1) f(kt-1, Tt) / (1 + n Tt)
2 + z(Tt+1) (1 / Tt+1) f(kt-1, Tt) / (1 + 

n Tt) + z(Tt+1) (Tt / Tt+1) fT(kt-1, Tt) / (1 + n Tt)} = ln(ρ) )1( tTρ− U(ct, Mt) -  ln(ρ) 
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In the steady-state, if (Mt / Mt-1)* = 1 + m* = 1 / (1 + n T*) – say, U(Tt ct, Mt) = U(Tt 

ct): 

 
(A.19)  )1( *Tρ−  (Uc(c*, M*) {- g’(T*) – h’(T*) f(k*, T*) – [z(T*) / T*] f(k*, T*) / (1 + 

n T*) + [1 - h(T*) – z(T*)] fT(kk*, T*)} ) + )1( ** TT ρρ −  (- n {[g” + v(T*)] + z(T*) / (1 + n T*)} 
f(k*, T*) +  [z(T*) / T*] f(k*, T*) + z(T*) fT(k*, T*) ) / (1 + n T*)  = ln(ρ) )1( *Tρ−  -  
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Or  
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z(T*)]  fT(kk*, T*)}  + *Tρ  (- n {[g” + v(T*)] + z(T*) / (1 + n T*)} f(k*, T*) + [z(T*) / T*] f(k*, 
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 U(c*, M*) / Uc(c*, M*)   

 
One can use (A.20) to infer some properties of T*, the steady-state optimal “time-to-

build”. Suppose all costs were 0 and we are just left with the Clower’s finance constraint term, g”. 
Also, that average labor product is interval independent; then (A.20) becomes: 

 

(A.21)   n g” f(k*, T*) Uc(c*, M*) / U(c*, M*)  =  ln(ρ) 
*2*

* 12
TT

T

ρρ
ρ

−
−

 (1 + n T*) 

 
(A.21) can also be written as: 
 

(A.22)   n g” [Uc(c*, M*) c* / U(c*, M*)]  =  ln(ρ) 
*2*

* 12
TT

T

ρρ
ρ

−
−

 (1 + n T*) (1 – s*) 

 

where s* = 1 – c* / f(k*, T*), the steady-state savings rate. 
*2*

* 12
TT

T

ρρ
ρ

−
−

 decreases with 

T* provided )( *2* TT ρρ −  < 0.5; then, at given n and g”, if the elasticity of the felicity function is 

constant and n small (but non-null) or negative, T* and s* move (with the shape of the production 
function…) in the same direction. 

If n = 0 (or g” = 0 – then the advantage in a particular T* comes only from the existence 
of the minimal or unitary discounted period implicit in the felicity function definition and an 
implicit time elapse till production becomes available for expenditure - during which interest rate 
compounding cannot be observed):   

 

(A.23)  *Tρ   =  
2
1

   or   T*  =  - 
)ln(
)2ln(

ρ
  =  0.69315  ln(

ρ
1

)  ≈  0.69315 (1/ρ - 1)  
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Notice that (1/ρ - 1) = 1/ [ρ’ (1 + n)] - 1 approximates the discount rate – or , the 
individual discount rate when future generations are valued equally minus the population growth 
rate (divided by 1 plus the latter).  

Suppose population is stable and the appropriate time unit to measure U(ct, Mt) is the 

month (30 days); if (we observe that) the optimal revolving period is a year – 365 days – the 
monthly discount factor would be */15.0 T  = 365/305.0  = 0.944621461. If the optimal revolving 
period is the month, and the appropriate unit to measure U(ct, Mt) is the day, the daily discount 

factor is 30/15.0  = 0.97716; if T* is the week, 7/15.0  = 0.90572. Conversely, for a given time unit 
t, T* decreases with ρ or increases with the discount rate, (1 / ρ) - 1. 

From (A.23), the technical relation (A.5) in the steady-state becomes: 
 

(A.24) Mt  =  - Pt  )ln(
)2ln(

ρ
 f(k*)  

 
Then the transactions demand for money increases with the discount rate.  
Notice that the income-velocity of money for a time span D – i.e., such that M V = P D 

f(k*) - is V = D / [ln(2) ln(1 / ρ)] = D / [ln(2) ln(1 / D
D

/1ρ )] where ρD is the discount factor 
applying to time span D. If one estimates income-velocity for a given D, one can infer ρD.  

Also, if one estimates a money demand function, as Mt  =  - Pt  )ln(
)2ln(

ρ
 [D’ f(k*)] / D’ = 

[ln(2) ln(1 / '/1
'
D

Dρ )] Pt [D’ f(k*)] / D’, one can find an interest elasticity of demand dMt /d(1/ρD’) 
(1/ρD’ – 1) / Mt = (1/ρD’ – 1) (1/D’) (1 / )2'/1(

'
−D

Dρ ) / ln(1 / '/1
'
D

Dρ ). 

 
 
Appendix B 
 
One can approximate an annual money creation equation from a mechanism revolving j 

(the inverse of money income velocity) aggregating over j consecutive periods and approximating 
the with the annual data 

 
(B.1) dMt  =  [(1 – h) (1 – f)]j dMt-1 / (1 + n) + {[1 – (1 – h)j] / h} [1 – h (1 - γ)] 

[dHt  + dHt-1 / (1 + n)] / 2 

 
Obviously, j becomes estimable. 
 

 


