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Abstract

This paper studies how stock price manipulation affects the price formation process 
and process of information transmission into a market. Manipulation by an informed 
trader has been a difficult issue in the literature of market microstructure. This paper 
presents a model of dynamic informed trading which has a unique equilibrium. This 
paper considers markets where a risky asset is traded between competitive market 
makers, informed traders and liquidity traders. In the beginning of the whole game, 
nature chooses the liquidation value of the risky asset to be high or low, and tells the 
informed trader who trades dynamically. Trade takes place in periods 1 to T. In each 
period there is a random determination of whether the informed trader or a liquidity 
trader trades. The market makers post bid and ask prices for the next period, after 
which the trader buys or sells one unit. Back and Baruch (2004) study the equivalence 
of the two standard models in the market microstructure: the continuous auction 
model, developed by Kyle (1985) and the sequential trade model, proposed by Glosten 
and Milgrom (1985). This paper studies the dynamic version of the G-M model and 
proves that the value functions are strictly monotone and strictly convex the bid price 
is strictly convex and strictly increasing and the ask price is strictly concave and 
strictly increasing in the market makers'' prior. Those results provide theoretical 
support for properties of numerical simulation in Back and Baruch.  
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Abstract. In asymmetric information models of financial markets, trading behavior imperfectly

reveals the private information held by traders. Informed traders who trade dynamically thus

have an incentive not only to trade less aggressively but also to manipulate the market by trading

in the wrong direction, undertaking short-term losses to confuse the market and then recouping

the losses in the future. Manipulation by an informed trader has been a difficult issue in the

literature of market microstructure theory. The contribution to the literature is to prove the

uniqueness of equilibrium and characterize it.

Key Words: Market microstructure; Market Price Manipulation; Price Formation; Information

asymmetry; Sequential Trade; Bid-Ask Spreads
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1 Introduction

This paper studies how stock price manipulation affects the price formation process and process of

information transmission into a market. In asymmetric information models of financial markets,

trading behavior imperfectly reveals the private information held by traders. Informed traders

who trade dynamically thus have an incentive not only to trade less aggressively but also to

manipulate the market by trading in the wrong direction, undertaking short-term losses to confuse

the market and then recouping the losses in the future. Manipulation by an informed trader has

been a challenging issue in the literature of market microstructure.

This paper considers markets where a risky asset is traded between competitive market makers,

strategic informed traders and liquidity traders. In the beginning of the whole game, nature

chooses the liquidation value of the risky asset to be high or low, and tells the informed trader

who trades dynamically. There are two types of informed traders. Trade takes place for finitely

many periods. In each period there is a random determination of whether the informed trader or

a liquidity trader trades. The market makers post bid and ask prices for the next period, after

which the trader buys or sells one unit. The termination value is revealed at the end and the

payoffs for the informed trader are the sum of the termination value times net-holding of the asset

and revenue from buying and selling the asset.

Within the model described above, the paper considers the equilibrium such that (a) informed

trader’s strategies are optimal beginning at any history; (b) market makers make zero profits in

relation to the common Bayesian belief conditional on the history and chosen trade; (c) noise

traders trade for their exogenous liquidity needs. Then, the paper shows that the existence

of equilibrium is unique. The main contribution of this paper is to prove the uniqueness of
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equilibrium and characterize it in the dynamic trading version of the Glosten-Milgrom model. In

the original Glosten-Milgrom model, manipulation does not occur because traders can trade only

once. In the current paper, the informed trader trades dynamically, and in this sense, this paper

extends the Glosten-Milgrom model to a dynamic setting. In another aspect, this paper proves the

uniqueness of equilibrium which Back and Baruch assume in their analysis. This paper adds to

the literature that brings the canonical model to a dynamics setting and analyzes the equilibrium.

This paper also proves that the value functions are strictly monotone and strictly convex; the bid

price is strictly convex and strictly increasing; and the ask price is strictly concave and strictly

increasing in terms of the market makers’ prior belief. Those analyses provide theoretical support

for properties of numerical simulation given in Back and Baruch (2004).

There has been increasing interest in the informed trader’s dynamic strategy. Among oth-

ers, Brunnermeier and Pedersen (2005) consider dynamic strategic behavior of large traders and

show the well-known phenomena, “overshooting”occurs in equilibrium. Back and Baruch (2007)

analyze different market systems by allowing the informed trader’s to trade continuously within

the Glosten-Milgrom framework. Parlour (1998) presents a one-tick dynamic model of a limit

order market and addressed the optimality of different order systems. The first paper that

showed manipulation by the informed trader within the discrete-time Glosten-Milgrom frame-

work is Chakraborty and Yilmaz (2004). They show that when the market faces uncertainty

about the existence of informed traders and when there are a large number of trading periods,

long-lived informed traders will manipulate in every equilibrium. Back and Baruch (2004) study

the equivalence of the two standard reference frameworks in the market microstructure theory: the

continuous auction framework, first developed by Kyle (1985) and the sequential trade framework,

proposed by Glosten and Milgrom (1985), and show that the equilibrium of the Glosten-Milgrom

model is approximately the same as the equilibrium of the Kyle model, when the trade size is

small and uninformed trades arrive frequently. They conclude that the continuous-time Kyle

model is more tractable than the Glosten-Milgrom model, although most markets are organized

as in the sequential trade models.

As we can see from the fact that a lot of research has been done by applying the two frame-

works, both of the Kyle model and the Glosten-Milgrom model are sufficiently simple and well-

behaved that they easily lend themselves to analysis of policy issues and empirical tests.1 However,

neither of them included the possibility of manipulation. In the original Glosten-Milgrom model

(see in Glosten and Milgrom (1985)), manipulation does not occur because traders can trade only

once. In the Kyle model (see in Kyle (1985)), the informed trader’s strategy is monotonic in the

1See Madhavan (2000) and Biais and Spatt (2005) extensive surveys of the literature.
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sense that he buys the asset when the asset is undervalued given his information and vice versa.

Therefore, manipulation is ruled out.

A number of authors have considered the definition and possibility of manipulation. The

literature started with manipulation by uninformed traders rather than informed traders. Allen

and Gale (1992) propose a classification scheme for models of manipulation. They also provide a

model of strategic trading in which some equilibria involve manipulation. Using the classification

scheme proposed by Allen and Gale (1992), both our model and their model are examples of

pure trade-based manipulation, where the informed trader does not announce any information

(information-based manipulation) or take any actions (action-based manipulation), except for

those that involve trading the asset. Allen and Gorton (1992) also consider a model of pure

trade-based uninformed manipulation in which an asymmetry in buys and sells in noise traders

trades creates the possibility of manipulation. In every equilibrium of their model, the uninformed

manipulator makes zero profits. Jarrow (1992) formulates sufficient conditions for manipulation

to be unprofitable. These sufficient conditions are properties of the reduced-form price function.

The paper is organized as follows. The second section presents the model. The third sec-

tion proves the uniqueness of equilibrium. The forth section defines information entropy and

characterizes it. The fifth section concludes.

2 The Model

The model in this paper is basically a discrete-time version of Back and Baruch (2004) except

that unlike their model, the terminal period is deterministic. Our model is also very similar to

Chakraborty and Yilmaz (2004), except here liquidity traders randomly arrive in the stream of

informed trading. In this section, we set out a discrete time, sequential trade model of market

making. Individuals trade a single risky asset and money with a market maker. Because the

market maker is competitive and risk-neutral, these prices are the expected value of the asset

conditional on his information at the time of trade.

Trades occur for finitely many periods, denoted by t = 1, 2, · · · , T . Each interval of time

accommodates one trade. There is a risky stock and a numeraire in terms of which the stock

price is quoted. The terminal value of the risky stock, denoted by ṽ, is a random variable, which

can take the value 0 or 1. The risk-free interest rate is assumed to be zero.

There are two kinds of orders available to traders: sell or buy. Let A = {S,B} where S

denotes sell order and B denotes buy order. Let ∆(A) denote the set of probability distributions

on A. Let ht denote the order that the market maker receives in period t, i.e. ht is the realized

order in period t.

4



There are three classes of risk-neutral market participants: competitive market makers, an

informed trader and a liquidity trader. Trade arises from both informed traders, who know the

terminal value of the asset and uninformed traders. The type of the trader arriving in period

t is determined by a random variable τ̃t, which takes values from the set {i, l}. The letters

i and l respectively denote the informed type and the liquidity type. The random variables

{θ̃t : t = 1, ...T} are i.i.d. across the periods 1, ..., T and satisfy Pr(τ̃t = i) = µ. If the trader’s

type in period t is l, then the demand in that period is determined by the random variable

Q̃t, which takes values from A. The random variables {Q̃t : t = 1, ..., T} are i.i.d. and satisfy

Pr(Q̃t = B) = γ > 0. For any given period t, the random variables τ̃t, Q̃t, ṽ are mutually

independent.

The private information of the informed trader is determined by a random variable θ̃ ∈ Θ =

{H,L}. When θ = 0, the informed knows that the value of the asset is 0. We call this type of

trader “low-type” and denote him by L. When θ = 1, the informed trader knows that the value

of the asset is 1. We call this type of trader “high-type” and denote him by H. Only one type of

trader is actually chosen by nature to trade for any given play of the game.

Next we describe the details with regard to market maker’s pricing strategy and informed

traders’ trading strategy. To that end, we first need to introduce some notation. First, we set

out the space of all possible trading orders. When the traders choose their orders and the market

maker posts the bid and ask prices in period t, they know the entire history until and including

period t − 1. A period-t history ht := (h1, ..., ht) is the sequence of realized orders for periods up

until t + 1. Let Ht := A × · · · × A
︸ ︷︷ ︸

t times

, and then the space of all possible period-t histories, t ≥ 1,

is described by H = ∪T
t=1H

t. Then, a history ht is taken to be the generic element of H. For

notational convenience, we let h0 = ∅.

Knowledge of the game structure and of the parameters of the joint distribution of the traders’

state variables is common to all market participants. In each period, market makers post bid and

ask prices, equal to the expected value of the asset conditional on the observed history of trades.

The trader trades at those prices. Trading happens for finitely many successive periods after

which all private information is revealed.

We consider the following game: In the beginning of the whole game, Nature chooses v which

is a realization of the risky asset’s value. Then, in the beginning of each trading period, with

probability µ, an informed trader of type θ will be chosen and with probability 1−µ, an informed

trader will not be chosen. The timing structure of the trading game is as follows:

1. In period 0, nature chooses the realization v ∈ {0, 1} of the risky asset payoff ṽ and the type

of the informed trader θ. The informed trader observes θ.
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2. In successive periods, indexed by t = 1, ..., T , having observed the realized trades in periods

1, ..., t− 1, the competitive market maker posts bid and ask prices. Nature chooses a trader

(either a dynamic informed trader or a liquidity trader) and the trader learns market maker’s

price quote.

3. If the trader is informed, he takes the profit-maximizing quote. If the trader is a liquidity

trader, he trades according to his liquidity needs. In the end of each trading period, payoff

is made to each trader.

4. In period T , the realization of v is publicly disclosed.

A price rule, specifying bid and ask prices that will be posted by the market makers in the

beginning of period t, is defined as a function pt : H → [0, 1]2 with pt = (βt, αt). For each type

of the trader, a trading strategy specifies a probability distribution over trades in period t with

respect to the bid and ask prices pt posted in period t. A strategy for the trader is defined as

a function σθ : H → ∆(A). For each θ ∈ Θ = {H,L} and a ∈ A = {B,S}, σθa(h
t) be the

probability that σθ assigns to action a after history ht. That is, σHS(ht) denotes the probability

that the high-type assigns to selling conditional on history ht.

To determine bid and ask prices to be posted in period t, the market maker updates his prior

conditional on the arrival of an order of the relevant type. Let b : H → ∆({0, 1}) be the market

maker’s prior belief at the beginning of period t that the risky asset’s value is high conditional on

history ht−1. The belief is updated through Bayes’ rule; that is, for all a ∈ A,

b(ht−1, ht = a) := Pr(ṽ = 1|ht−1, ht = a)

=
[µσt

Ha(h
t−1) + (1 − µ)γ]b(ht−1)

(1 − µ)γ + µσt
Ha(h

t−1)b(ht−1) + µσt
La(h

t−1)(1 − b(ht−1))
. (1)

Definition 1 A high-type informed trader’s strategy is optimal after history ht−1 in response to

prices pt = (αt, βt) if it prescribes a probability distribution σ∗
H ∈ ∆(A) over a ∈ A such that

σ∗
H ∈ arg max

σH∈∆(A)

T∑

s=t

[
σHB [1 − αs(h

s−1)] − σHS [1 − βs(h
s−1)]

]
. (2)

Definition 2 Similarly, a low-type informed trader’s strategy is optimal after history ht−1 in

response to pt = (αt, βt) if it prescribes a probability distribution σ∗
L ∈ ∆(A) over a ∈ A such that

σ∗
L ∈ arg max

σL∈∆(A)

T∑

s=t

[
−σLBαs(h

s−1) + σLSβs(h
s−1)

]
. (3)

Next we define an equilibrium for our economy:
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Definition 3 An equilibrium consists of a pair of bid and ask prices {p∗t = (β∗
t , α∗

t )}t∈{1,··· ,T}, and

informed traders’ strategies σ∗ = (σ∗
L, σ∗

H) such that for all t ∈ {1, · · · , T} and for all ht−1 ∈ H,

(P1) the pair of bid and ask prices p∗t satisfies the zero-profit condition with respect to the market

maker’s posterior belief: α∗
t (h

t−1) = E[v|ht−1, ht = B], and β∗
t (ht−1) = E[v|ht−1, ht = S];

(P2) informed traders’ strategies σ∗
H and σ∗

L are optimal given the pair of bid and ask prices p∗t ;

(B) the pair of bid and ask prices p∗t = (β∗
t , α∗

t ) satisfies Bayes rule (1).

Now, we define a manipulative strategy. We say that a strategy is manipulative if it involves

the informed trader undertaking a trade in any period that yields a strictly negative short-term

profit. If this occurs in equilibrium, it means that manipulation enables the informed trader to

recoup the short-term losses.

Definition 4 Given a pair of bid and ask prices pt for some t ∈ {1, · · · , T} and a history ht−1 ∈

H, a strategy σθ is called manipulative in period t for the high type if σHS(ht−1) > 0; or for the

low type if σLB(ht−1) > 0.

This is the same definition with one in Chakraborty and Yilmaz (2004). Back and Baruch

(2004) used the term “bluffing,” instead. Basically, we call the situation where the informed trader

takes totally mixed strategy, “price manipulation.” If totally mixed strategy is taken, the informed

trader’s strategy assigns strictly positive probability to the order against their information. It’s

worth mentioning that in Huberman and Stanzl (2004), a price manipulation is defined as a round-

trip trade. In this paper, price manipulation occurs as a round-trip trade in equilibrium but not

by definition. It is because once the informed trader trades against their information, it has to be

optimal for him to recoup the loss by trading on his information. Therefore, in equilibrium price

manipulation takes a form of a round-trip trade in equilibrium.

Now, first we prove the existence of equilibrium in this model.

Theorem 1 An equilibrium exists.

Proof: Found in the Appendix.

3 The Uniqueness of Equilibrium

By Theorem 1, we know that for each period t, there exists an equilibrium strategy which maxi-

mizes the continuation value of the game. In this section, we will prove that there exists a unique

equilibrium in this model. In order to do so, we will focus on a two-period sub-model. Now, let
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WH and WL represent the current value of the game for both traders. Let VH and VL represent

the continuation value of the remainder of the game for both traders.

Take a complete history hT ∈ H. Fix period t ∈ {1, ..., T} and history ht−1. Suppose that

the market makers’ prior belief in period t is given by b = b(ht−1) ∈ ∆({0, 1}). Recall from

equilibrium condition (B) that the following holds: for all t ∈ {1, · · · , T} and for all ht−1 ∈ H,

β∗
t (ht−1) =

[µσ∗
HS + (1 − µ)(1 − γ)]b(ht−1)

(1 − µ)(1 − γ) + µσ∗
HSb(ht−1) + µσ∗

LS(1 − b(ht−1))
, (4)

and

α∗
t (h

t−1) =
[µσ∗

HB + (1 − µ)γ]b(ht−1)

(1 − µ)γ + µσ∗
HBb(ht−1) + µσ∗

LB(1 − b(ht−1))
. (5)

Now, in order to prove the uniqueness of equilibrium, we consider an equilibrium bid and

ask prices as a function of the market makers’ belief and informed traders’ strategy. Then, with

respect to the market makers’ prior belief b and the informed traders’ strategy σ = (σL, σH), we

define an equilibrium bid and ask price function by:

β(b, σ) =
[µσHS + (1 − µ)(1 − γ)]b

(1 − µ)(1 − γ) + µσHSb + µσLS(1 − b)
, (6)

and

α(b, σ) =
[µσHB + (1 − µ)γ]b

(1 − µ)γ + µσHBb + µσLB(1 − b)
. (7)

Note that by Theorem 1, the above functions are well-defined. Moreover, let:

fH = γ(1 − µ) + µσHB (8)

and

fL = γ(1 − µ) + µσLB . (9)

Then, fH denotes the probability that buy order arrives when the state is high and fL denotes

the probability that buy order arrives when the state is low. In order to prove the uniqueness

result, we will provide a sequence of lemmata, propositions and corollaries. Each of the results

characterizes the equilibrium. The first step for the uniqueness result is to prove the unique

existence of equilibrium supposing the monotonicity and convexity of VL and VH in terms of

market maker’s belief. In other words, we will prove that if monotonic and convex value functions

exist in the next period, then in the current period equilibrium strategy profile exists uniquely.

Then, we will prove that if the equilibrium strategy exists uniquely in the current period, then

WL and WH are monotonic and convex, and as a result, we will show that equilibrium exists

uniquely for the whole game by mathematical induction.

To begin with, we will consider the equilibrium properties of bid and ask prices and the

informed trader’s strategy. The following two lemmata characterize those.
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Lemma 1 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that σ = (σH , σL)

is an equilibrium strategy profile. Suppose that VH is monotonically decreasing in the market

maker’s prior b and that VL is monotonically increasing in b. Then, in equilibrium bid-ask spread

is strictly positive in b ∈ (0, 1); that is α(b, σ) < β(b, σ).

Proof:

On the contrary, suppose that for some b, bid-ask spread is negative. That is, α(b, σ) ≤ β(b, σ).

Then, we have:

1 − α(b, σ) + VH(α(b, σ)) > β(b, σ) − 1 + VH(β(b, σ)); (10)

−α(b) + VL(α(b, σ)) < β(b) + VL(β(b, σ)). (11)

Suppose that σH and σL are equilibrium strategies for each type. Then, in equilibrium σHB = 1

and σLB = 0. Then, by Bayes rule,

α(b, σ) =
[µ + (1 − µ)γ]b

(1 − µ)γ + µb
; (12)

β(b, σ) =
(1 − µ)(1 − γ)b

(1 − µ)(1 − γ) + µ(1 − b)
. (13)

Therefore, we have:

α(b, σ) > b > β(b, σ), (14)

which contradicts with our assumption.

Lemma 2 Take a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that σ = (σH , σL) is an equilibrium strategy profile. We have α(b, σ) ≥ b if and only if

σHB ≥ σLB. Moreover, we have β(b, σ) ≤ b if and only if σHS ≤ σLS.

Proof: By Bayes rule, we can obtain the result.

Lemma 1 states that in equilibrium, there is no possibility for arbitrage. Lemma 2 states

that the high-type buys with a higher probability than the low-type and the low-type sells with

a higher probability than the high-type. The following two corollaries are immediate from those

two lemmata.

Corollary 1 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

In equilibrium, we have: α(b, σ) ≥ b ≥ β(b, σ), with one of the two inequalities strict.
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Proof: By Lemma 1, the result follows.

Corollary 2 Take a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that σ = (σH , σL) is an equilibrium strategy profile. In equilibrium, we have: σHB > σLB

and σHS < σLS.

Proof: By Corollary 1 and Lemma 2, the result follows.

By Corollary 2, we know that in equilibrium, the high-type would not sell with probability

one and the low-type would not buy with probability one. That means, even if they mix over the

two actions: sell or buy, they would not trade completely against their information. That leads

to the following lemma.

Lemma 3 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that σ = (σH , σL) is an equilibrium strategy profile when the belief is b. The followings

hold:

WH(b) = 1 − α(b, σ) + VH(α(b, σ))

≥ β(b, σ) − 1 + VH(β(b, σ)),

and

WL(b) = β(b, σ) + VL(β(b, σ))

≥ −α(b, σ) + VL(α(b, σ)).

Proof: By Corollary 2, we know that in equilibrium, σHB > 0 and σLS > 0. Therefore, the

results follow.

As shown in Corollary 2, the informed trader’s optimal strategy assigns strictly positive prob-

ability to trade on their information. This means that even when the informed trader’s strategy

is manipulative, he must be indifferent between selling and buying, because his strategy assigns

strictly positive probability to both actions. Therefore, if his strategy is manipulative, then the

payoffs from buying and selling must be the same. If he prefers to trade on his information, then

his payoff of trading on his information must dominate one from trading against information.

Overall, we can conclude that in any event, his payoff of trading on his information must weakly

dominate one from trading against information. This is an intuition behind Lemma 3.
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Now we turn our attention to the relationship of bid or ask prices between two different

beliefs. The following lemma explains this relationship and says that when we compare two

equilibrium ask or bid prices corresponding to the two different beliefs, an equilibrium ask or bid

price corresponding to a higher belief is higher than the other. For the simplicity of notation, in

what follows we will write: ΓB = (1 − µ)γ and ΓS = (1 − µ)(1 − γ).

Lemma 4 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that σ = (σH , σL) is

an equilibrium strategy profile when the belief is b and σ′ = (σ′
H , σ′

L) is an equilibrium strategy

profile when the belief is b − ǫ. For every b and sufficiently small ǫ, the followings hold:

α(b, σ) − α(b − ǫ, σ′) > 0; (15)

and

β(b, σ) − β(b − ǫ, σ′) > 0. (16)

Proof:

Since [0, 1] is a perfect set, for each point b ∈ [0, 1] we can take a sequence bk → b as k → ∞,

and also equilibrium strategies associated with each belief, σk
HB → σHB and σk

LB → σLB with

σk = (σk
H , σk

L) ∈ BR(σk
H , σk

L) and (σH , σL) ∈ BR(σH , σL). Then, corresponding to each belief bk,

and the equilibrium strategies (σk
H , σk

L), by Bayes rule, there is a sequence of ask prices which we

denote by α(bk). Notice that we have: α(bk, σk) → α(b, σ) as k → ∞. Then, we have:

α(bk, σk) − α(b, σ)

bk − b

=
Γ2

B(bk − b) + µΓB(bk(1 − b)(σk
HB + σLB) − b(1 − bk)(σHB + σk

LB))

(bk − b)[ΓB + µbσHB + µ(1 − b)σLB ][ΓB + µbkσk
HB + µ(1 − bk)σk

LB ]

+
µ2(bk(1 − b)σk

HBσLB − b(1 − bk)σHBσk
LB)

(bk − b)[ΓB + µbσHB + µ(1 − b)σLB ][ΓB + µbkσk
HB + µ(1 − bk)σk

LB ]
.

Thus, we obtain:

lim
bk→b

α(bk, σk) − α(b, σ)

bk − b
=

Γ2
B + µΓB(σHB + σLB) + µ2σHBσLB

[ΓB + µbσHB + µ(1 − b)σLB ]2
lim
bk→b

bk − b

bk − b

=
Γ2

B + µΓB(σHB + σLB) + µ2σHBσLB

[ΓB + µbσHB + µ(1 − b)σLB ]2
.

Similarly, for a bid-price,

β(bk, σk) − β(b, σ)

bk − b

=Γ2
S

(bk
−b)+µΓS(bk(1−b)(σk

LS
+σHS)−b(1−bk)(σLS+σk

HS
))+µ2(bk(1−b)σk

LS
σHS−b(1−bk)σLSσk

HS
)

(bk
−b)[ΓS+µ(1−b)σLS+µbσHS ][ΓS+µ(1−bk)σk

LS
+µbkσk

HS
]

.
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Therefore, we obtain:

lim
bk→b

β(bk, σk) − β(b, σ)

bk − b
=

Γ2
S + µΓS(σLS + σHS) + µ2σLSσHS

[ΓS + µbσHS + µ(1 − b)σLS ]2
.

Thus, we conclude that: limbk→b
α(bk ,σk)−α(b,σ)

bk−b
and limbk→b

β(bk,σk)−β(b,σ)
bk−b

are greater than

zero and the result follows.

Next, we consider the property of the value functions. Manipulation occurs in order to affect

the future prices. This effect on price must be related to the future value functions, and otherwise

there is no point of taking manipulative strategy. The next two lemmata give a sufficient condition

for manipulation to occur.

Lemma 5 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that σ = (σH , σL) is an equilibrium strategy profile when the belief is b and σ′ = (σ′
H , σ′

L)

is an equilibrium strategy profile when the belief is b − ǫ. If the low-type takes a manipulative

strategy at b, for a sufficiently small ǫ the following holds:

VL(α(b, σ)) − VL(α(b − ǫ, σ′))

α(b, σ) − α(b − ǫ, σ′)
> 1. (17)

On the other hand, suppose that σ = (σH , σL) is an equilibrium strategy profile when the belief

is b and σ′′ = (σ′′
H , σ′′

L) is an equilibrium strategy profile when the belief is b + ǫ. If the high-type

takes a manipulative strategy at b, for a sufficiently small ǫ the following holds:

VH(β(b, σ)) − VH(β(b + ǫ, σ′′))

β(b, σ) − β(b + ǫ, σ′′)
< −1. (18)

Proof for the Low-type:

On the contrary, suppose that for ǫ sufficiently small, the following holds:

VL(α(b, σ)) − VL(α(b − ǫ, σ′))

α(b, σ) − α(b − ǫ, σ′)
≤ 1. (19)

By assumption, we have:

−α(b, σ) + VL(α(b, σ)) = β(b, σ) + VL(β(b, σ)). (20)

Then, at b − ǫ, by Lemma 3 we have:

−α(b − ǫ, σ′) + VL(α(b − ǫ, σ′)) ≤ β(b − ǫ, σ′) + VL(β(b − ǫ, σ′)). (21)
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This means:

−α(b − ǫ, σ′) + α(b, σ) + VL(α(b − ǫ, σ′)) − VL(α(b, σ))

≤ β(b − ǫ, σ′) − β(b, σ) + VL(β(b − ǫ, σ′)) − VL(β(b, σ)). (22)

Then, by our assumption, we must have:

−α(b − ǫ, σ′) + α(b, σ) + VL(α(b − ǫ, σ′)) − VL(α(b, σ)) ≥ 0. (23)

Since VL are monotonically increasing and by Lemma 4, we must have:

0 > β(b − ǫ, σ′) − β(b, σ) + VL(β(b − ǫ, σ′)) − VL(β(b, σ)). (24)

Thus, (22) is impossible. �

Proof for the High-Type:

On the contrary, suppose that for ǫ sufficiently small, the following holds:

VH(β(b, σ)) − VH(β(b + ǫ, σ′′))

β(b, σ) − β(b + ǫ, σ′′)
≥ −1. (25)

By assumption, we have:

1 − α(b, σ) + VH(α(b, σ)) = β(b, σ) − 1 + VH(β(b, σ)). (26)

Then at b + ǫ, by Lemma 3 we have:

1 − α(b + ǫ, σ′′) + VH(α(b + ǫ, σ′′)) ≥ β(b + ǫ, σ′′) − 1 + VH(β(b + ǫ, σ′′)). (27)

This means:

−α(b + ǫ, σ′′) + α(b, σ) + VH(α(b + ǫ, σ′′)) − VH(α(b, σ))

≥ β(b + ǫ, σ′′) − β(b, σ) + VH(β(b + ǫ, σ′′)) − VH(β(b, σ)). (28)

Then, by our assumption, we must have:

β(b + ǫ, σ′′) − β(b, σ) + VH(β(b + ǫ, σ′′)) − VH(β(b, σ)) ≥ 0. (29)

Since VH is monotonically decreasing and by Lemma 4, we must have:

0 > −α(b + ǫ, σ′′) + α(b, σ) + VH(α(b + ǫ, σ)) − VH(α(b, σ)). (30)

Thus, (28) is impossible. �
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Lemma 6 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that VH and VL are strictly convex. Suppose that σ is an equilibrium strategy profile when

the belief is b. Then the followings hold:

V ′
L(α(b, σ)) > 1; (31)

and

V ′
H(β(b, σ)) < −1. (32)

Proof:

By Lemma 5, (17) and (18) hold for any ǫ. Therefore, since VH and VL are strictly convex, we

obtain the results.

A simple intuition of Lemma 6 is that if manipulation occurs, the effect for the future payoff

has to be large enough. In an extreme case, if the value function is completely flat, then even if the

informed trader suffers the short-term loss, the future payoff would not change. Therefore, if the

value function is completely flat, manipulation would not occur. In other words, if manipulation

occurs, the value function must be steep enough. Lemma 6 gave a critical value for manipulation.

Now that we have proved all the necessary results to prove the uniqueness of equilibrium, we

consider possible cases of manipulation by the informed traders in equilibrium so that we can

grasp more ideas about how equilibrium works. In equilibrium, there are four cases; that is, only

the high-type totally mixes, only the low-type totally mixes, both totally mix, and neither totally

mixes. Lemma 7 will prove the uniqueness of equilibrium strategy for the first or second case,

in which only one of them totally mixes. Lemma 8 and Lemma 9 will show the uniqueness of

equilibrium for the third case.

Lemma 7 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that VH and VL are strictly convex. Suppose that in equilibrium one type totally mixes.

Then, the equilibrium strategy exists uniquely.

Proof:

Since the argument is symmetric, we will prove the result for only the high-type. Suppose that

σH is totally mixed strategies. Then, the high-type must be indifferent between purchase and

sell. Therefore, the following hold:

1 − α(b, σ) + VH(α(b, σ)) = β(b) − 1 + VH(β(b, σ)). (33)
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We will show that given b and σL there is a unique pair of strategies σH satisfying the above

(33).

On the contrary, suppose that there are different strategies σ̂H satisfying (33) with the prices

α(b, σ̂) and β(b, σ̂). Now, suppose that: σHB < σ̂HB . Then, we have: α(b, σ̂) > α(b, σ) and

β(b, σ̂) < β(b, σ).

Then, we have:

1 − α(b, σ̂) + VH(α(b, σ̂)) ≥ β(b, σ̂) − 1 + VH(β(b, σ̂)). (34)

Thus, we have:

α(b, σ̂)−α(b, σ)−VH(α(b, σ̂))+VH(α(b, σ)) ≤ β(b, σ)−β(b, σ̂)+VH(β(b, σ))−VH(β(b, σ̂)). (35)

By arranging the above, we have:

α(b, σ̂)−α(b, σ)+[VH (α(b, σ))−VH (α(b, σ̂))]+[VH(β(b, σ̂))−VH(β(b, σ))] ≤ β(b, σ)−β(b, σ̂). (36)

However, since the slope of the Value for the high-type must be greater than 1 at bid price,

we have:

[VH(β(b, σ̂)) − VH(β(b, σ))] > β(b, σ) − β(b, σ̂). (37)

Since VH is strictly decreasing, it is impossible for (36) to hold.

Lemma 8 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that VH and VL are strictly convex. Suppose that in equilibrium, both types totally mix.

Then, the equilibrium bid and ask prices are unique.

Proof:

If both types mix at the same time, the following holds:

1 − α(b, σ) + VH(α(b, σ)) = β(b, σ) − 1 + VH(β(b, σ)), (38)

and

−α(b, σ) + VL(α(b, σ)) = β(b, σ) + VL(β(b, σ)). (39)

Consequently, the following must be true:

[VL(α(b, σ)) − VH(α(b, σ))] − [VL(β(b, σ)) − VH(β(b, σ))] = 2. (40)
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Consider the difference between the bid and ask prices (that is, bid-ask spread). Notice that
fL

fH
∈ [ γ(1−µ)

γ(1−µ)+µ
, 1] and 1−fL

1−fH
∈ [1, (1−γ)(1−µ)+µ

(1−γ)(1−µ) ]. By Bayes rule, we have:

α(b, σ) =
fHb

fHb + (1 − b)fL
=

b

b + (1 − b) fL

fH

, (41)

and

β(b, σ) =
(1 − fH)b

(1 − fH)b + (1 − b)(1 − fL)
=

b

b + (1 − b) 1−fL

1−fH

. (42)

Therefore, when fL

fH
= 1 and 1−fL

1−fH
= 1 corresponding to the strategies σLB = σHB, the bid-ask

spread is the smallest and then we have:

S(b, σ) ≡ α(b, σ) − β(b, σ) = b − b = 0. (43)

On the other hand, when fL

fH
= γ(1−µ)

γ(1−µ)+µ
and 1−fL

1−fH
= (1−γ)(1−µ)+µ

(1−γ)(1−µ) corresponding to the

strategies σLB = 0 and σHB = 1, the bid-ask spread is the largest and then we have:

S̄(b, σ) ≡ α(b, σ) − β(b, σ) =
b

b + (1 − b) γ(1−µ)
γ(1−µ)+µ

−
b

b + (1 − b) (1−γ)(1−µ)+µ

(1−γ)(1−µ)

. (44)

Since the equilibrium bid-ask spread S(b, σ) must be between S(b, σ) and S̄(b, σ), if both types

mix, S̄(b, σ) must be strictly greater than 2. Otherwise, (40) would not hold for any α(b, σ) and

β(b, σ). On the other hand, if S̄(b, σ) is strictly greater than 2, then by the Intermediate Value

Function Theorem there will be a pair of bid and ask prices α(b, σ) and β(b, σ) which satisfies

(40). Now, we will prove that there is only one pair of bid and ask prices α(b, σ) and β(b, σ) which

satisfies (40).

We define: for α ∈ [0, 1] and β ∈ [0, 1],

H(α, β) = VH(α) − VH(β) + 2 − α − β, (45)

and

L(α, β) = VL(α) − VL(β) − α − β. (46)

Also, we define:

J(α, β) ≡

(

H(α, β)

L(α, β)

)

. (47)

By Lemma 6 we know that if the high-type mixes, then

V ′
H(β) < −1, (48)
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and if the low-type mixes, then

V ′
L(α) > 1. (49)

Now, we consider the determinant of the following matrix:

dJ(α, β) ≡

(
∂H
∂α

∂H
∂β

∂L
∂α

∂L
∂β

)

. (50)

Then, since VH is decreasing, VL is increasing and by Lemma 5, we obtain:

∂H

∂α
= V ′

H(α) − 1 < 0;

∂H

∂β
= −V ′

H(β) − 1 > 0;

∂L

∂α
= V ′

L(α) − 1 > 0;

∂L

∂β
= −V ′

L(β) − 1 < 0; .

Therefore,

det(dJ) =
∂H

∂α
×

∂L

∂β
−

∂H

∂β
×

∂L

∂α
(51)

= −[V ′
H(α) − 1] × [V ′

L(β) + 1] + [V ′
H(β) + 1] × [V ′

L(α) − 1]. (52)

Thus, det(dJ) > 0 if and only if:

[V ′
H(β) + 1] × [V ′

L(α) − 1] > [V ′
H(α) − 1] × [V ′

L(β) + 1]. (53)

Then, (53) holds if and only if:

[V ′
H(β) + 1]

[V ′
H(α) − 1]

<
[V ′

L(β) + 1]

[V ′
L(α) − 1]

. (54)

Then, (54) holds if and only if:

|V ′
H(β) + 1|

|V ′
H(α) − 1|

<
[V ′

L(β) + 1]

[V ′
L(α) − 1]

. (55)

Notice that since VH is a decreasing function and VL is a increasing function, we have:

|V ′
H(β) + 1| < [V ′

L(β) + 1], (56)

and

|V ′
H(α) − 1| > [V ′

L(α) − 1]. (57)

Therefore, (55) holds and as a result, we can conclude that dJ has a strictly positive deter-

minant. Since the elements in the upper left corner of dJ and the lower right corner of dJ are
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both strictly negative, we conclude that dJ is negative definite. Take two distinct p1 = (α1, β1)

and p2 = (α2, β2). Then, we have:

< p1 − p2, J(p1) − J(p2) > = < p1 − p2,

∫ 1

0
dJ(p2 + t(p1 − p2))(p1 − p2)dt >

=

∫ 1

0
(p1 − p2)

T dJ(p2 + t(p1 − p2))(p1 − p2)dt

< 0.

Therefore, we have: J(p1) 6= J(p2), which means:

(

H(α1, β1)

L(α1, β1)

)

6=

(

H(α2, β2)

L(α2, β2)

)

. (58)

Therefore, there exists only one pair of α and β which satisfies: H(α, β) = 0 and L(α, β) = 0.

Finally, we conclude that there is only one pair of α and β which satisfies (38) and (39). This

completes our proof.

Lemma 9 If the equilibrium bid and ask prices are unique, the equilibrium strategies are unique.

Proof:

Suppose that in equilibrium, there are two different pairs of strategies, σ and σ̂. Now on the

contrary to our conclusion of this lemma, suppose that α(b, σ̂) = α(b, σ) and β(b, σ̂) = βt(b, σ).

By Bayes rule, we can write:

α(b, σ) =
fHb

fHb + (1 − b)fL
. (59)

Similarly with fH and fL, we define f̂H and f̂L associated with σ̂LB and σ̂HB. Then the

following holds:

α(b, σ̂) =
f̂Hb

f̂Hb + (1 − b)f̂L

. (60)

By equating (59) and (60) we must have:

f̂HfL = f̂LfH . (61)

Similarly for the bid-price, we have:

β(b, σ) =
(1 − fH)b

(1 − fH)b + (1 − b)(1 − fL)
, (62)

and

β(b, σ̂) =
(1 − f̂H)b

(1 − f̂H)b + (1 − b)(1 − f̂L)
. (63)
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By equating (62) and (63) we must have:

(1 − f̂H)(1 − fL) = (1 − f̂L)(1 − fH). (64)

Combining the equations (61) and (64) gives

f̂H − fH = fL − f̂L. (65)

Let the difference in (65) by ∆. Then, by substituting it into (61) we obtain:

(fH + ∆)fL = (fL + ∆)fH . (66)

Therefore, we must have fH = fL and f̂H = f̂L. Conversely, if fH = fL and f̂H = f̂L, then

β(b, σ̂) = β(b, σ) = b and α(b, σ̂) = α(b, σ) = b. This contradicts with Lemma 1.

Lemma 10 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that VH and VL are strictly convex. The equilibrium exists uniquely.

Proof:

Four cases can arise in equilibrium; that is, only the high-type totally mixes, only the low-type

totally mixes, both manipulate, and neither totally mixes. In the first or second case, in which one

of them totally mixes, by Lemma 7, the equilibrium strategy is uniquely determined. Therefore,

the corresponding price is uniquely determined by Bayes rule. In the third case, by Lemma 8 and

Lemma 9, the equilibrium exists uniquely. If both do not totally mix, the equilibrium strategy is

σHB = 1 and σLB = 0 and thus the corresponding price is uniquely determined by Bayes rule. In

the end, we conclude that equilibrium exists uniquely in either case.

So far, we have proved that if VH and VL are monotonic, and VH and VL are strictly convex,

then in the current period the equilibrium exists uniquely. In order to complete our proof for the

whole game, we have to prove that actually WH and WL are monotonic, and WH and WL are

strictly convex. In order to do so, we will start with the monotonicity of WH and WL.

Lemma 11 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in

b. Suppose that VH and VL are strictly convex. Then, equilibrium exists uniquely and the high-

type’s value function WH is monotonically decreasing and the low type’s value function WL is

monotonically increasing in terms of the market maker’s prior belief b.
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Proof:

· When t = T

Since this is the last chance to trade, both types trade on their information. Therefore,

α(b, σ) =
[µ + ΓB ]b

ΓB + µb
.

Thus,

WH(b) = 1 −
[µ + ΓB]b

ΓB + µb
=

(1 − b)ΓB

ΓB + µb
. (67)

Therefore, we conclude that WH is strictly decreasing in b. �

· When t = 1, · · · , T − 1

By Lemma 10, equilibrium exists uniquely. Let b > b′, and σ′ denotes the equilibrium strategy

when the belief is b′. Then, we have:

WH(b) = 1 − α(b, σ) + VH(α(b, σ))

< 1 − α(b′, σ′) + VH(α(b′, σ′))

= WH(b′).

This completes our proof.

Now we will prove the strict convexity of WH and WL. In order to do so, first we will consider

the shapes of bid and ask prices.

Proposition 1 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is

monotonically decreasing in the market maker’s prior b and that VL is monotonically increasing

in b. Suppose that VH and VL are strictly convex. Then, ask price is strictly concave and bid price

is strictly convex in terms of b.

Proof:

By Lemma 10, equilibrium exists uniquely. By Lemma 4, we have:

α′(b, σ) = lim
bk→b

α(bk) − α(b)

bk − b
=

Γ2
B + µΓB(σHB + σLB) + µ2σHBσLB

[fHb + fL(1 − b)]2
,

and

β′(b, σ) = lim
bk→b

β(bk) − β(b)

bk − b
=

Γ2
S + µΓS(σLS + σHS) + µ2σLSσHS

[(1 − fH)b + (1 − fL)(1 − b)]2
.

Similarly with the proof of Proposition 4, we can take a sequence bk → b as k → ∞, and

also the equilibrium strategies associated with each belief, σk
HB → σHB and σk

LB → σLB with

σk = (σk
H , σk

L) ∈ BR(σk
H , σk

L) and (σH , σL) ∈ BR(σH , σL).
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We also denote fk
H and fk

L, and fH and fL defined in (8) and (9) associated with σk and σ.

Then we have fk
H → fH and fk

L → fL as k → ∞. Now we consider:

α′′(b, σ) ≡ lim
bk→b

α′(bk, σk) − α′(b, σ)

bk − b

= lim
bk→b

[Γ2
B

+µΓB(σk
HB

+σk
LB

)+µ2σk
HB

σk
LB

][fHb+fL(1−b)]2

[fHb+fL(1−b)]2·[fk
H

bk+fk
L

(1−bk)]2

− lim
bk→b

[Γ2
B

+µΓ(σHB+σLB)+µ2σHBσLB ][fk
H

bk+fk
L

(1−bk)]2

[fHb+fL(1−b)]2·[fk
H

bk+fk
L

(1−bk)]2

= [Γ2
B

+µΓB(σHB+σLB)+µ2σHBσLB ]

[fHb+fL(1−b)]4

× lim
bk→b

[fHb+fL(1−b)]+[fk
H

bk+fk
L

(1−bk)]][[fHb+fL(1−b)]−[fk
H

bk+fk
L

(1−bk)]

bk
−b

= 2
[Γ2

B
+µΓB(σHB+σLB)+µ2σHBσLB ]

[fHb+fL(1−b)]3
lim

bk
→b

[fHb+fL(1−b)]−[fk
H

bk+fk
L

(1−bk)]

bk
−b

= 2
[Γ2

B
+µΓB(σHB(b)+σLB)+µ2σHBσLB ]

[fHb+fL(1−b)]3
lim

bk
→b

µ[σHBb−σk
HB

bk]+µ[σLB(1−b)−σk
LB

(1−bk)]

bk
−b

= 2µ
[Γ2

B + µΓB(σHB + σLB) + µ2σHBσLB ]

[fHb + fL(1 − b)]3
· [σLB − σHB] < 0.

Similarly, for a bid-price,

β′′(b, σ) ≡ lim
bk→b

β′(bk, σk) − β′(b, σ)

bk − b

= 2µ
[Γ2

S + µΓS(σHS + σLS) + µ2σHSσLS ]

[(1 − fH)b + (1 − fL)(1 − b)]3
· [σLS − σHS ] > 0.

Therefore, we obtain the desired results.

Theorem 2 Fix a history ht arbitrarily and suppose that b = b(ht). Suppose that VH is mono-

tonically decreasing in the market maker’s prior b and that VL is monotonically increasing in b.

Suppose that VH and VL are strictly convex. The high-type’s value WH and the low type’s value

WL are strictly convex in terms of the market maker’s prior belief b.

Proof:

· When t = T

By taking the second derivative of (68), we can conclude that:

d2WH

db2
> 0.

Since WH is strictly decreasing, we can conclude that WH is convex in b. �

· When t = 1, · · · , T − 1

Suppose that VH is strictly convex in b. By Lemma 10, equilibrium exists uniquely. Suppose that
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for r, b1, b2 ∈ [0, 1], σ1, σ2 and σ̄ is respectively the equilibrium strategy when the belief is b1, b2

and rb1 + (1 − r)b2. Then, we have:

WH(rb1 + (1 − r)b2) = 1 − α(rb1 + (1 − r)b2, σ̄) + VH(α(rb1 + (1 − r)b2, σ̄))

< 1 − rα(b1, σ1) − (1 − r)α(b2, σ2) + VH(rα(b1, σ1) + (1 − r)α(b2, σ2))

(∵ α is strictly concave and VH is strictly decreasing.)

< 1 − rα(b1, σ1) − (1 − r)α(b2, σ2) + rVH(α(b1, σ1)) + (1 − r)VH(α(b2, σ2))

(∵ VH is strictly convex.)

= r [1 − α(b1, σ1) + VH(α(b1, σ1))] + (1 − r) [1 − α(b2, σ2) + VH(α(b2, σ2))]

= rWH(b1) + (1 − r)WH(b2).

Thus, we conclude that WH(b) is strictly convex. Symmetrically, we can also prove that WL(b)

is strictly convex. This completes our proof. �

Theorem 3 The equilibrium exists uniquely.

Proof:

We will prove this inductively. Consider the second last period t = T . Then, both informed

traders trade on information. Therefore,

αT (b, σ) =
[µ + ΓB]b

ΓB + µb
.

Thus,

V T
H (b) = 1 −

[µ + ΓB]b

ΓB + µb
=

(1 − b)ΓB

ΓB + µb
. (68)

Thus, V T
H is strictly decreasing in b. Moreover, V T

H is strictly convex in b. Thus, the equilibrium

strategy exists uniquely in period t = T − 1 by Lemma 10. Thus, there exists a unique V T−1
H

which is monotonically decreasing and strictly convex in the market maker’s belief at period T −1

by Lemma 11. Thus, the equilibrium strategy exists uniquely in period t = T − 2 by Lemma 10.

Inductively, we can obtain the desired result.

In this section, we proved the uniqueness of equilibrium. At the same time, we also proved

some interesting properties of the value functions, and bid and ask prices. Those are summarized

into the following Theorem:

Theorem 4 1. The high-type’s value function WH is monotonically decreasing and the low

type’s value function WL is monotonically increasing in terms of the market maker’s prior

belief b;
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2. The high-type’s value WH the low type’s value WL is strictly convex in terms of the market

maker’s prior belief b;

3. The equilibrium bid and ask prices are monotonically increasing;

4. The bid price is strictly convex and the ask price is strictly concave.

Proof:

The first statement is proved by Lemma 11 and Theorem 3. The second statement is proved by

Lemma 11 and Theorem 3.

Although there is a difference about discrete or continuous time, and the deterministic or

stochastic terminal period, those properties are one that Back and Baruch (2004) showed in a

numerical experiments. In this section, we proved those properties.

4 Concluding Remarks

In a discrete time version of Back and Baruch (2004) model with deterministic terminal period,

we proved the unique existence of equilibrium. Then, we defined information entropy and showed

how manipulation affects the amount of information conveyed to the market. Market price ma-

nipulation has been a challenging issue in a market microstructure literature, and one of the

difficulties was the dynamic behavior of informed traders. Especially, in the Back and Baruch

(2004) version of the Glosten and Milgrom (1985) model, the equilibrium is not tractable. By

proving the unique existence of equilibrium in the discrete time with deterministic terminal date,

this paper opens up a way to interesting questions in the area.

Obvious extensions of the paper are to consider the infinite-period of the current model with

time discount factor and extend it to the continuous time model in order to see if the results

still stay. Then, we will be able to see if in the Back and Baruch (2004) model, there exists a

unique equilibrium. It is still an open question to see if there exists a unique equilibrium in the

Kyle (1985) model. So, in order to answer to the question of “which equilibrium of the Glosten-

Milgrom model converges to which equilibrium of the Kyle model?,” the issue studied in this

paper is important.

As for information entropy, Grossner and Tomala (2008) presented applications to merging

theory and to the cost of learning in repeated decision problems. We can apply their method to

our model and consider bound on the cost of learning or speed of learning for the market maker.

This will give us the implications about how costly market price manipulation is for market makers

or liquidity traders. These problems will be interesting directions for future research.
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Appendix: Proof of Theorem 1

In order to prove the existence of equilibrium, we consider the equilibrium strategies (σ∗
L, σ∗

H)

to be a fixed point of the collection of their best response correspondences BR = {BRt}t=1··· ,T

with BRt : [∆(A)]2 ⇒ [∆(A)]2 such that for each t, (σ∗
L, σ∗

H) = BRt(σ∗
L, σ∗

H). Let U t
n : ∆(A) ×

[0, 1]2 → IR denote the payoff function for the type n ∈ N trader in period t. More formally, for

n ∈ {H,L},

U t
n(σn, pt) =

T∑

t′=t

[σnB(θ − αt′) − σnS(θ − βt′)] . (69)

Then, we define the informed trader’s best response correspondence: for every t ∈ {1, · · · , T}

and given pt,

BRt(σL, σH) =

{

(σL, σH) ∈ [∆(A)]2|σn ∈ arg max
σ∈∆(A)

U t
n(σ, pt) ∀n ∈ N

}

. (70)

Therefore, when b(ht) = bt, α∗
t (b(ht)) = αt and β∗

t (b(ht)) = βt, continuation value of the game

for the high-type in period t is:

V t
H(bt) = max

σH∈∆(A)
[σHB(1 − αt + V t+1

H (b(ht, B))) + σHS(βt − 1 + V t+1
H (b(ht, S)))], (71)

and one for the low type is:

V t
L(bt) = max

σL∈∆(A)
[−σLBαt + V t+1

L (b(ht, B)) + σLS(βt + V t+1
L (b(ht, S)))]. (72)

Thus, an equilibrium defined in Definition 3 is a fixed point of the best response correspondence

BR, and αt and βt are respectively updated by Bayes rule (1). More formally, we will prove that

there exists an fixed point (σ∗
L, σ∗

H) such that: for each t ∈ {1, · · · , T},

BRt(σ∗
L, σ∗

H) = (σ∗
L, σ∗

H). (73)

Lemma 12 The payoff function U t
n is continuous. In addition, for every t, BRt is a upper

semi-continuous correspondence.

Proof: Since the argument is symmetric, we only consider the high-type’s payoff function and

the value function. Note that U t
H is continuous in his strategy and also the market maker’s quotes

(βt, αt). Then, U t
H is a continuous numerical function.

We respectively denote the sequences of prices associated with σk and σ̂k by pk and p̂k and

also σ and σ̂ by p and p̂. Then, since the prices are continuous in strategies, we have pk → p and

p̂k → p̂.

24



Now on the contrary, suppose that there exists a sequence as above but σ̂ /∈ BR(σH , σL).

Without loss of generality, we suppose that there exists a ǫ > 0 and σ̄H ∈ ∆(E) such that:

U t
H(σ̄H , p) > U t

H(σ̂H , p) + 3ǫ. (74)

For k large enough, by continuity of the payoff function and prices, we have:

U t
H(σ̄H , pk) > U t

H(σ̄H , p) − ǫ > U t
H(σ̂H , p) + 2ǫ (75)

> U t
H(σ̂k

H , p) + ǫ > U t
H(σ̂k

H , pk). (76)

This contradicts with the fact that (σ̂k
H , σ̂k

L) ∈ BRt(σk
H , σk

L) for all k.

Lemma 13 The set [∆(A)]2 is non-empty, compact and convex.

Proof: The set of strategies ∆(A) is non-empty, compact and convex. The set [∆(A)]2 is a

Cartesian product of those sets and thus the result follows.

Lemma 14 The informed trader’s best response correspondence BRt is non-empty and convex-

valued for every t ∈ {1, · · · , T}.

Proof: We will prove this by mathematical induction. Since the argument is symmetric, we only

consider the high type. Consider the last period t = T . Then, the high type and low type trade

on their information. In this sense, BRT is non-empty and convex-valued. Next we suppose that

in period t + 1, BRt+1 is non-empty and convex-valued. Then, we will prove that in period t,

BRt is also non-empty and convex-valued.

By the assumption for the inductive hypothesis, we know that V t+1
H is well-defined. Now, fix

a history ht−1 arbitrarily. Then, given V t+1
H , the right hand side of the expression in (71) is linear

in the strategies σH . Therefore the expression in (71) has a maximum so that the set BRt is

non-empty.

Second, we will prove that it is also convex-valued. Take two different strategies (σ̄H , σ̄L) ∈

BRt(σ̄H , σ̄L) and (¯̄σH , σ̄L) ∈ BRt(σ̄H , σ̄L). We denote the prices associated with the strategies

(σ̄H , σ̄L) by p̄t. Then, the following must hold:

U t
H(σ̄H , p̄t) = U t

H(¯̄σH , p̄t). (77)

Let σ̂t
H = γσ̄H + (1 − γ)¯̄σH for some γ ∈ (0, 1). By using linearity of the payoff function, we

have:

U t
H(σ̂1, p̄t) = γU t

H(σ̄H , p̄t) + (1 − γ)U t
H(¯̄σH , p̄t) = U t

H(σ̄H , p̄t) = U t
H(¯̄σH , p̄t). (78)
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and therefore we have: (σ̂H , σ̄L) ∈ BRt(σ̄H , σ̄L). Therefore, BRt is convex-valued.

Proof of Theorem 1: By Lemma 12 to Lemma 14, we can apply the Kakutani’s fixed point

theorem to the best response correspondence BRt on [∆(A)]2 for all t ∈ {1, · · · , T}.
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