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Abstract

Investors facing restrictions on the portfolios that they can trade, is more of a norm
than an exception. We consider a model in which agents portfolio sets are constrained,
i.e. their participation is restricted. As in Siconolfi (1986), Balasko, Cass and
Siconolfi (1990) these constraints are exogenously given (possibly arising due to
some institutional reasons). Moreover, we consider very general restrictions on
portfolio where each agents portfolios set is assumed to be convex and containing
zero. This paper primarily examines the characterization of equilibrium asset prices
with arbitrage free asset prices, in a multiperiod model when investors face such
general portfolio restrictions. In the absence of such portfolio constraints the approach
initiated by Cass (1984), has been extensively used to characterize equilibrium asset
prices with arbitrage free asset prices. See Cass (1984), Duffie (1987) and Florenzano
and Gourdel (1994). Moreover this approach is also useful in showing the existence
of an equilibrium. See Magill and Shafer (1991), Florenzano and Gourdel (1994),
Magill and Quinzii (1996), Rocha and Triki (2005), Hahn and Won (2003) and
Angeloni and Cornet (2006) among others. Another approach to prove existence in a
differentiable economy is to show existence in a numeraire asset economy and infer
the existence in the nominal asset economy (See Villanacci et al. 2002 and Magill and
Quinzii 1996).
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Abstract. We consider the model of a stochastic financial exchange economy with
finitely many periods. Time and uncertainty are represented by a finite event-tree I
and consumers may have constraints on their portfolios. We provide a general existence
result of financial equilibria, which allows to cover several important cases of financial
structures in the literature with or without constraints on portfolios.
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1. Introduction

The main purpose of general equilibrium theory with incomplete markets is to
study the interactions between the financial structure of the economy and the
commodity structure, in a world in which time and uncertainty play a funda-
mental role. The first pioneering multiperiod model is due to Debreu ([10]),
who introduced the idea of an event-tree of finite length, in order to repre-
sent time and uncertainty in a stochastic economy. Later, Magill and Schafer
([24]) extended the analysis of multi-period models, describing economies
in which financial equilibria coincide with contingent market equilibria. The
multi-period model was also explored, among others, by Duffie and Schafer
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([12]), who proved a result of generic existence of equilibria, a detailed pre-
sentation of which is provided in Magill and Quinzii ([23]).

The multi-period model has been also extensively studied in the simple
two-date model (one period T' = 1): see, among others, [3, 26, 6], for the case
of a finite set of states and [27, 28, 1, 30] for the case of a continuum of states.
The two-date model, however, is not sufficient to capture the time evolution of
realistic models. In this sense, the multiperiod model is much more flexible,
and is also a necessary intermediate step before studying the infinite horizon
setting (see [21, 221). Moreover, multi-period models may provide a framework
for phenomena which do not occur in a simple two-date model. For instance,
in [4], Bonnisseau and Lachiri describe a three-date economy with production
in which, essentially, the second welfare theorem does not hold, while it always
holds in the two-date case. As a further example, we may recall that the suitable
setting to study the effect of incompleteness of markets on price volatility is
a three-date model, in the way addressed in [7].

In the model we consider, time and uncertainty are represented by an event-
tree with T periods and finitely many nodes (date-events) at each date. At each
node, there is a spot market where a finite set of commodities is available.
Moreover, transfers of value among nodes and dates are made possible via
a financial structure, namely finitely many financial assets available at each
node of the event-tree. Our equilibrium notion encompasses the case in which
retrading of financial assets is allowed at every node (see [23]) and we allow
the case of restricted participation, namely the case in which agents’ portfolio
sets may be constrained.

This paper focuses on the existence of financial equilibria in a stochastic
economy with general financial assets and possible constraints on portfolios.
The existence problem with incomplete markets was studied, in the case of
two-date models, by Cass ([5]) and Werner ([34, 35]), for nominal financial
structures, Duffie ([11]) for purely financial securities under general conditions,
Geanakoplos and Polemarchakis ([18]) in the case of numéraire assets. The
existence of a financial equilibrium was proved by Bich and Cornet ([3]) when
agents may have nontransitive preferences in the case of a two-date economy.
In the case of T-period economies, we also mention the work by Duffie and
Schafer ([13]) and by Florenzano and Gourdel ([15]); more recently, Da Rocha
and Triki have studied a general intertemporal model in the case of purely
financial securities ([25]). Other existence results in the infinite horizon models
can be found in [20, 29, 16].
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2. The T'-period financial exchange economy

2.1 Time and uncertainty in a multi-period model

We!consider a multi-period exchange economy with (T -+ 1) dates, t € 7 :=
{0,...,T}, and a finite set of agents I. The stochastic structure of the model
is described by a finite event-tree D of length T and we shall essentially use
the same notations as [23] (we refer to [23] for an equivalent presentation with
information partitions). The set I); denotes the nodes (also called date-events)
that could occur at date ¢ and the family (D, );c7 defines a partition of the set
D; we denote by £(&) the unique ¢ € T such that £ € Dy.

Ateach date t # T, there is an a priori uncertainty about which node will
prevail in the next date. There is a unique non-stochastic event occurring at
date ¢ = 0, which is denoted &, (or simply 0) so Dy = {&}. Finally, the
event-tree D is endowed with a predecessor mapping pr: D\ {&} — D
which satisfies pr(ID;) = D;_1, for every t # 0. The element pr(£) is called
the immediate predecessor of £ and is also denoted £ ™. For each £ € D, we let
F={ech:¢= 5_} be the set of immediate successors of £; we notice
that the set £ is nonempty if and only if £ € D\ ID)T

Moreover, for 7 € T\ {0} and £ € D\ J]_, " D; we define, by induction,
pr7(€) = pr(pr=1(€)) and we let the set of (not necessarily immediate)
successors and the set of predecessors of £ be respectively defined by

D) ={'eD: 3re T\ {0} [ &= pr7(¢)}.
D (§) ={¢eD: IreT\{0} | & =pr (&)}

If & € DT(E) [resp. £ € DT(£) U {£}], we shall also use the notation & > ¢
[resp. & > £]. We notice that DT (&) is nonempty if and only if £ ¢ Dy and
D~ (€) is nonempty if and only if £ # &y. Moreover, one has £ € D™ (¢) if and
only if £ € D™ (¢') (and similarly &' € £ if and only if £ = (£/)7).

! In this paper, we shall use the following notations. A (I x .J)-matrix A is an el-
ement of R®*, with entries (a(£, j))ecp e : we denote by A(€) € R the &-th
row of A and by A(j) € RP the j—th column of A. We recall that the transpose
of A is the unique (J x D)-matrix ' A satisfying (Ax)epy = x e ; (" Ay), for every
z € R7,y € R®, where ey [resp. o] denotes the usual scalar product in RP ~ (resp.
R71]. We shall denote by rank A the rank of the matrix A. For every subsets Dcb
and J C J. the (D x J)-sub-matrix of A is the (D x J)-matrix 4 with entries

a(€,j) = a(. ) forevery (€.5) € D x J. Let z, y be in R™; we shall use the
notation x > y (resp. x > y)if xn > yn (resp. xp > yp) forevery h = 1,..., n
and we let ={zeR": 2>0}L, R, ={z c¢R": > 0} We shall also
use the notation x> yifz > yand x # y. We shall denote by || - || the Euclidean
norm in the different Euclidean spaces used in this paper and the closed ball cen-
tered at z € R” of radius 7 > Ois denoted By (x.7) := {y € RE : |jy—z| < r}.
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2.2 The stochastic exchange economy

At each node & € D, there is a spot market where a finite set H of divisible
physical commodities is available. We assume that each commodity does not
last for more than one period. In this model, a commodity is a couple (h. &) of
a physical commodity & € H and anode £ € D at which it will be available, so
the commodity space is RE, where L = H x ID. An element z in R¥ is called
a consumption, that is © = (z(£))een € RY, where 2(€) = (x(h,§))hen €
RH for every ¢ € D.

We denote by p = (p(€))een € RE the vector of spot prices and p(§) =
(p(h,€))ner € RH is called the spot price at node . The spot price p(h. &)
is the price paid, at date ¢(¢), for the delivery of one unit of commodity h at
node £. Thus the value of the consumption z(&) at node { € D (evaluated in
unit of account of node ) is

p(&) or (&) = > p(h.E)a(h,€).

heH

There is a finite set I of consumers and each consumer i € [ is endowed with
a consumption set X' C R’ which is the set of her possible consumptions. An
allocation is an element z € [],.; X', and we denote by " the consumption
of agent i, that is the projection of  onto X".

The tastes of each consumer : € I are represented by a strict preference cor-
respondence P': [, X/ — X', where P?(z) defines the set of consump-
tions that are strictly preferred by 4 to z’, that is, given the consumptions z”
for the other consumers j # i. Thus P? represents the tastes of consumer ¢ but
also her behavior under time and uncertainty, in particular her impatience and
her attitude towards risk. If consumers’ preferences are represented by utility
functions u': X' — R, for every i € I, the strict preference correspondence
is defined by Pi(z) = {z' € X' | v'(2') > u'(z")}.

Finally, at each node £ € D, every consumer ¢ € I has a node-endowment
e'(€) € RY (contingent to the fact that & prevails) and we denote by el =
(e'(€))een € RE her endowment vector across the different nodes. The ex-
change economy & can thus be summarized by

£=[D:HL(X', P e )er].

2.3 The financial structure

We consider finitely many financial assets and we denote by J the set of assets.
An asset j € J is a contract, which is issued at a given and unigue node in D,
denoted by £(7) and called the emission node of j. Each asset j is bought
(or sold) at its emission node £(j) and only yields payoffs at the successor
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nodes & of £(j), that is, for & > £(j). To allow for real assets, we let the
payoff depend upon the spot price vector p € RZ and we denote by v(p. £, j )
the payoff of asset j at node £. For the sake of convenient notations, we shall
in fact consider the payoff of asset j at every node £ € D and assume that it
is zero if £ is not a successor of the emission node £(j). Formally, we assume
that v(p, €, j) = 0if & ¢ DT (£(5)). With the above convention, we notice that
every asset has a zero payoff at the initial node, that is v(p, &y, j) = 0 for every
j € J; furthermore, every asset j which is emitted at the terminal date has
a zero payoff, that is, if £(j) € D, v(p, £,7) = 0 forevery £ € D,

For every consumer i € I, if 25 > 0 [resp. zj < 0], then |2| will denote
the quantity of asset j € J bought [resp. sold] by agent 7 at the emission node
§(j)- The vector 2* = (z}) ;e € R” is called the portfolio of agent i.

We assume that each consumer ¢ € T is endowed with a portfolio set Z* C
R, which represents the set of portfolios that are admissible for agent 7. This
general framework allows us to treat, for example, the following important
cases:

- Z' = R’ (unconstrained portfolios);

- Z' C 2" + Ry, for some z' € —R (exogenous bounds on short sales);

- Z* = B;(0, 1) (bounded portfolios).

The price of asset j is denoted by ¢; and we recall that it is paid at its
emission node £(j). We let ¢ = (g;);es € R be the asset price (vector).

Definition 2.1. A financial asset structure F = (J, (Z")ic1, (€(5)) e, V) con-
sists of

—a set of assets J,

— a collection of portfolio sets Z* C R” for every agent i € I,

— a node of issue £(j) € D for each asset j € J,

—a payoff mapping V: RL — (RP) which associates, to every spot price
p € RE the (D x J)-payoff matrix V(p) = (v(p. €, 7))een.je . and satisfies
the condition v(p.§,7) = 0if £ ¢ D (E(H)).

The full matrix of payoffs W (p, q) is the (D x J)-matrix with entries

UJf(p, q)(&*]) = U(p;f,j) - 5§§(J)QJ
where 8¢ ¢ = Lif € = & and 6¢ ¢ = 0 otherwise.

So, for a given portfolio 2 € R” (and given prices (p, ¢)) the full flow of
returns is Wr(p, ¢)z and the (full) financial return at node € is

(Wrp.a)2(€) == Wr(p,0,€) 052 =Y v(p.&.5)21 — Y Oeeiy 52

jeJ j€d

= Z U(p,g,j)zj - Z quj.

{7t | £(5)<€} {7t | €i)=¢}
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and we shall extensively use the fact that, for A € RP, and j € J, one has:

Qn  ['Wrpq =D MOV E.5) = ) MEe.es)
€€D cep
= > MEUP.EJ) = MEG)gs-
3236)

In the following, when the financial structure F remains fixed, while only
prices vary, we shall simply denote by W (p,q) the full matrix of returns. In
the case of unconstrained portfolios, namely 7t = RY, for every ¢ € I, the
financial asset structure will be simply denoted by F = (J, (£(§))jes. V).

2.4 Financial equilibria

2.4.1 Financial equilibria without retrading

We now consider a financial exchange economy, which is defined as the
couple of an exchange economy £ and a financial structure F. It can thus be
summarized by

(57 ]:) = UD), H, 1 (‘Yi‘ Pi? ei)iEI; J, (Zi)iEIa (5(3))]6] V} .
Given the price (p, ¢) € RY x R, the budget set of consumer i € I is?
Br(p.q)={(a".2)e X' x Z":
7€ €D, p(&) ex [xi(i) — (O] < Wr(p.q)2'](6)}
={(z'.z) e X' x Z": pO(2' —¢') < Wr(p,q)2'}.
We now introduce the equilibrium notion.
Definition 2.2. An equilibrium of the financial exchange economy (£, F) is
a list of strategies and prices (Z,z,p,q) € (RY)! x (R7)! x RF\ {0} x R’
such that
(a) for every i € I, (T',2") maximizes the preferences P in the budget set
BY%-(p, q), in the sense that
(z',2") € B%(p,q) and [P'(z) x Z'] N B%(p.q) = 0:
(b)S. 2= etand 5 2 = 0.
iel i€l el
In the Appendix we will show that the above definition is more general
than the usual concept widely used in the literature (see for example Magill-
Quinzii [23]). In particular, if we additionally assume that every asset of the

financial structure F can be retraded at each node, the previous equilibrium
notion coincides with the standard concept.

2Forz = (2(£))een. p = (p(E))een in RY = RY*> (with 2(€), p(&) in R ) we
letp Oz = (p(€) o1 2(€))een € B,
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2.4.2 No-arbitrage and financial equilibria

When portfolios may be constrained, the concept of no-arbitrage has to
be suitably modified. In particular, we shall make a distinction between the
definitions of arbitrage-free portfolio and arbitrage-free financial structure.

Definition 2.3. Given the financial structure F = (J,(Z%)ier. (€(4))jes. V),
the portfolio ' € Z' is said to have no arbitrage opportunities or fo
be arbitrage-free for agent i € I at the price (p,q) € RF x R” if there
is no portfolio z' € Z' such that Wx(p,q)z' > Wr(p,q)Z', thar is,
(Wr(p,q)2Y(€) > [We(p,q)2')(€), for every € € I, with at least one strict
inequality, or, equivalently, if

Wx(p,q) (Z' — ) NRE = {0}

The financial structure F is said to be arbitrage-free ar (p, q) if there exists
no porifolios z* € Z' (i € 1) such that We(p. q) (Xicr2') > 0, or, equiva-

lently, if:
Wi( <Zz>m&£ = {0}.

i€l

Let the financial structure F be arbitrage-free at (p, ¢), and let 2 € Z?
(i € I such that Ziel 7l = 0, then it is easy to see that, for every i € I, Ziis
arbitrage-free at (p, ¢). The converse is true, for example, when some agent’s
portfolio set is unconstrained, that is, when Z* = R for some s € I,

We recall that equilibrium portfolios are arbitrage-free under the following
Non-Satiation Assumption:

Assumption NS (/) Forevery 7 € [[,.; X' suchthat > ., 2" =3 ; e'
(Non-Satiation at Every Node) for every § € D, there exists z € [[,.;
such that, for each §’ # &, x e =1 (f yand z° € P'(%);
(i) if ' € P(z), then [z*, 7| C P'(Z).

Proposition 2.1. Under (NS), if (Z,2,p,q) is an equilibrium of the economy
(E.F), then Z' is arbitrage-free at (’ q) foreveryi € I.

Proof. By contradiction. If, for some ¢ € I, the portfolio 2¢ is not arbitrage-
free at (p. ), then there exists z* € Z* such that Wx(p, q)z* > Wr(p,§)z',
namely [Wx(p. q)z'](€) > [Wx(p. §)2%)(€), for every & € D, with at least one
strict inequality, say for 5 eD.

Since y_,.,(Z' — ¢') = 0, from Assumption (NS.i), there exists z €
[I,c; X' such that, for each £ # &, x'(§) = 7'(€) and 2* € P'(Z). Let us
consider A € ]0. 1] and define x%, := Az’ + (1 — A\)Z'; then, by Assumption
(NS.iD), 2, € |zt, Z'[ C Pi(%).

In the following, we prove that, for A > 0 small enough, (2, ,zl)
B (p. 7). which will contradict the fact that [P'(z) x Z'] N B&(p.q) =
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(since (Z.z,p,q) is an equilibrium). Indeed, since (z'.z') € Bi(p,q), for
every £ # £ we have:
(&) o [24(€) — €'(&)] = P(E) o [Z°(€) — €'(€))]
< Wr(p,9)2'1(€) < Wr (P, 0)2')(€).

Now, for £ = £, we have

() en [2(€) = €'(©)] < Wr (5. 9)2'](§) < [Wr(p.9)2')(9)-

But, when A — 0, r; — 7%, hence for A > 0 small enough we have

p&) op [23(€) — €' (§)] < W (D, 9)2'](E).
Consequently, (73, 2") € Br(p.q). O

2.4.3 A characterization of no-arbitrage with constrained portfolio sets
When the portfolios sets may be constrained, the following theorem extends
the standard characterization result of no-arbitrage in terms of state prices.

Theorem 2.1. Let F = (J.(Z)ic1.(£(5))jes. V), let (p.q) € RE x RY,
fori € I, let 21 € Z', assume that Z' is convex and consider the following
statements:

(i) there exists \' = (X(€))een € RY such that 'Wx(p, g\ € Nz (2%),}

or, equivalently, there exists 1 € Nz (2") such that:

N(EGN g = Y NEw(p.&.5) =y forevery j € J;
ESE(H)

(ii) the porifolio z* is arbitrage-free for agent i € I at (p, q).
The implication [(i) = (ii)] always holds and the converse is true under the
additional assumption that Z' is a polyhedral set*.

The above Theorem 2.1 is a consequence of Theorem 5.1, stated and proved
in the Appendix, the main part (i.e., the existence of positive node prices A!(£))
being due to Koopmans [19].

3 We recall that N,i(2") is the normal cone to Z' at z', which is defined as
Ny(z)y:i={neR :ne;2' >ne; (). V() € Z'}.

4 A subset C' C R" is said to be polyhedral if it is the intersection of finitely many
closed half-spaces, namely C = {z € R" : Ax < b}, where Aisareal (m x n)-
matrix, and b € R™. Note that polyhedral sets are always closed and convex and
that the empty set and the whole space R™ are both polyhedral.
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3. Existence of equilibria

3.1 The main existence result

Our main existence result allows agents to have constrained portfolios, that
is, we do not assume that Z° = R7. We shall allow the financial structure
to be general enough to cover important cases such as bounded assets (as in
Radner [32]) and nominal assets; our approach however does not cover the
general case of real assets which needs a different and specific treatment. Let
us consider the financial economy

(5“7:) = [Dv H. I, (Xl Pia ei)iEI; Ja (Zi)iéla (f(j))jeh V]-
We introduce the following assumptions:
Assumption (C) (Consumption Side) Foralli € I andall T € HZ.E 1 X g

(i) X'is aclosed and convex subset of RL:

(i) the preference correspondence P, from ||
tinuous® and P*(Z) is convex;

(iii) for every z' € PUZ) for every (2')! € X', (2/)! # 2, [(2'),2'[ N
Pi(z) # 0;°

(iv) (Irreflexivity) T* ¢ P'(Z);

(v) (Non-Satiation of Preferences at Every Node) if 3, ' = Y, €', for
every & € D there exists x € [[;.; X' such that, for each & # &,
(&) =7(¢') and = € P'(T);

(vi) (Strong Survival Assumption) €' € int X*.

el X' 1o X, is lower semicon-

Assumption (F) (Financial Side)

(i) The application p — V(p) is continuous;
(ii) forevervi € I, Z' is a closed, convex subset of R” containing 0;
(iii) there exists iq € I such that 0 € int Z'°.

We now state the last assumption for which we need to define the set of
admissible consumptions and portfolios for a fixed A € R?H, that is,

B()) = {(m.z) €MLe; X' x[Lie; 2+ 3(pyq) € BL(0,1) x R,
‘We(p.g)A € B;(0.1), (z',2") € Bx(p,q) foreveryi € I,
Lier® = Vier € Yier ' = 0}~

5A correspondence ¢: X — Y is said to be lower semicontinuous at o € X if,
for every open set V' C Y such that V' N p(z0) is not empty, there exists a neigh-
borhood U of zp in X such that, for all z € U, V n () is nonempty. The
correspondence ¢ is said to be lower semicontinuous if it is lower semicontinuous
at each point of X.

® This is satisfied. in particular, when P*(Z) is open in X* (for its relative topology).
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Boundedness Assumption (B)y) The set B(A) is bounded.

In the next section Assumption (B,) will be discussed and we will give
different important cases in which it is satisfied.

Theorem 3.1. (a) Let (£.F) be a financial economy satisfying Assump-
tions (C), (F), let A € RE+ satisfying (By), and let i¢ € I be some agent
such that O € int Z%. Then there exists an equilibrium (Z,2,p,q) of (€,F)
such that, for every £ €D, 5(€) # 0 and

Wr(p, )M € Nz (2,

or, equivalently, there exists 1] € Nz, (2°) such that

MEGNTG = D MEW(P.E.5) — 0y forevery j € J.
£>£(5)
(b) If moreover ' € int Z', then *Wx(p, §)A = 0, or, equivalently,
NEDNT = 3 NQ(p.€.9) forevery j €,

£>€(7)

hence the financial structure F is arbitrage-free at (p, G).

The proof of Theorem 3.1 will be given in the following section. From Theo-
rem 3.1 we deduce directly the standard existence result in the case of uncon-
strained portfolios.

Corollary 3.1. [Unconstrained portfolio case] Let (€, F) be a financial econ-
omy and let A € REJF be such that Assumptions (C), (F) and (B)y) hold and
7' = R’ for some i € 1. Then (€, F) admits an equilibrium (Z,%,p,q) €
[Tic; X' x [Tie; 2" x RE X R such that, for every € € D, j(€) # 0 and

‘W(p.g)A =0,
or, equivalently,

MEGNT = D> ME(P.€.7) forevery j € J.
£>£(7)

3.2 Existence for various financial models

We first state a proposition giving sufficient conditions for Assumption (5))
to hold. We recall that an asset j is said to be short-lived, when the payoffs are
paid only at the immediate successors of its emission node, that is, formally,
for every spot price p € RE, v(p,£,7) = 0if & ¢ £(5)F. An asset is said to be
long-lived if it is not short-lived. A financial structure is said to be short-lived
if all its assets are short-lived; it is said to be long-lived if it is not short-lived.
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Proposition 3.1. Ler )\ € RE + be fixed and assume that, for everyi € I, X' is
bounded from below. Then Assumption (B)) is satisfied if one of the following
conditions holds:

(i) [Bounded Below Portfolios] for every i € I, the portfolio set Z* is bounded
from below, namely there exists z* € =R such that Z' C z* + R,

(ii) [Rank Condition for Long-Lived Assets] for every (p,q,n) € Br(0,1) x
R’ x B;(0,1) such that "W (p, q)A = 1, then rank W (p, q) = #J.

(iii) [Rank Condition for Short-Lived Assets] F consists only of short-lived
assets and rank V (p) = #.J for every p € R”.

The proof of Proposition 3.1 is given in the Appendix.

We now deduce from Proposition 3.1 and the main existence Theorem 3.1,
the following existence result of equilibria in the case of bounded portfolios
due to Radner [32].

Corollary 3.2. [Bounded from below portfolio sets] Let (£,F) and X € ]KDH
satisfy Assumptions (C), (F) and assume that, for every i € I, X* is bounded
from below and Z' C ' + R'fmu where 2¢ € —Ri. Then there exists an
equilibrium (2,%2,9.4) € [l;c; X* % [L;e; Z° x R x RY of (€, F), such
that, for every £ € D, p(£) # 0 and

"W (p,d)A < 0and the equality holds for each component j such that 2} > g;

or, equivalently,

forevery j € J. NEGNT 2 Y ME(B. €, j). with equality if 72 > 1.
§>¢(7)

We end this section with the case of short-lived assets, which is a natural
generalization of the classical two-date model (7' = 1) that has been exten-
sively studied in the literature due to its simple tractability (see the Appendix
for several important properties of the two-date model that are still valid in the
case of short-lived financial structures).

Corollary 3.3. [Short-lived nominal assets] Let us assume that the economy
(&, F) satisfies Assumption (C), X' is bounded from below, for every i € I,
F consists of nominal short-lived assets and assume that one of the following
conditions holds:

(i) [unconstrained case] Z* = R” for everyi € I;

(ii) [constrained case] Z" is a closed and convex subset of RY containing 0;
0 € int Z% for some iy € I; rankV = g.J.

Forevery A € RE |, (€, F) admits an equilibrium (
[Tic; 2" x R x RY such that, for every € € D, p(¢
arbitrage price associated to A, that is

z, ﬁa(j)EHi,GIXiX
) # 0 and § is the no-

z,
”
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W)X € Nyio(2)  (resp. "W (@) = 0, under (i),

or, equivalently, there exists ) € N i, (21) (resp. 7j = 0, under (i)) such that

MEGNT = Y. MEW(E5) — 7 forevery j € J.
Leeg(i)t

Proof. Let v := rank V. We can define a new financial structure F' with
r nominal assets by eliminating the redundant assets. Formally, we let J* C J
be the set of r assets such that the columns (V(j)),e are independent and
V" the associated return matrix. The new financial structure is

Fo= (T (€0G)jes V).

Then rank Wz (q) = r since, by Proposition 5.2, r = rank V' < rank Wr (q)
(< min{r, D}). Consequently, by Proposition 3.1, the set B(\) is bounded.
From the existence theorem (Corollary 3.1), forevery A € RY | there exists

an equilibrium (z. 2’. 5, ¢') of (€, F’) (where ¢ € R” and 2’ € (R’")!) such
that ‘Wx (¢')\ = 0 or, equivalently,

MEGNT = Y. Mg €.
greg(y)t

(E.F), by defining g € R” as W (g)A = 0, that is
MeGNT = Y MEwlE €0))s
£ret(it

forevery j € J,and 2 € R7 as 2} = 27/, if j € J',and 2} = 0,if j € J\ J'.
O

4. Proof of the main result

4.1 Proof under additional assumptions

In this section, we shall prove Theorem 3.1 under the additional assumption
Assumption (K) For everyi € I,

(i) X' and Z* are compact;
(ii) [Local Non-Satiation] for every T & [L,e; X0 for every z' € Pi(z)
then [2', 7] C P'(Z).
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4.1.1 Preliminary definitions
In the following we fix some agent 7y, say 7gp = 1, for whom the assumption
0 € int Z' is satisfied and we fix A = (A(£))een € RE . We recall that for
(p.n) € RE x R, the vector ¢ = q(p,n) € R’ is uniquely defined by the
equation

We(p.g)A—n=0,

which, from Theorem 2.1, is equivalent to saying that

]
() = ———— AEW(p.E5) —my | f e .
4P = Sy :L;n (&)v(p.&.5) —n, | forevery j €

and, from Assumption (F), the mapping (p,n) — ¢{p.n) is continuous. For
(p.n)intheset B := {(p,n) e RE xR’ : [AOp| < 1. ]| < 1}, we define

p(p-n) = max{0.1 —[]ABp| — I}

Following the so-called Cass’ trick, hereafter, we shall distinguish Con-
sumer 1 from the other agents, and we shall extend the budget sets as in
Bergstrom ([2]). In the following, we let 1 = (1,....1) denote the element

in RP, whose coordinates are all equal to one. For (p,n) € B, we define the
following augmented budget sets: first, for ¢ = 1,

5 (p.m) ={l‘1 eX': (AOp)ep(z' —e') < sup neyz+p(p.n) ZA(O}»
z€Z? cen

al(z?*fl):{ﬂf1 €X' (AOp)er(z' —e') < sup neyz+p(p.n) > A(E)}-
€71
£el

and forz # 1

Fp.n)={("2)eX xZ:pO(z' =€) <Wr(p.q(p,n)="+ plp.n)1},
al(pn)={(=".2") €X' x Z"':pO(a' = ") < Wr(p,qlp. )"+ p(p. n)1}.

We now define the following enlarged set of agents denoted Iy, by considering
all the agents in ¢ € I\ {1}, by counting twice the agent 1, denoted by i = (1, 1)
and i = (1, 2) and by considering an additional agent denoted i = 0. The addi-
tional and fictitious agent ¢ = 0 is traditional and will fix the equilibrium prices
(p, ) and the agent i = 1 has been disaggregated so that i = (1, 1) will fix the
equilibrium consumption Z! and i = (1, 2) will fix the equilibrium portfolio 2!
(which thus can be chosen by two independent maximization problems). For
(z.2,(p,n) € [Tie; X' x [1ie; Z' x B, we define the correspondences &'
for i € I as follows:
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®°(z,z.(p.n))

- {<pcn'> eB

S PNOEHE) - pe) on X (w'(6) - ¢'©)]

£eD iel

_(n/—n).JZZi>O},
el
3 (p.n) if ' ¢ 3'(p.n).
Wiz 2. (p.n) =
o (.2 (pm) {al(p, n) N PHx) if 2t € 8 (p. 7).

'z, z.py)={z"€Z" |ne; 't >ne;2t},
and foreveryi € I, i # 1

{(e",0)}  if (z%,2") € B'(p.m) and o'(p,n) =0,
Oz, 2, (p.n) = § Bp.y)  if (& )¢3‘( .n) and o'(p.n) # 0.
a'(p.n) N (P(x) x ZZ) f(z*.2') € 8'(p.n).

4.1.2 The fixed-point argument
The existence proof relies on the following fixed-point-type theorem due to
Gale and Mas Colell ([17]).

Theorem 4.1. Let Iy be a finite set, let C* (i € 1)) be a nonempty, compact,
convex subset of some Euclidean space, let C = [];; C* and let D' (i € Ip)
be a correspondence from C to C*, which is lower semicontinuous and convex-
valued. Then, there exists ¢ € C such that, for every i € I [either ¢ € ®'(c)

or ®(2) = 0].

We now show that, fori € Iy, the sets C¥ = B, ¢t = X1 V2 = 71
C' = X' x Z' and the above defined correspondences ®' (i € I;) satisfy the
assumptions of Theorem 4.1.

Claim 4.1. Forevery ¢ := (2, 2.(p. 1)) € [1,e; X' x [lie; Z’ x B, for every
i € Iy, the correspondence ®* is lower semicontinuous at ¢, the set '(c)
is convex (possibly empty) and (p.7) ¢ ®°(c), z* ¢ ®11(¢), ! ¢ !12(¢),
(7.2°) ¢ ®UC) fori > 1.

Proof. Let ¢ := (%,2.(p,7)) € [[,e; X* % [l ,e; Z* x B be given. We first
notice that ®*(¢) is convex for every i € I, recalling that P*(Z) is convex, by
Assumption (C). Clearly, (5, 7) ¢ ®°(¢) and z' ¢ ®'2(¢) from the definition
of these two sets; the two last properties 21 ¢ ®'(¢) and (5. 37) ¢ ®i(c c)
follow from the definitions of these sets and the fact that &’ gé Pt(z) from
Assumption (C).

We now show that ¢ is lower semicontinuous at ¢.
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Step 1: ¢ € 1,7 > 1. Let U be an open subset of X* x Z* such that
®L(E) N U ;é . We will distinguish three cases:
Case (i): (z'.2%) ¢ 3'(p.7) and o*(p.7) = 0. Then ®(2) = {(e’,0)} C U.
Since the set {( L2 (pom)) | (2%, 2Y) € B'(p.n)} is an open subset of X* x
7% x B (by Assumptlons (C) and (F)), it contains an open neighborhood O of ¢.
Now, let ¢ = (z,2,(p.n)) € O.If a*(p,n) = @ then ®*(c) = {(e!,0)} C U
and so ®'(c) N U is nonempty. If a'(p,n) # 0 then ®*(c) = 5'(p,n). But
Assumptions (C) and (F) imply that (e', 0) € X' x Z, hence (¢',0) € 3'(p.n)
(noticing that p(p. ¢) > 0). So {(e?,0)} C ®i(c) N U which is also nonempty.
Case (ii): ¢ = (2°.2.(p.7)) € Q@' = {c = (x', 24 (p.m)) = (x',2%) ¢
3*(p.n) and o*(p,n) # 0}. Then the set Q¢ is clearly open and on the set ¢
one has ®'(c¢) = 3'(p.n). We recall that § # ®*(c) N U = B(p,7) N U. We
notice that 3'(p, 7j) = cla’(p, 77) since o' (B, 17) # (. Consequently, o (B, 77) N
U # 0 and we choose a point (z',2') € o' (p,7) N U, that is, (z%,z%) €
(X' x Z1NU and

PO —e) < We(p.q(p, 1)z + p(p. i)l

Clearly the above inequality is also satisfied for the same point point (z?, z?)
when (p,n) belongs to a neighborhood O of (p,#) small enough (using the
continuity of ¢(-,-) and p(-, )) This shows that on O one has ) # o'(p.7) N
UCBp.nnU=o(c)n

Case (iii): (7', 2') € 84(p, ) By assumption we have

7
0#@(@ONU=a'(p.gN[P(z)x Z'|NU.

By an argument similar to what is done above, one shows that there exists
an open neighborhood NV of (p.§) and an open set A such that, for every
(p,n) € N,onehas ) # M C o'(p,n)NU. Since P’ is lower semicontinuous
at z (by Assumption (C)), there exists an open neighborhood (2 of  such that,
forevery z € 0, 0 # [P'(x) x Z'] N M, hence

0 #[P'(x)x Z'Nna'(p.n)nU C 3 (p.n)NU. forevery z € Q.

Consequently, from the definition of ®¢, we get § # ®*(c)NU, forevery ¢ € Q.

The correspondence ¥ := o' N (P! x Z') is lower semicontinuous on
the whole set, being the intersection of an open graph correspondence and
a lower semicontinuous correspondence. Then there exists an open neighbor-
hood O of & := (&, %,(p, 7)) such that, for every (z.z.(p.n)) € O, then
UNWi(z,z (p.n)) # dhence § # UN®(x. 2. (p.n)) (since we always have
(.2, (p.n) C ' (x.2.(p.0)))-

Step 2: i = (1,1). The proof is similar to the first step and more standard.
We only check hereafter that the case a'(p,n) = @ never holds. Indeed, we
will consider three cases. If 7 # 0 then 0 < max{ne; z* | 2} € Z'} since
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0 € int Z' (by Assumption (F)). So e! € al(p,7n) since el € X! (by As-
sumption (C)). If = 0 and p = 0, then p(p,n) = 1 and again ' € o*(p, 7).
Finally, if = 0 and p # 0, then ¢! — t(A O p) € o'(p,n) for t > 0 small
enough since e! € int X! (by Assumption (C)).

Step 3:1 = 0and i = (1.2). Obvious. O

For i = 0, for every (p,n) € B, in view of Claim 4.1, we can now
apply the fixed-point Theorem 4.1. Hence there exists ¢ := (Z, 2, (P, 1] )
[Le; X¢ x [Le; Z° x B such that, for every i € Iy, ®(Z. %, (}3, 7)) =

Written coordinatewise, this is equivalent to saying that:

(4.1) AOpjeL Y (& —¢)—nes > 7

i€l icl
< (AT oL Y (F(E) —€'(§)—nesy 2

i€l icl
fori = (1,1)
4.2) zh e ' (p.n) and o' (p,7) N PH(z) =0,
fori = (1,2)
(4.3) fe;il =max{ne;z' |zt € Z'};
for the remaining i
(4.4) (z,2") € 3'(p,7) and o' (p,7) N (P(2) x Z') = 0.

From now on we shall denote simply by W the full matrix of returns Wz (5. )
associated to the spot price p and to the asset price q = q(p, 7).

We recall that, from Theorem 2.1, § = q(p.7) is the unique vector § € R’
satisfying
VA =7

Since, by (4.2), 2! € Bl(ﬁ, 77), using (4.3), one deduces that

@5 (AOp)es(z' —e) =) AP zH€) — e (€)
£eb
<ne;z +p(p Z)\
£eh

and, for every i # 1, since (z°, 2') € 8%(p, ), by (4.4),
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(4.6) pO(E —€') < Wz + p(p. D)l

Taking the scalar product with ) and recalling that ‘WA = 7 from the defini-
tion of W, we conclude that, for ¢ 1,

STNEPE) on (F(8) — €'(€) — p(B,) | D AE)

el £eb
<Aep W2 =['WAe; 2 =re, 7.

Hence, summing over ¢ € I we have proved the following claim:

Claim 4.2. (A\Op)er "o (T'—€') < 7oy e 2 +#I (P eep AE)) (B, 7).
and the equality holds if the equality holds in (4.5) and (4.6).

Claim43. Y, 2 =0and }_, ., & =3, €.

Proof of Claim 4.3. From Assertion (4.1) (taking successively p = pand n =
i), we get:

4.7 ey Zéi <ney Zéi for every n € R”, il <1,
il iel

(4.8) (ADp)er ) (z'—e)<(ADp)ep » (7' —¢)
iel el
forevery p € RY, A0 p| < 1.

We first prove that >, z' =0 by contradiction. Suppose it is not true,

from (4.7) we deduce that ﬁ:_ZHlZi’HZL_ Hence |7l =1, p(p,7) :=

max{0,1 — [A0p|l — |7} =0ande; > .., 2 < 0. Consequently, from
Claim 4.2 one gets:

AOpjery (F—¢)<nes ) 2 +0<0,

el i€l

But, from inequality (4.8), (taking p = 0) one gets

0<(ADp) oL Y (2 =),
el

a contradiction with the above inequality. O

In the same way we now prove the second equality >, (' — ') = 0 by
contradiction. Suppose it is not true, from (4.7) we deduce that 0 < (AOp) ey,
S (@ =), [INDpI| = 1andso p(. 7) = max{0. 1 - IADp]| - [17]f} = 0.
Consequently, from Claim 4.2, recalling from above that j ,_; 2 = 0 one gets
the contradiction:
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0<(AOp) e Y (z'—€)<ne; > 2+0=0 0
el i€l

Claim 4.4. 7' € 3'(p,7) and 3 (p,7) N P1(Z) = 0.

Proof of Claim 4.4. From the fixed-point condition (4.2), ' € 3'(p, 7). Now
suppose that 3'(p, 1) N PY(Z) # 0 and choose 2! € 3*(p,7) N P(Z).

We know that o} (5. 77) # @ (see the second step in the proof of Claim 4.1),
and we choose 71 € a’(p, 7). Suppose first that 7! = z!; then, from above
z' € PYz) N al(p.7), which contradicts the fact that this set is empty by
Assertion (4.2). Suppose now that ! # !, from Assumption (C.iii), [z!, z![N
PU(E) # 0 (recalling that z* € P'(z)) and clearly [#',2*[ C a’(p,7) (since
2! € 8Y(p.7) and ' € o!(p, 7)). Consequently, PL(Z)Na'(p.7) # 0, which
contradicts again Assertion (4.2). O

Claim 4.5. (a) For every £ € D, p(§) # 0.
(b) Foralli # 1, (z',2") € 3%(p,n) and 3'(p, ) N (PY(Z) x Z*) = 0.

Proof of Claim 4.5. (a) Indeed, suppose that p(¢) = 0, for some £ € D. From
Claim 4.3, 3°,.; 7 = >, €', and from the Nen-Satiation Assumption at
node £ (for Consumer 1) there exists z* € P!(Z) such that 2 (¢") = z'(¢’) for
every £ # & from Assertion (4.2), 71 € 3'(p, 7j) and, recalling that p(¢) = 0,
one deduces that z! € 31(p, 7). Consequently,

84 (p, ) N PHz) # 0,

which contradicts Claim 4.4.
(b) From the fixed point condition (4.4), for i # 1 one has (z'.2') € 8'(p, 7).
Now, suppose that there exists i # 1 such that 3'(p,7) N (P'(z) x Z') # 0
and let (z', 2%) € B'(p.7) 0 (P(Z) x Z'). From the Survival Assumption and
the fact that 5(£) # 0 for every & € D (Part (a)), one deduces that o (p, 77) # 0
and we let (2, 2) € a'(p. 7).’

Suppose first that ' = 2, then, from above (z'.z%) € [P'(Z) x Z'] N
a'(p, 1), which contradict the fact that this set is empty by Assertion (4.4). Sup-
pose now that * # x’, from Assumption (C.iii), (recalling that z* € P'(z)) the
set [Z*, '[N P?(Z) is nonempty, hence contains a point z*(\) := (1-A)Z'+ Az’
for some A € [0,1[. We let 2'()) := (1 — A\)2* + Az and we check that
(z'(N).2'(N) € a'(p.7) (since (z',2") € 5'(p.7) and (z'.2) € a'(p.7)).
Consequently, a'(p.7) N (PY(%) x Z') # 0, which contradicts again Asser-
tion (4.4). ]

Claim 4.6. p(p,7) = 0.

" Take z' = 0 and ' = €' — tp for t > 0 small enough, so that ' € X* (from
the Survival Assumption). Then notice that p O (T* —€') = —(p 0 p) € 0 <
0+ p(p, )L
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Proof of Claim 4.6. We first prove that the budget constraints of consumers
1 € I, i # 1, are binded, that is:

4.9) pO(z' —e') =Wz + p(p, )], forevery i # 1.
Indeed, if it is not true, there exist ¢ € 7, ¢ # 1 such that
pO(E —e') <WE +p(p, M,

with a strict inequality for some component { € D. But ., , 7' = >, €'
(Claim 4.3) and from the Non-Satiation Assumption at node £ (for con-
sumer 1), there exists z° € P(Z) such that 2¢(¢') = z'(¢’ ) for every &' # €.
Consequently, we can choose = € [z*, Z'[ close enough to Z* so that (ac ') €
B4(p,n). But, from the Local Non-Satiation (Assumption (K.ii)), [z, #![ C
P*(z). Consequently, 3'(p, 7)N(P*(z) x Z*') # @ which contradicts Claim 4.5.

In the same way, we prove that the budget constraint of Consumer 1 is
binded. Consequently, from Claim 4.2, using the facts that >_, ., (' —¢’) = 0
and ) .., Z' = 0 (by Claim 4.3) one has

O=(AOp) ey (T —e)—ne; > 2 =#I| > X&) | p(B.7).

iel i€l gclh
Since 3¢ A(§) > 0, we conclude that p(p, 7) = 0. 0

Claim4.7. For every i€ 1, (3'.z2') € B(p.4) and [P(Z)x Z'] N
B (5.q) = 0.

Proof of Claim 4.7. Since p(p,n) = 0 (From Claim 4.6), for every ¢ # 1,
Bi=(p.q) = 3'(p.q). Hence, from Claim 4.5 we deduce that Claim 4.7 is true
for every consumer i # 1.

About the first consumer, we first notice that Bx(p.§) C 3(p.7) x Z1.
So, in view of Claim 4.5, the proof will be complete if we show that (z!, 2!} €
BL(p.q). But since the budget constraints of agent i € I, i # 1, are binded
(see the proof of Claim4.6), >, (z' —e') = 0and }_,_, ' = 0(Claim 4.3),
we conclude that

pO (T — et ZpD:r—e ZITZ“WZ
i#1 i#1
which ends the proof of the claim. O

4.2 Proof in the general case

We now give the proof of Theorem 3.1, without considering the additional
Assumption (K), as in the previous section. We will first enlarge the strict pre-
ferred sets as in Gale-Mas Colell, and then truncate the economy £ by a stan-
dard argument to define a new economy &,, which satisfies all the assumptions
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of £, together with the additional Assumption (K). From the previous section,
there exists an equilibrium of &, and we will then check that it is also an equi-
librium of €.

4.2.1 Enlarging the preferences as in Gale-Mas Colell
The original preferences P! are replaced by the “enlarged” ones P defined as
follows. Forevery i € I, Z € [],c; X" we let

Piz)y:= |J J&' 2= {2 +i=' -2 [te]0.1]. ' € P(D)}.
riEPi(Z)

The next proposition shows that P satisfies the same properties as P?, for ev-
ery i € I, together with the additional Local Non-Satiation Assumption (K.ii).

Proposition 4.1. Under (C), for every i € I and every T € Hie] X one has:

(i) Pi(z) C P(z )cXZ

(ii) the correspondence Pt is lower semicontinuous at T and Pz( ) is con-
vex;

B (iii) for every y' € P'(Z) for every (2')" € X', (2')'  y' then [(z')". y'[N

i) £0:

(iv) z* ¢ P'(%);

(v) (Non-Satiation at Every Node) if >_,.; &' =Y, €', forevery § € D,
there exists v € [[;c; X" such that, for each §' # &, (&) = 74(¢') and
z' e Pi(z);

(vi) for every y' € P'(Z), then [y, T'] C P'(Z).

Proof. Letz € HleIXi andlet: € I.
Part (i). It follows by the convexity of X', forevery i € I.
Part (ii). Let y’ = Pi(z) and comlder a sequence (Zn)n C [lie; X converg-
ing to z. Since y' € PY(Z), then y' = Z' + t(z' — &*) for some 2’ € P'(%)
and some ¢ € 10.1]. Since Plis lower semicontinuous, there exists a sequence
(z},) converging to " such that z;, € P'(Z,) for every n € N. Now define
y, = T+ t(xl, — &) € ]J: %] then y!, € P'(En) and obviously the
sequence (') converges to y*. ThlS shows that P is lower semicontinuous
at 7.

To show that P*(Z) is convex, let yi. yh € P'(Z),let Ay > 0, A2 > 0, such
that \; + Ao = 1. Then y. = ' + te(xl — &) for some t;, € ]0,1] and some
zt € P'(z) (k = 1. 2). One has

My A+ doyh = T+ (Mg + Aata) (2 — 2°),

where 2 1= (At12} + Aotoxh)/ (Mt +Aata) € P'(Z) (since P'() is convex,
by Assumption (C)) and A;¢1 + Aate € |0, 1]. Hence Ayt 4+ Aoyl € P (z).
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Part (iii). Lety € Pi(z) and let (z ) € X', (/)" # y*. From the definition of
Ply =5 tt(rt -3 )f orsome z' € Pi(z)and some t € 0, 1]. Suppose first
thatz* = (2')’, theny? € 7%, z*[ C P'(Z). Consequently, [(z’), y*[NP'(z) #
(0. Suppose now that ¢ # ( ’)i; since P* satisfies Assumption (C.iii), there
exists A € [0, 1] such that 2°(A) = (')’ + A(z? — (2')!) € P¥(z). We let

=M1 =)z + (1 - \) (@) + thz']/a with a =t + M1 —1t),

and we check that z = [A(1 — )2 + tz'(\)]/a € ]2°, 2°(N\)], with 2°(\) €
Pi(F), hence 2 € P*(T). Moreover, z := [y’ + (1= A)(z)]/ex € [(2')', ']
Consequently, [(z')?,y'[ N P¥(Z) # 0, which ends the proof of (iii).

Parts (iv), (v) and (vi). They follow immediately by the definition of P and
the properties satisfied by P* in (C). o

4.2,2 Truncating the economy
We now define the “truncated economy” as follows.

Foreveryi € I, A € R?, we let X%(A) and Z'()) be the projections of
B()\) on X' and Z°, respectively, namely

X'()\) = {.I‘i EXiZ 3(1‘j)j¢7‘ GHXj. Jz € HZj« (I‘.Z) GB(/\)}

j#i iel

and

ZHN) = {z €Z':3()me|[[Z. e[ X (x.2) € B(/\)}.

G il

By Assumption (By), the set B()) is bounded, hence the sets X'()) and
Zi(X) are also bounded subsets of RZ and R, respectively. So there exists
a real number r > 0 such that, for every agent i € I, X*(\) C int B.(0,7)
and Z'(\) C int B;(0, 7). The truncated economy (£,.. F,.) is the collection

(& Fo) = [DH LX) PLeier 1 (Z)ier (€0))jen V],

where, for every x € [],.; X*

X! =X'NBr(0,7), Z! = Z'0nB;(0,7) and P!(x) = P'(x)Nint BL(0.7).

The existence of equilibria of (5 JF) is then a consequence of Section 4.1,
that is, Theorem 3.1 with the additional Assumption (K). We just have to check
that Assumption (K) and all the assumptions of Theorem 3.1 are satisfied by
(€. F,). In view of Proposition 4.1, this is clearly the case for all the assump-
tions but the Survival Assumptions (C.vi) and (Fiii), that are proved via a stan-
dard argument (that we recall hereafter).
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Indeed we first notice that (e,0);c; belongs to B()), hence, for every
i €1, ¢ € X{(\) C int BL(0,r). Recalling that ¢! € int X' (from the
Survival Assumption), we deduce that e! € int X* N int B.(0,7) C int[X* N
B(0.7)] = int X?. Similarly, for every i € I,0 € Z'()\) C int B;(0.7).
Consequently 0 € Z! = Z*N B,;(0,r). Moreover, for some ¢y € I one has 0 €
int Z% (by Assumption (F.iii)), and, as above, 0 € int B;(0.r). Consequently,
0 € int[Z% N B;(0,7)] = int Z'.

The end of the proof of Theorem 3.1 consists to show that equilibria of
(€, F,) are in fact also equilibria of (€. F), which thus exist from above.

Proposition 4.2. Under Assumption (B), if (Z,2,9.q) Is an equilibrium of
(€. F,) such that p € Br(0.1) and *W A € Nyinp,(0.1)(2"), then it is also
an equilibrium of (€, F) and "W € Nz (z').

Proof. Let (z. z,p.q) be an equilibrium of the economy (&,, F;.). In view of
the definition of an equilibrium, to prove that it is also an equilibrium of (£, F)
we only have to check that [PY(Z) x Z|N Blz(p. q) = 0 forevery ¢ € I, where
B’(p, q) denotes the budget set of agent 7 in the economy (€. }")

Assume, on the contrary, that, for some ¢ € I the set [P*(z)x Z'|NB%(p. q)
is nonempty, hence contains a couple (z°. 2%). Clearly the allocatlon (z, 2) be-
longs to the set B(A), hence for every i € I, ¥ € X*(\) C int B7(0.7) and
7 e ZY(A) C int B;(0.7). Thus, for t € 0. 1] sufficiently small, z'(t) :=
4 t(x' — 7)) € int BL(0,7) and 2(¢) := z' + (2" — z') € int B;(0.7).
Clearly (z%(t),2(t)) belongs to the budget set B=(p.q) of agent i (for the
economy (£, F)) and since z'(t) € X! := X' N BL(O r), 2(t) € ZL =
71 By(0,7), the couple (z°(t), 2'(t)) belongs also to the budget set Bl(p q)
of agent 7 (in the economy (&,.. F)). From the definition of P, we deduce that
,()EP7( )(%mcefromabover(f) =7 +t(z' — ) and 2’ € P(2)),
hence z'(t) € P!(&) := P'(Z) Nint By (0.7). We have thus shown that, for
t € ]0.1] small enough, (z*(t). 2(t)) € [PX(Z) x Z] N BL(p, §). This con-
tradicts the fact that this set is empty, since (Z, z, p. ¢) is an equilibrium of the
economy (é’,.. F).

We now prove that 7j := "Wz (p. @)X € Nzi(z!). We let 2! € Z* nd
we show that 7 e; 21 > 77 e; z!. We have seen above that 31 € Z'(\)
int B;(0.7). Then, for t > 0 small enough, z(t) = z! + #(z! — z1) 6

int B;(0.7) and z(t) € Z%, by the convexity of Z'. Consequently, for ¢ small
enough, z(t) € Z} = Z' N B;(0,r) and using the fact that n € Nz (£'). we
deduce that

1

neyzt > ey a(t)=ne; 2 +tne; (z =2,

hence ey 2z <ne;zl O
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5. Appendix

5.1 Retrading financial assets and equilibria

In this section we will show that, if every asset of the financial structure 7 can
be retraded at each node, the previous equilibrium notion coincides
with another concept widely used in the literature (see for example
Magill-Quinzii [23]).

To every asset j € J and every node &' > £(j) which is not a maturity
node® of j we define the new asset 7 = (4.&’), which is issued at ¢, and
has the same payoffs as asset j at every node which succeeds £’. For the sake
of convenient notations, we shall allow to retrade every asset j at every node
&ebh?

Throughout this section we shall assume that the portfolios are uncon-
strained, that is, Z' = R”, forevery i € I.

Definition 5.1. The retrading of asser j € J at node &' € I, denoted ] =
(j. &), is the asset issued at £, that is, £(j,€") = &', and whose flow of payoffs
is given by

U(p.€.(5,€)) = v(p. §.J), if & < &

v(p, &, (5.£)) =0, otherwise.

Given the financial structure F = (J,(€(j)) e, V), we associate a new fi-
nancial structure F = (J, €5 V), called the retrading extension of F,
which consists of all the retradings (7,£') of asset j € J atnode £’ € D. Hence
J = J x D and the D x J-matrix V(p) has for coefficients 7(p. £, (j.€')), as
defined above.

We denote by ¢,(&’) the price of asset (j,&’) (i.e., the retrading of as-
set j at node &£’), which is sometimes also called the retrading price of as-
set j at node &’. So, for the financial structure JF, both the asset price vector
q = (g;(&'));eseen and the portfolio = = (2;(£'));e.e7ep now belong to

R7*C_ Given p € RE g and 2z in R7*F the full financial return of 7 at node
£eDis

8 We recall that the maturity nodes of an asset j are the nodes £ > &£(j) such that
v(p.£.7) # 0and v(p, £',7) = O forevery & > &.

¥ In particular, if £ is a terminal node (¢ € D7) the payoff of the asset (5, £') is zero
(i.e.. ¥(p. £, (5.£")) = 0 for every £ € D). However, these assets do not affect the
equilibrium notion since, under the Non-Satiation Assumption at every Node, the
corresponding equilibrium price §; -y must be zero (otherwise it would lead to an
arbitrage situation which does not prevail at equilibrium).
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Wx(p.q)z](&)
= Y WL GENHE) - D Feeienai (€)z(E)

(7.§")€J XD (j.£)eIxD
=3 > 0. 65)2(E) = D 462 (8).
JjeJEr<g jed

We now give the definition of equilibrium which is most often used when
retrading is allowed. Given the financial structure F = (J, (£(j));es. V) and
given p € RE g € R7*P, we first define the budget set:

Br(p.g)={(a'y) € X' x RP*®:pO (' — ') < Wr(p. q)y'}
where we let, for iy = (y;(£))(j.e)esxn € R7*D.

Wr(p.q)y] ()
= 4;(&0)y;(&). =,

_ jeJ
S e £y (E) D ai(OuET) =D g€y VE£&.
JjEJ jEeJ jeJ

We recall that we have allowed the retrading of assets at terminal nodes,
for the sake of convenient notations; so we don’t need above to distinguish the
cases £ € Dy and & ¢ D71

Definition 5.2. An equilibrium with retrading of the economy & and the finan-
cial structure F = (J,(£(7))jes. V) is a collection of strategies and prices
(Z.5.9.9) € (RE) x (R7EY x REN {0} x R7*P such that

(a) for evervic I, (Z'.4") Eé}(ﬁ,q‘) and [P'(z) x R7*P] ﬁé}-(ﬁ, q)=0;

(b) > => € and ) y =0.

i€l i€l i€l

The next proposition shows that, for a given exchange economy &, equi-
libria with retrading associated to the financial structure F are in a one-to-
one correspondence with the equilibria associated to the retrading extension F
of F. The correspondence will only change the equilibrium portfolios via the
mapping : R7*F — R7*% defined by

e(2)(5,€) = Z 2(5.€"), forevery z € RI*D.
§'<¢

10 But again, at equilibrium. under a standard Non-Satiation assumption (see assump-
tion NS), a no-arbitrage argument will imply that ¢;(£) = 0if £ € Dr. So allowing
assets to be emitted at terminal nodes does not matter.
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and ¢ is easily shown to be linear and bijective.!!

Proposition 5.1. Let £ be an exchange economy, let F = (J.(&(5))jen, V)
and let F = (J. (&) e V) be the retrading extension of F. Then the two
followmg conditions are eqmvalent

(i) ( . ( (’ Vicr.0.q) is an equzlzbrlum wzth retrading of (€, F).

Proof. Since ¢ is linear and bijective, the equality ), ., z' = 0 holds if and
only if 3, ; ¢(2%) = 0. Thus the end of the proof is a consequence of the
following claim.

Claim 5.1. For every (p,q) € REF x R7*P one has
(i) for every z € R7*E, Wz (p, )z—ﬂ/f(p 7e(2);

(ii) Bi(p.q) = {(z', ") | (2", ¢(2")) € B&(p. @) }.

Proof. Part (i). For £ = &g, we have p(2)(7. &) = 2(J, &) for every 5 € J;
from the definitions of Wx(p. ¢) and Wx(p. q), we get:

[Wr(p, 9l qu €0)[(2) (7. €0)]
jeJ
==Y 4;(60)7(&) = Wa(p. 0)2)(&).
jed

For £ # &y we have

[(We(p.9)o(2)](€)

=3 u(p. £ R(D)G.E) + 3 g (00,67 = 3 4 (€)el2)(5.6)

jeJ jeJ jeJ
=Y vp&) D H(E) =D a(Op(2)(G.) - e(2)(4.€7)]
jeJ gr<e- jeJ
= Z FEN2E) =Y a3(8)2(9)
(j:€)eJ icJ
= [Wx(p. ) 2)(€)
Part (ii). It is a direct consequence of (7). O

Y 1t is easy to see that the inverse of  is the mapping v: R7*P — R7*P defined
by ©(2)(4.§) = 2(j.§) = 2(j.£7), i & # Lo, and w(2)(j. &o) = 2(J. o). if
£ =2¢o.
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5.2 Relationship between rank V= and rank W in a multi-period
model

The next Proposition shows that several properties of the two-date model also
hold in the case of short-lived financial structures. First, the list of emission
nodes (£(5)) e of the (non-zero) short-lived assets is uniquely determined by
the knowledge of the return matrix Viz(p), and, secondly, the relationship be-
tween the ranks of the matrices Viz(p) and Wx(p, g) can be simply formulated.

Proposition 5.2. For short-lived financial structures F, the following holds:

(a) if, for every j € J, V(p,j) # O, then the emission node §(j) is
uniquely determined by the knowledge of the payoff vector Vr(p, j), that is,
£(4) = €~ for every & € D such that v(p, &, §) # 0;

(b) rank Vir(p) < rank Wg(p, q) for every (p,q) € RL x RY;

(c) rank Vi (p) = rank Wx(p, q) if *Wr(p.q)A = 0 for some X € R} .

In the following, we omit the subscript 7 of the matrices Vr(p) and
Wr(p).

Proof. Part (a) is straightforward. We prepare the proofs of Part (b) and (c) by
introducing some notations and definitions. We let, for ¢ = 1,... T + 1, the
set ']t = {] eJ 1 g(]) S thl}-

We give the proof under the additional assumption that J; # @ fort € [1,T]
and Jr,1 = 0 (and we let the reader adapt this proof to the general case).
Then the sets J; (t € [1,T]) define a partition of the set J and we write every
z € R’ as z = (z) with z; € R7.. We also define the I, x J, sub-matrix
Vi +(p) of V(p) and the D; x J, sub-matrix W, -(p.q) of W(p,q),fort € T

In this ’case, the matrices V' (p) and W (p. g) can be written as follows:

7 B . Jra Ir

0 0 0 0 Do

Via(p) 0 0 0 o,

Vip) =

0 0 oo Vroir-1(p) 0 Dr_y

0 0 Vr.r(p) Dr

Woilp.g) 0 ... 0 0 Dy

Vialp) Wizlp.q@) .- 0 0 D4
Wi(p.q) =
0 0 oo Veoira(p) Wrornr(pyg) | Dr—a

0 0 o 0 Vrr{p) Dr
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To see the above, it suffices to check that, for every (p, ¢}, one has V; - (p) =
0 for every 7, Vi (p) = 0if ¢t # 7, Wo-(p.q) = 0, for every 7 #
Wi-(p.og) =0if 7 >t 4+ 2and Wi, (p,q) = Vi (p) forevery t > 1.
Part (b). We first prove it under the additional assumption that rank V(p) =
#J (ie., V(p) is one-to-one). Let z = (z;) € [], R’* be such that W (p, q)z =
0; then one has

[y

Vii(p)zr + Wia(p,q)ze =0,

Vrir-1(p)er—1+ Wro17(p, q)2r =0,
Vr.r(p)zr = 0.

One notices that rank V(p) = Zthl rank Vi +(p). So, for every ft,
rank V; +(p) = §J; (hence rank V(p) = tJ) and each matrix V; .(p) is one-
to-one. From above, by an easy backward induction argument, we deduce that
zr = 0, then 271 = 0,...,2; = 0. Thus 2 = 0 and we have proved that
W(p, q) is also one-to-one, that is, rank W (p, q) = 4.J.

Suppose now that rank V(p) < #.J. By eliminating columns of the matrix
V (p) we can consider a set J C J and a (D x J)-sub-matrix V(p) of V{p)
such that rank V (p) = #J = rank V(p) and the matrix W(p q) is defined
in a similar way. From the first part of the proof of Part (b), rank 17(p) <
rank W(p, q), and clearly rank W(p, q) < rank W (p, q). Hence rank V (p) <
rank W(p, q).

Part (c). We denote by V(p, &) and W (p, g, &), respectively, the rows of the
matrices V' (p) and W(p. q). Since *W (p. ¢)A = 0, from Theorem 2.1 we get

Me@Nay = D MEu(p.€j), forevery j e J.
greg(i

Consequently, we have:

for§ € D, W(p,q,€) = V(p.€) and

for € ¢ Dr. W(p.q,€) + [L/MNE)] Tereer NEW (D) = V(p.€) (re-
calling that V'(p, &) = 0).

Hence, for every £ € D, W (p. q, &) belongs to the vector space spanned
by the vectors {V(p,€) | £ € D}, thus we conclude that rank W(p,q) <
rank V (p). 0

Remark 5.1 (Long-lived assets). The inequality rank V{(p) < rank W{p,q)
(Assertion (b) of Proposition 5.2) may not be true in the case of long-lived
assets. Consider a stochastic economy with 7" = 2 and three nodes, namely
D = {0, 1, 2}, and two assets j1, ja, where j; is emitted at node 0 and pays —1
anode 1, 1 at node 2, j, is emitted at node 1 and gives 1 at node 2. Consider
the asset price ¢ = (0, 1); then the matrices of returns are
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0 0 0o 0
V=]-120 W=1{-1 -1
1 1 1 1
and rank W(g) =1 < rankV = 2. O

Assertion (a) of Proposition 5.2 may not be true in the case of long-lived as-
sets, that is, the payoff matrix may not suffice to describe the financial structure.
Consider the above example: then V is also the return matrix of the financial
structure &' consisting of two assets {j1, j3 }, where j; is defined as previously
and 74 has for emission node O and pays 1 at node 2. It is clear, however, that,
for ¢ = (0.1), the full matrix of returns Wz (g) is different from Wx(q). O

5.3 Proof of Proposition 3.1 on the Boundedness Assumption B

We will use the following lemma.

Lemma 5.1. Let A be a compact subset of R™ and let W(a): R7 — RP
(o € A) be a linear mapping such that the application o — W («) is continu-
ous and rank W(«) = t.J. Then there exists ¢ > 0 such that:

|W(e)z| > c||z| for every z € R’ and every a € A.

Proof. By contradiction. Let us assume that, for every n € N, there exist z,, €
RY, o, € A such that ||W(ay)2,|| < 1|z,]. Noticing that z, # 0, without

Zn

any loss of generality we can assume that ( TS )n (which is in the unit sphere

of R”7) converges to some element v # 0 and (., ) converges to some element
a € A (since A is compact). By the continuity of the map W, taking the limit
when n — oc, we get ||W(a)v|| <0, hence W (a)v = 0, a contradiction with
the hypothesis that rank W(a) = J. 0

Proof of Proposition 3.1. Let A € R&_ be fixed. We first show that, for every

i € I, the set X'()) is bounded. Indeed, since the sets X are bounded below,
there exist z' € RE such that X' < z* + RE. If 2* € X'(\), there exist
) € X7, forevery j # i, such that Zjeﬂﬁj =3 es eJ. Consequently,

r<al=-Y WY e <= al 4y e

J#i jeJ j#i jeJd

and so X?() is bounded.

We now show that Z*()A) is bounded under the three sufficient assump-
tions (i), (if) or (iif) of Proposition 3.1. Indeed, for every 2z € Z()) there
exist (27);2 € [, 27, (¢7); € [Lje; X7 p € BL(0.1). g € R such that
'W(p.g)A € By(0.1), 3,2 =0and (27.2) € Bl(p.q).
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Under Assumption (i), for every j € I the portfolio set Z7 is bounded from
below, that is there exists 27 € R” such that Z7 C 27 + R2. Using the fact that

Y jer? =0, weget

dEat==) H < =) s forevery 21 e Z1(N).
J#i J#

Under Assumption (ii), since (z%,2') € Bi(p,q) and (z',p) € X*(\) x
B(0,1), a compact set from above, there exists o’ € R® such that

o <pO(x' —e') <Wi(p.q)z'.

But (using the fact that ), _; z* = 0) we also have

Wi.a =W (-5 ) < -

i J#i

hence there exists r > 0 such that W (p, ¢)z* € Bg(0.r).

From Lemma 5.1, taking W(a) = W(p,q) fora = (p.q) € A :=
{(p.q) € BL(0.1) x R/ : ‘W(p,q)A € B,(0.1)}, which is compact, for
fixed A € RY ., there exists ¢ > 0 such that, for every (p.q) € A, z* € R,
cl[2'| < [W(p.q)2'||. Hence,

o 2| < [W(p.q)2'|| <7 forevery = € Z'()),

which shows that the set Z*()) is bounded.
Finally, under Assumption (iii) the case of short-lived assets is a conse-
quence of Part (ii)} and Proposition 5.2.b. a

5.4 Proof of the no-arbitrage characterization Theorem 2.1

The proof is a direct consequence of the following result by taking W :=
Wr(p.q),c =2 and C = Z'.

Theorem 5.1 (Koopmans [19]). Ler W : R™ — R™ be linear, let C C R"™ be
convex, let ¢ € C, and consider the two following assertions:

(i) there exists A € R, such that YW € Ne(e),
or equivalently, X o, W& = ['W )] e, &> Xe,, Wc=['W\] e, cforevery
ceCy

(i) W(C)n (We+R%) = {0}

The implication [(i) = (ii)] always holds and the converse is true under
the additional assumption that C is a polyhedral set.
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Proof of Theorem 5.1. [(i) = (ii)] By contradiction. Suppose that there exists
¢ € C such that We > We. This implies that, for every A € RY'_, Ao, We >
e, Weorequivalently [*WA] e, ¢ > ['WA] e, ¢, that is, ‘WA ¢ N¢(&),
which contradicts (7). 0

For the proof of the implication [(if) = (i)], see Koopmans ([19]), taking
into account the following known result on polyhedral sets.

Lemma 5.2. Let C C R"™ be a convex set.
(a) ([33] Theorem 19.1) Then C is polyhedral if and only if there exist finitely

many vectors ¢y, ..., Cg.di, ..., d, in R"™ such that
CZCO{Cl,....Ck-}+{ZBde BJZO.jZIT}
j=1

(b) ([33] Theorem 19.3) Let W: R™ — R™ be a linear mapping. If C' C R”
is polyhedral set, then W{C') is also polyhedral.
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