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1. Introduction 

Many economists have analyzed Cournot oligopoly from static and dynamic points 

of view. The first dynamic analysis is due to Theocharis (1960), which has led to the most 

influential paper of Hahn (1962) on the global stability of the Cournot equilibrium for a 

continuous output adjustment system (hereafter, Hahn’s best reply dynamics) in which a 

firm’s rate of change of actual output is proportional to the difference between its 

profit-maximizing and actual outputs. Okuguchi (1964) has extended his result using a 

more general adjustment system.1 However, Al-Nowaihi and Levine (1985) have presented 

a counter-example to a certain assertion used in the proof of the Hahn-Okuguchi result.  

According to Al-Nowaihi and Levine the equilibrium is globally stable if the number of 

firms is less than or equal to 5.   

 It is well known that the Cournot oligopoly without product differentiation 

(hereafter, Cournot game) is a submodular aggregative game under usual or traditional 

assumptions. 2  All works mentioned above have studied the global stability of the 

Cournot-Nash equilibrium in the submodular Cournot game. However, the Cournot game 

can be supermodular.3 Recently some economists, notably Vives (1990) and Amir (1996), 

have analyzed the supermodular Cournot game. Vives (1999, Theorem 2.11) proves that 

the unique Nash equilibrium in the supermodular Cournot game is globally stable under 

Hahn’s best reply dynamics. Okuguchi and Yamazaki (2008) study the global stability in a 

                                                   
1 See Okuguchi (1976).   
2 In other words, under usual assumptions, any firm’s output is strategic substitute to any other firm’s 
output in the sense of Bulow et al. (1985). If the inverse demand function is linear and each firm’s cost 
function is convex, the Cournot game is submodular.   
3 In other words, the Cournot game can have strategic complementarities in the terminology of Bulow et 
al. (1985). 



 3 

general Cournot game, which can be neither supermodular nor submodular, to prove that 

the unique Cournot-Nash equilibrium is globally stable if the general Cournot game 

satisfies a set of reasonable assumptions and the number of firms is less than or equal to 3.   

This paper revisits the global stability of the unique Nash equilibrium in the 

traditional submodular Cournot game. To do so, we first examine the global stability of a 

unique Nash equilibrium in a submodular aggregative game. The previous works on the 

global stability of the Cournot-Nash equilibrium do not explicitly describe the dynamics at 

the point where the trajectory moves out of the non-negative domain. However, the 

adjustment processes used in the previous works do not necessarily ensure the 

non-negativity of all strategic variables over time independently of the initial condition.4 

Hence, we will formulate the dynamics at the boundary and proves that if a submodular 

aggregative game satisfies the generalized Fisher-Hahn condition, a unique Nash 

equilibrium in the game is globally stable under two alternative continuous adjustment 

processes with the non-negativity constraints. We then apply this general stability result to 

the traditional submodular Cournot game to complete the proof of the Hahn-Okuguchi 

result. We will also analyze the global stability of Nash equilibrium in a public good model, 

another example of submodular aggregative games. 

 

2. Submodular Aggregative Games 

Let ( )iu x  be player i’s payoff function in a general n-person game, where 

( )1 2, , , nx x x=x { }1 2: 0, 0, , 0n n
nR R x x x+∈ ≡ ∈ ≥ ≥ ≥x  and ix  is player i’s choice of 

                                                   
4 If the Nash equilibrium is not interior, the dynamics at the boundary do matter even for local stability. 
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strategy.  The game is (smooth) submodular (respectively, supermodular) if ( )iu x  is 

twice continuously differentiable and 2 0i
j ku x x∂ ∂ ∂ ≤  (respectively, 2 0i

j ku x x∂ ∂ ∂ ≥ ) for 

all j k≠ .  The game is aggregative if player i's payoff function ( )iu x  can be written as 

( ),i iU x X , where jj N
X x

∈
=∑ .5   

Define 

( ) ( ) ( ), , ,i
i i i i i

i

h x X U x X U x X
x X
∂ ∂

≡ +
∂ ∂

. 

Let us assume that the partial derivatives of ih  satisfy the following assumptions.  

Assumption 1: ( )2 , 0i i
ih h x X

X
∂

≡ ≤
∂

 for all feasible strategies and for all i. 

Assumption 2: ( )1 , 0i i
i

i

h h x X
x
∂

≡ <
∂

 for all feasible strategies and for all i. 

By Assumption 1, the aggregative game becomes submodular.  Since Fisher (1961) and 

Hahn (1962) adopt Assumption 2 in the context of Cournot game, call it generalized 

Fisher-Hahn condition.  Folmer and von Mouche (2004, Proposition 2) prove that the 

submodular aggregative game possesses a unique Nash equilibrium under Assumptions 1 

and 2.6  For 0i jj i
X x− ≠

= ≥∑ , construct a new function from ( ),i
i ih x X − . 

( )
( )

( ){ }
, 0

,
max 0, ,0 0.

i
i ii

i i
i i

h x X for x
h x X

h X for x−

⎧ >⎪≡ ⎨
=⎪⎩

                (1) 

                                                   
5 See Okuguchi (1993) or Corchón (2001) for examples of aggregative games. 
6 As for the Cournot game, Gaudet and Salant (1991) prove that there exists a unique Cournot-Nash 
equilibrium under Assumptions 1 and 2. 
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Note that, at the unique Nash equilibrium ( )* * * *
1 2, , , nx x x=x nR+∈ ,  ( )* *, 0i

ih x X =  for 

all i N∈ , where * *
jj N

X x
∈

=∑ .7  Equivalently, at the unique Nash equilibrium *x , 

( )* *
i i ix R X −= , where * *

i jj i
X x− ≠

= ∑  and ( )i iR X −  is player i’s best reply function, that is, 

( )i iR X −  is a unique non-negative solution to the problem of maximization problem of 

( ),i iU x X  with respect to ix , given iX − .8   

There can be many ways to model how ix  is adjusted as a continuous function of 

time t.  The following two dynamics are often assumed in the literature.   

Assumption 3: ix  as a non-negative function of continuous time t is adjusted according 

to 

( ),i
i i i

d x h x X
dt

α= ,                           (2) 

where a positive number iα  denotes speed of adjustment. 

Assumption 4: ix  as a non-negative function of continuous time t is adjusted according 

to 

( )( )i i i i i
d x R X x
dt

β −= − ,                        (3) 

where a positive number iβ  denotes speed of adjustment. 

                                                   
7 Gaudet and Salant (1991) describe the Cournot-Nash equilibrium in a similar but slightly different 
way. 
8 Assumptions 1 and 2 ensure that ( )i iR X −  is a unique positive solution to the first order condition 

( ), 0i
i i ih x x X −+ =  for any iX −  such that ( )0, 0i

ih X − >  and that  ( ) 0i iR X − =  for any iX −  

such that ( )0, 0i
ih X − ≤ . 
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First consider the gradient dynamics in Assumption 3, which is assumed by Dixit 

(1986), Furth (1986), Dastidar (2000) among others.  Define  

{ }*: i iI i N x x≡ ∈ > , { }*: j jJ j N x x≡ ∈ <  and { }*: k kK k N x x≡ ∈ = .    (4) 

For the sake of notational simplicity, define  

AX ii A
x

∈
≡∑  and *AX *

ii A
x

∈
≡∑ ,                   (5) 

where A  is a subset of N.   Since an increase in t may change the index sets I and J, we 

occasionally write ( )I t  and ( )J t  instead of I and J, respectively.  By the same reason, 

we may write AX  as ( )AX t .  Now we are ready to prove our two main theorems.9 

Theorem 1: Under Assumptions 1, 2 and 3, the unique Nash equilibrium in the aggregative 

game is globally stable. 

Proof: For ( )1 2, , , nx x x=x nR+∈ , define a Lyapunov function as follows.  

( )
( )

( )

2* *

2* *

1 ,
2
1 ,
2

I I

J J

X X if X X
V

X X if X X

⎧ − ≥⎪⎪≡ ⎨
⎪ − <
⎪⎩

x                     (6) 

It is clear that ( )V x  in (6) is zero for *=x x  and positive for *≠x x .10  It is also clear 

that ( )V x  is continuous in x  for *X X<  and *X X> .  If *X X= , 

                                                   
9 Corchón (2001) has proved the global stability of the Nash equilibrium adopting Hahn’s method of 
proof as well as taking into account the property of aggregative game. His proof, however, is not free 
from the same defect as in Hahn (1962) and Okuguchi (1964).   
10 If *≠x x  and *X X> , the set I is not empty.  If *≠x x  and *X X= , the sets I and J are not 
empty.  Hence, if *≠x x  and *X X≥ , ( )V x  in (6) is positive.  Similarly, if *≠x x  and 

*X X< , ( )V x  in (6) is positive. 
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( )*I IX X− ( )*J JX X= − − .  Since ( )V x  is continuous in x  for *X X<  and 

*X X> ,  the fact ( )*I IX X− ( )*J JX X= − −  at *X X=  implies that ( )V x  is 

continuous in x .  Since ix  is non-negative for all i, 2
1

n
ii

x
=

≡ ∑x  is infinite if and only 

if ix  is infinite for some i.  Hence, x  is infinite if and only if ( )*I IX X−  and/or 

( )*J JX X−  is infinite.   Therefore, ( )V →∞x  as →∞x .   

( )V x  may not be differentiable with respect to t.11  Following Brock and 

Malliaris (1989, p.95) or Hale (1969, p.293), define 

( )V x
i

 ( )( ) ( )( )
0

1limsup
t

V t t V t
tΔ →
⎡ ⎤≡ + Δ −⎣ ⎦Δ

x x . 

If ( ) *X t X> , as we prove in the Appendix, ( )V x
i

 satisfies 

 ( )V x
i

( ) ( )( )
( )

*I I i
i

i I t
X t X t hα

∈

≤ − ∑ .                   (7) 

Since *
i ix x>  for all i I∈ , ( ) ( )( )* 0I IX t X t− > .  Since *

i ix x>  for all i I∈  and 

*X X> , Assumptions 1 and 2 ensure ( ),i
ih x X ( )* *, 0i

ih x X< =  for all i I∈ .12  Hence, 

                                                   
11 If ( ) *X t X≠  and the set ( )K t  in (4) is empty, ( )V x  is differentiable with respect to t and its 

time derivative can be calculated as ( )V x
i

( ) ( )( )
( )

*I I i
i

i I t
X t X t hα

∈

= − ∑  for ( ) *X t X>  and 

( )V x
i

( ) ( )( )
( )

*J J j
j

j J t

X t X t hα
∈

= − ∑  for ( ) *X t X< .   

12  Since ( ) ( )* * * *, , 0i i
i ih x X h x X= =  for * 0ix > , Assumptions 1 and 2 directly imply that 

( ),i
ih x X ( )* *, 0i

ih x X< =  for * 0ix > .  If * 0ix = , ( )* *, 0i
ih x X =  and ( )* *, 0i

ih x X ≤ .   
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if ( ) *X t X> ,  

( )V x
i

( ) ( )( )
( )

* 0I I i
i

i I t
X t X t hα

∈

≤ − <∑ .                    (7’) 

If ( ) *X t X< , the arguments similar to the ones in the Appendix lead to 

 ( )V x
i

( ) ( )( )
( )

*J J j
j

j J t

X t X t hα
∈

≤ − ∑ .                     (8) 

Since *
j jx x<  for all j J∈ , ( ) ( )( )* 0J JX t X t− < .  Since *

j jx x<  for all j J∈  and 

*X X< , Assumptions 1 and 2 ensure ( ),j
jh x X ( )* *, 0j

jh x X> =  for all j J∈ . 13  

Hence, if ( ) *X t X< , 

( )V x
i

( ) ( )( )
( )

* 0J J j
j

j J t

X t X t hα
∈

≤ − <∑ .                 (8’) 

Consider the case of ( ) *X t X= .  If there exists 0ε >  such that ( ) *'X t X=  

for any ( )' ,t t tε ε∈ − + ,  

( )V x
i

( ) ( )( )
( )

* 0I I i
i

i I t
X t X t hα

∈

≤ − <∑ . 

If there is no 0ε >  such that ( ) *'X t X=  for any ( )' ,t t tε ε∈ − + , then, without loss of 

                                                                                                                                                           
Assumptions 1 and 2 imply that ( ),i

ih x X ( )* *, 0i
ih x X< ≤  for * 0ix = .  If * 0ix = , the fact 

i I∈  implies 0ix > .  Hence, by (1), ( ),i
ih x X ( ), 0i

ih x X= <  for * 0i ix x> = . 
13 The fact j J∈  implies that *

jx  is positive for all j J∈ , since * 0j jx x> ≥ .  Assumptions 1 

and 2 imply that ( ),j
jh x X ( )* *, 0j

jh x X> = .  Hence, by (1), ( ),j
jh x X ( ), 0j

jh x X= >  for 
*

j jx x< , even if 0jx = . 
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generality, ( ) *X t t X+ Δ >  and ( ) *X t t X− Δ <  for 0tΔ >  small enough.  If we define 

( ) ( )( )
0

lim
t

V V x t t+ Δ →
≡ + Δx

i i
 and ( ) ( )( )

0
lim

t
V V x t t− Δ →

≡ − Δx
i i

, ( )V x
i

( ) ( ){ }max ,V V+ −= x x
i i

.  

By (7’) and (8’), the following two inequalities must hold.14 

( )V+ x
i

( ) ( )( )
( )

*

0
lim I I i

it i I t t

X t t X t t hα
Δ →

∈ +Δ

≤ + Δ − + Δ ∑ ,              (9) 

( )V− x
i

( ) ( )( )
( )

*

0
lim J J j

jt j J t t

X t t X t t hα
Δ →

∈ −Δ

≤ − Δ − −Δ ∑ .            (10) 

Since the sets I and J are not empty for any *≠x x  such that *X X= , as in (7’), the right 

hand side of (9) is negative.  Similarly, the right hand side of (10) is negative.  Hence, 

( )V x
i

( ) ( ){ }max ,V V+ −= x x
i i

 is negative for any *≠x x  such that *X X= .  In any case, 

( )V x
i

 is negative for any *≠x x .  g 

 Now consider Hahn’s best reply dynamics in Assumption 4, which is assumed by 

Hahn (1962), Okuguchi (1964), Seade (1980) among others.   

Theorem 2: Under Assumptions 1, 2 and 4, the unique Nash equilibrium in the aggregative 

game is globally stable. 

Proof: Consider the Lyapunov function in (6).  Since for all i N∈ , by Assumptions 1 and 

2, ih  is strictly concave in ix  for ( ) ( )i jj i
X t x t− ≠

= ∑ , the definition of ih  in (1) 

                                                   
14 (A2) in Appendix is proved for ( ) *X t X> .  If ( ) *X t X= , (A2) holds with equality.  Hence, 
(9) must hold with equality.  Similarly, (10) holds with equality. 
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ensures that ( )( ) ( ) 0j j jR X t x t− − =  if and only if ( ) ( )( ), 0j
jh x t X t = .15   Similarly, 

( )( ) ( ) 0i i iR X t x t− − >  ( 0< ) if and only if ( ) ( )( ),i
ih x t X t = ( ) ( )( ), 0i

ih x t X t >  ( 0< , 

respectively).  Hence, if *X X> , 

( )V x
i

( ) ( )( ) ( )( ) ( )( )
( )

* 0I I
i i i i

i I t

X t X t R X t x tβ −
∈

≤ − − <∑ . 

Arguments are similar for other two cases.  Hence, even under Assumption 4, ( )V x
i

 is 

negative for any *≠x x .  g 

 

3. Applications 

3.1 Cournot Game 

In Cournot oligopoly without product differentiation,  

( ),i iU x X = ( ) ( )i i ix P X C x− ,                   (11) 

( ),i
ih x X = ( ) ( ) ( )i i iP X x P X C x′′+ − ,                (12) 

where ix  is firm i's output, ( )P X  with ( ) 0P X′ <  is the inverse demand function and 

iC  is firm i's cost function.  If 

( ) ( )1 , ,i i
i i

i

h x X h x X
x
∂

=
∂

( ) ( ) 0i iP X C x′′′= − < ,           (13) 

 ( ) ( )2 , ,i i
i ih x X h x X

X
∂

=
∂

( ) ( ) 0iP X x P X′ ′′= + ≤ ,          (14) 

We can prove on the basis of Theorems 1 and 2 that the unique Cournot-Nash equilibrium 

                                                   
15 See Footnote 7.   
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is globally stable under the gradient dynamics formulated as Assumption 3 and Hahn’s best 

reply dynamics stated as Assumption 4.16   

 Hahn (1962) and Okuguchi (1964) have proved that if assumptions (13) and (14) 

are satisfied, the Cournot-Nash equilibrium is globally stable under Hahn’s best reply 

dynamics. However, Al-Nowaihi and Levine (1985) have presented a counter-example to a 

certain assertion used in the proof of the Hahn-Okuguchi result. Al-Nowaihi and Levine 

(1985, Theorem 6) prove that if the number of firms is less than or equal to 5 in the 

Cournot game with assumptions (13) and (14), the Cournot-Nash equilibrium is globally 

stable under Hahn’s best reply dynamics. We have thus extended Al-Nowaihi and Levine 

(1985, Theorem 6) and Hahn-Okuguchi result for two alternative continuous adjustment 

processes, taking into account the non-negativity of firms’ outputs during the adjustment 

periods .17  

 

3.2 Pure Public Good Model 

In this section we will analyze the global stability of the unique Nash equilibrium 

of the pure public good model to show how powerful our Theorems 1 and 2 are.The pure 

public good model discussed here is another example of aggregative games with strategic 

                                                   
16 For example, if the inverse demand function ( )P X  is linear and each firm i's cost function iC  is 
convex, the Fisher-Hahn condition (13) and submodularity (14) are satisfied so that the unique 
Cournot-Nash equilibrium is globally stable under two continuous adjustment processes. 
17 Many researchers have also studied local stability of the Cournot-Nash equilibrium. Al-Nowaihi and 
Levine (1985, Theorem 3) prove that if assumptions (13) and (14) are satisfied, the unique Cournot-Nash 
equilibrium is locally stable under Hahn’s best reply dynamics. Dastidar (2000, Proposition 2) makes 
use of Kolstad and Mathiesen’s (1987) necessary and sufficient condition for the existence of the unique 
Cournot-Nash equilibrium to prove that if assumptions (13) and (14) are satisfied, the unique 
Cournot-Nash equilibrium is locally stable under the gradient dynamics in Assumption 3.   



 12 

substitutes.18  In the pure public good model, agent i maximizes ( ),i
i i iu y x X −+  with 

respect to iy  , agent i’s quantity consumed of a private good, and ix , the contribution 

made by agent i to the pure public good, subject to agent i’s budget constraint i i iy px m+ = , 

where p is the unit price of the public good and im  is agent i’s income.  Agent i’s utility 

function ( ),i
iu y X  is assumed to be twice continuously differentiable, strictly increasing 

and strictly quasi-concave in its two arguments,that is, 

( )1 , 0i i
i iu y X u y≡ ∂ ∂ > , ( )2 , 0i i

iu y X u X≡ ∂ ∂ > , and 
11 12 1

21 22 2

1 2

0
0

i i i

i i i i

i i

u u u
H u u u

u u
≡ >  

for any ( ) 2,iy X R+∈ , where ( )11 1,i i
i iu y X u y≡ ∂ ∂ , ( )12 1,i i

iu y X u X≡ ∂ ∂ , and 

( ) 2 2
22 ,i i

iu y X u X≡ ∂ ∂ .19  Let the the exogenously given price p to be one.  Partial 

derivatives of agent i’s demand functions of the private good and of public good, 

( ),i i iy m X −  and ( ),i i ix m X − , with respect to agent i’s income can be calculated as 

( ) ( )( )12 22
1 , ,i ii

i ii
i

y u y X u y X
m D
∂

= −
∂

 and ( ) ( )( )12 11
1 , ,i ii

i ii
i

x u y X u y X
m D
∂

= −
∂

 

where 

( ) ( )
11 12

21 22 12 11 12 22

1
1

1 1 0

i i

i i i i i i i

u u
D u u u u u u

−
≡ − = − + −
− −

. 

                                                   
18 Frasca (1980) and Okuguchi (1984) examine stability under a discrete adjustment process in 
McGuire’s (1974) pure public good model. Cornes and Sandler (1996, Section 6.2) graphically argue 
that if there are multiple Nash equlibria, some of them are locally unstable. 
19 For quasi-concavity, see Arrow and Enthoven (1961), Crouzeix and Ferland (1982) or De La Fuente 
(2000, especially Problem 3.12). 
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Note that 0iH >  together with the first-order conditions implies 0iD > .  Bergstrom et 

al. (1992) prove that if 0 1i ix m< ∂ ∂ <  or equivalently, if both the public and private 

goods are normal, there exists a unique Nash equilibrium in the pure public good model.  

Hence, if 

( ) ( )12 11, ,i i
i iu y X u y X− >0 and ( ) ( )12 22, ,i i

i iu y X u y X− >0,          (15) 

there exists a unique Nash equilibrium in the pure public good model. 

Agent i’s original maximization problem is equivalent to the problem of 

maximizing 

( ) ( ), ,i i
i i iU x X u m x X≡ −                      (16) 

with respect to ix .  Hence, in the pure public good model, 

( ),i
ih x X = ( ) ( )1 2, ,i i

i i i iu m x X u m x X− − + − .                (17) 

If 

( ) ( )1 , ,i i
i i

i

h x X h x X
x
∂

=
∂

( ) ( )11 21, , 0i i
i i i iu m x X u m x X= − − − < ,        (18) 

 ( ) ( )2 , ,i i
i ih x X h x X

X
∂

=
∂

( ) ( )12 22, , 0i i
i i i iu m x X u m x X= − − + − ≤ ,       (19) 

Theorem 1 and 2 prove that the unique Nash equilibrium of the pure public good model is 

globally stable under the gradient dynamics formulated as Assumption 3 and Hahn’s best 

reply dynamics given by Assumption 4.  Hence, if the pure public good model satisfies 

normality condition (15) of Bergstrom et al. (1992) for the unique existence of Nash 

equilibrium, then the unique interior Nash equilibrium is globally stable under two 

continuous adjustment processes. 
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4. Conclusion 

In this paper we have proved that if a submodular aggregative game satisfies the 

generalized Fisher-Hahn condition, then the unique Nash equilibrium in the game is 

globally stable under two alternative continuous adjustment processes with non-negativity 

constraints. The general result has been applied to Cournot oligopoly without product 

differentiation and the pure public good model. The first application, which is free from the 

defect found by Al-Nowaihi and Levine (1985), gives the complete proof of the 

Hahn-Okuguchi result, taking into account the non-negativity of firms’ outputs during the 

adjustment periods. It would be interesting to apply our general result in Theorems 1 and 2 

to other submodular aggregative games. 
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Appendix 

This appendix proves the inequality in (7), that is, 

( )V x
i

( ) ( )( )
( )

*I I i
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X t X t hα

∈

≤ − ∑ . 

Let ( )K t−  and ( )K t+  be subsets of ( )K t  in (4) such that ( ) ( ) ( )I t t I t K t−− Δ = ∪  

and ( ) ( ) ( )I t t I t K t++ Δ = ∪  for any 0tΔ >  small enough. 
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It is clear that  

( ) ( ) ( )( ) ( ) ( ) ( )( )2 2* *

0

1 1 1lim
2 2

I t I t I t I t

t
X t t X X t X

tΔ →

⎡ ⎤+ Δ − − −⎢ ⎥Δ ⎣ ⎦
( ) ( )( )

( )

*I I i
i

i I t

X t X t hα
∈

= − ∑ . 

By L’Hospital’s rule, 
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Since ( ) *
k kx t x=  for any ( )k K t+∈ and ( ) *X t X> , Assumption 1 implies 
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Similarly, we can show 
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Hence, by (A1)-(A4), the inequality in (7) holds.   


