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1 Introduction

Formulations of economic institutions in general equilibrium analysis make use of a
system of “opportunities” an institution offers to its members. Members are assumed
to choose independently and rationally some elements from their opportunity sets. An
equilibrium is reached when these decentralized rational decisions are mutually com-
patible. A best-known example in the private goods economy is the unit-pricing system
that offers to consumers the so-called Walrasian budget sets as opportunity sets. The
corresponding notion of equilibrium is known as Walrasian equilibrium. Another ex-
ample in the public goods economy is the individualized unit-pricing system offering
consumers the so-called Lindahl budget sets with the corresponding notion of equilib-
rium known as Lindahl equilibrium. A generalized notion of opportunity system with
much greater freedom in the choice of pricing schemes, called “valuation system”,
is studied by Mas-Colell (1980) in a model of pure public goods. Thomson (1994)
introduces a general notion of “equal” opportunity system offering equal opportunity
sets across agents and equal opportunity equilibrium that are applicable in a variety of
economic environments with private goods or public goods.

The main objective of this paper is to study how this formulation of economic
institutions using opportunity systems and the notion of opportunity equilibrium is
related with the alternative formulation using game forms and Nash equilibrium in
Implementation Theory. Through a sequence of our main results, we find that the
two formulations are very closely related and, in some well-known economic environ-
ments, equivalent. We also offer a way of decomposing the process of implementing
a desirable social choice rule (in Nash equilibrium) into two steps: the first step is to
identify an opportunity system supporting the rule, the second step is to use the system
to design a game form implementing the rule. In this game form, a player’s strategy
consists of a profile of opportunity sets for individual players, his demand over his op-
portunity set, and an integer. Thus, informational efficiency in the opportunity system,
if any, can be embedded in the game form.1 For example, Walrasian rule in exchange
economies is supported by the opportunity system characterized by the set of price vec-
tors. Thus it is implemented by a simple game form in which players announce price
vectors, their demands, and an integer. Other rules implemented by “informationally
efficient” game forms are Lindahl rule in public goods economies, uniform rule in the
single-peaked preferences economies (Sprumont 1991), no-envy rule (Crawford 1977;
Thomson 2005), etc.

For a formal explanation of our results, let us define some basic terms. An oppor-
tunity set is a non-empty subset of social alternatives (or allocations). An opportunity
system is a non-empty family of profiles of opportunity sets indexed by agents. Given
an opportunity system, an alternative is an opportunity equilibrium if there is a pro-
file of opportunity sets in the system such that the alternative maximizes each agent’s
well-being over his opportunity set in the profile. In economic environments with indi-

1Williams (1986) establishes another way of embeding informational efficiency in game forms.
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vidualistic (or selfish) preferences, this can be translated into standard notions of mar-
ket equilibrium, such as Walrasian or Lindahl equilibrium, defined by optimal choices
over individual budget sets and market clearing conditions. A (social choice) rule is
called an opportunity rule if it is supported by an opportunity system in the sense that
at any choice problem (or an economy) in the domain, any alternative chosen by the
rule is an opportunity equilibrium under the system and vice versa.2

Under a “relative denseness” condition of the domain together with other additional
domain conditions or fairly weak axioms for rules, we show that any Nash imple-
mentable rule is supported by an opportunity system. Conversely, within rules satisfy-
ing the so called no-veto-power and under a very weak domain condition called “weak
separated variability”, we show that any opportunity rule is Nash implementable. The
proof makes use of a game form called an opportunity game form in which each
player’s strategy space is given by the product of the opportunity system, the alter-
native space, and the set of integers. This construction enables us to implement any
rule supported by a simple opportunity system by a game form with an equally simple
strategy space, thus offering a novel approach for strategy space reduction in Maskin’s
game form.3

Our notions of opportunity systems and opportunity equilibrium are generalization
of the corresponding notions in Thomson (1994). He focuses on opportunity systems
which are composed of profiles of equal opportunity sets across agents. Also his op-
portunity sets are subsets of feasible alternatives. We do not impose either the equality
condition or feasibility.

Our opportunity game form when applied in economic environments does not have
some nice features that numerous authors in the market-game literature have tried to
embed in their game forms implementing Walrasian or Lindahl rules: see Hurwicz
(1979), Schmeidler (1980), Dubey (1982), Simon (1984), Bennassy (1986), Bevia,
Corchon, and Wilkie (1998), etc. In particular, our opportunity game form crucially
relies on the special handling of integer announcements as in Maskin’s game form.
This is inevitable because like in Maskin (1999) our result provides a canonical rela-
tionship between implementable rules and game forms. On the other hand, our op-
portunity game form gives us a unified and simple game form that allows us to imple-
ment constrained or unconstrained Walrasian rule with or without taxation in exchange
economies and constrained or unconstrained Lindahl rule in public goods economies,
all at once.

The strategy spaces in Saijo (1988) and Moore and Repullo (1990) contain the
set of preference profiles and so they are quite large, particularly when the alternative
space is infinite. Moreover, in their frameworks, it is not allowed to tailor the structure
of strategy space to each rule. The strategy space in McKelvey (1989) has a similarity

2Greenberg (1990) and Miyagawa (2001) consider a general notion of mechanisms, called “effectiv-
ity forms”. These mechanisms encompass both opportunity systems and game forms.

3The earlier studies on strategy space reduction are Williams (1986), Saijo (1988), McKelvey (1989),
Moore and Repullo (1990), etc.
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to ours because instead of preference profiles, he uses the opportunity profiles consist-
ing of lower counter sets of preferences in his strategy space. Relying on richness of
the domain of preferences, he offers a way of reducing the strategy space relative to
each rule. In particular, he shows that for Walrasian rule the strategy space reduction
can be substantial so that price announcements instead of preferences are sufficient for
the implementation. The strategy space reduction in our result is stronger because our
reduction does not rely on what preferences are admissible in the domain.

The rest of the paper is organized as follows. Section 2 gives basic definitions.
Section 3 gives general results in the abstract model. Section 4 gives further results
and applications in economic environments.

2 The Model and Basic Concepts

Let N ≡ {1, · · · ,n} be the set of agents with n ≥ 3. Let A be the set of alternatives.
Individuals have complete and transitive binary relations over A, namely preferences.
Let R be the set of all such preferences and RN the set of n-tuples of preferences.
Generic notation for preferences of agent i is Ri and the associated strict and indiffer-
ence relations are denoted by Pi and Ii, respectively.4

In order to deal with numerous applications where alternatives in A are not always
feasible, let Z ⊆ A be the set of feasible alternatives. Let D be a subset of RN . A social
choice rule, or simply, a rule, on D is a correspondence ϕ : D → Z associating with
each preference profile in the domain a nonempty set of feasible alternatives.

Example 1. [Exchange economy] In the exchange economy with l goods and social
endowment Ω∈Rl

+, A = Rl·n
+ and Z = {z∈Rl·n

+ : ∑i zi≤Ω}. For each i∈N, let zi ∈Rl
+

be i’s bundle at z. It is standard to assume that each agent i ∈ N has a preference Ri

over Rl·n
+ , which is individualistic, that is, for each pair z,z′ ∈ Rl·n

+ ,

if zi = z′i, then z Ii z′.

Other standard assumptions on preferences in the exchange economy are continuity,
monotonicity, and convexity to be defined in Section 4.

2.1 Game Forms and Nash Implementation

For each i ∈ N, let Si be a set of strategies for i. Let S ≡ ×i∈NSi. Let g : S → A be an
outcome function. A game form is defined by the pair (S,g).

A rule ϕ is Nash implementable if there is a game form G ≡ (S,g) such that for
each R ∈ D , g(NE(G,R)) = ϕ(R). It is feasibly Nash implementable if, in addition,
g(S) ⊆ Z. Our results are obtained for a more general notion, Nash implementation
under an arbitrary range restriction. Let Y ⊆ A be a set of alternatives to which any

4Following the standard convention, we write a Ri b when a is preferred to b under the preference
relation Ri. We write a Pi b when a is strictly preferred to b; a Ii b when a and b are indifferent.
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possible outcome of a game form is desired to belong. A rule ϕ is Nash implementable
under the range-restriction of Y if ϕ is Nash implementable by a game form G≡ (S,g)
and the range of g is in Y , that is, g(S) ⊆ Y . Thus when Y = A or Z, this notion
coincides with the above mentioned Nash implementability (without any constraint)
and feasible Nash implementability, respectively.

Here are some examples of range-restrictions in exchange economies.

Example 2. [Continuation: exchange economy] (i) An allocation is efficient at R ∈D

if there is no other feasible allocation making an agent better off without making some-
one else worse off. One may want to consider outcome functions which do not take a
value that is never effcient on D . The range-restriction associated with this objective
is given by the set of potentially efficient allocations, that is, YEff. ≡ ∪R∈D{a ∈ A : a is
efficient at R}.
(ii) An allocation z is envy free at R ∈ D if for each pair i, j ∈ N, zi Ri z j. Let YNVF ≡
{z ∈ Rl·n

+ : for some R ∈D , z satisfies no-envy at R} be the set of potentially envy free
allocations on D .
(iii) An allocation z satisfies no-domination at R ∈ D if for each pair i, j ∈ N, zi ! z j.

Let YND ≡ {z ∈ Rl·n
+ : for all i, j ∈ N, zi ! z j}.

(iv) An allocation z satisfies average-no-domination at R∈D if for all i∈N, ∑ j +=i z j/(n−
1) ! zi. Let YAND ≡ {z ∈ Rl·n

+ : for all i ∈ N, ∑ j +=i zi/(n−1) ! z j}.
(v) An allocation z satisfies egalitarian equivalence at R ∈ D if there exists z0 ∈ Rl

+
such that for all i ∈ N, z Ii (z0, · · · ,z0). Let YEE ≡ {z ∈Rl·n

+ : for some R ∈D , z satisfies
egalitarian equivalence at R}.
(vi) An allocation z satisfies the equal division lower bound property at R∈D if for all
i ∈ N, z Ri Ω/n. Let YEDB ≡ {z ∈ Rl·n

+ : for some R ∈ D , z satisfies the equal division
lower bound property at R}.

2.2 Axioms

We now define generalization of the important conditions for Nash implementation in-
troduced by Maskin (1977, 1999). We transform his conditions into conditions relative
to an arbitrary range-restriction Y . In what follows, fix a range-restriction Y ⊆ A.

Monotonicity on Y. For each R ∈ D , each a ∈ ϕ(R) and each R′ ∈ D , if for each
i ∈ N, LC(Ri,a;Y )⊆ LC(R′i,a;Y ), then a ∈ ϕ(R′).

When Y = Z, monotonicity on Z coincides with Maskin monotonicity (“monotonic-
ity” in Maskin, 1977, 1999). When Y = A, monotonicity on A coincides with Gevers
monotonicity (Gevers, 1986).

No-Veto-Power on Y. For each R ∈D and each i ∈ N, if a ∈ ∩ j +=i max[R j,Y ]∩Z, then
a ∈ ϕ(R).

When Y = A, no-veto-power on A can be substantially mild. In some domains, it
could be met by any rule. For example, when for each feasible alternative a, individuals
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always have alternatives in A (feasible or not) preferred to a, no-veto-power in A is met
trivially by any rule.

In a companion paper, Ju (2005), we extend Maskin’s results for feasible Nash
implementation (with Y = Z). We show that if a rule is Nash implementable under the
range-restriction of Y , then it is a subcorrespondence of Y and satisfies monotonicity
on Y and that when there are more than two agents, if a rule is a subcorrespondence of
Y and satisfies monotonicity and no-veto-power on Y , then it is Nash implementable
under the range-restriction of Y .

Next is a standard unanimity condition. No-veto-power implies this axiom.

Unanimity on Y. For each R ∈D , if a ∈ ∩i∈N max[Ri,Y ]∩Z, then a ∈ ϕ (R) .

The next axiom says that no one should be worst off at any alternative chosen by a
rule.

No Punishment on Y. For each R ∈ D , if a ∈ Y is such that for some i ∈ N, a ∈
min[Ri,Y ], a /∈ ϕ(R).

Note that this axiom may not be compatible with no-veto-power.

2.3 Opportunity Equilibrium

An opportunity set in Y ⊆ A is a subset of Y. An opportunity profile in Y is a list of op-
portunity sets in Y, indexed by agents. Notation for opportunity profiles are O,O′,O′′,
etc. The i-th component of O is the opportunity set for agent i and is denoted by Oi.
An opportunity system in Y , denoted by O , is a family of opportunity profiles in Y .
Notation for opportunity systems are O,O ′,O ′′, etc. A feasible opportunity system is
an opportunity system in Z.

Given an opportunity system O in Y , a ∈ A is an opportunity equilibrium at R ∈
D if a ∈ Z and there is an opportunity profile O ∈ O such that for each i ∈ N, a ∈
max [Ri,Oi] . Let ϕO be the correspondence associating with each R ∈ D the set of
opportunity equilibria at R. When the correspondence ϕO is non-empty valued, we
call it the opportunity rule associated with O . A rule ϕ is supported by an opportunity
system in Y if there is an opportunity system O in Y such that ϕ = ϕO : that is, for each
R ∈D and each a ∈ A, a ∈ ϕ (R) if and only if z ∈ Z and there is O≡ (Oi)i∈N such that
for each i ∈ N, a ∈max [Ri,Oi].

Lemma 1. A rule ϕ is supported by an opportunity system in Y if and only if for
each R ∈ D and each a ∈ ϕ (R), there is an opportunity profile O in Y such that (i)
a∈∩i∈N max [Ri,Oi] and (ii) for each R′ ∈D and each a′ ∈ Z, if a′ ∈ ∩i∈N max [R′i,Oi] ,
then a′ ∈ ϕ (R′) .

Proof. Let ϕ be supported by an opportunity system O in Y , that is, ϕ (·) = ϕO (·).
Let R ∈ D and a ∈ ϕ (R) = ϕO (R). Then since a ∈ ϕO (R), there is O ∈ O such that
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(i) holds. Let R′ ∈D and a′ ∈ Z be such that a′ ∈ ∩i∈N max [R′i,Oi]. Then a′ ∈ ϕO (R′)
and so a′ ∈ ϕ (R′).

In order to prove the converse, for each R ∈ D and each a ∈ ϕ (R) , let O(R,a) ≡
(Oi (R,a))i∈N be the opportunity profile in Y satisfying (i) and (ii). Let O ≡ {O(R,a) : R ∈D ,a ∈ ϕ (R)}.
If a ∈ ϕ (R), then a ∈ Z and by (i), a ∈ ∩i∈N max[Ri,Oi (R,a)]. Thus a ∈ ϕO (R). If a ∈
ϕO (R), then a∈Z and there is R′ ∈D and a′ ∈ϕ (R′) such that a∈∩i∈N max[Ri,Oi (R′,a′)]
(note that since a′ ∈ ϕ(R′), O(R′,a′) ∈O). Then by (ii), a ∈ ϕ(R). Therefore, ϕ (R) =
ϕO (R).

• c.p. Monotonicity µ in Moore and Repullo (1990) and the necessary and suffi-
cient condition in this lemma.

• c.p. Attainability (or option) sets in a game form and opportunity sets.

2.4 Domain Properties

We will consider some combinations of domain properties to be defined next.
The first one is a separability-type property saying that for each alternative a ∈ Y

and each agent i ∈ N, it is always possible to fix i’s welfare at the level of a and to
make a certain variation of a.

Weak Separated Variability on Y, briefly WSV on Y. For each a∈Y and each i∈N,

there is an alterative in Y , denoted by ei (a), such that for each R ∈D , (i) ei (a) Ii a and
(ii) either ei(a) ∈ Z or for some j += i and some a′ ∈ Y, a′ Pj ei (a) .

When Y = A, we call this property weak separated variability, or WSV. Note that
when A = Z as in Maskin (1977, 1999) and Moore and Repullo (1990), for every
Y , WSV on Y is satisfied trivially by letting ei(a) ≡ a for all a ∈ Y and all i ∈ N.

In domains where any alternative is never a best one over Y , WSV on Y is also met
trivially by letting ei(a)≡ a, for all a ∈ A and all i ∈ N.

The second property is a denseness-type property. It roughly says that it is always
possible to find alternatives between any pair of alternatives.

Relative Denseness on Y, briefly RD on Y. For each pair R,R′ ∈ D , each i ∈ N, and
each pair a,a′ ∈ Y, if a Ri a′ and a′ P′i a, then
(i) when a /∈min[Ri,Y ], there is ā ∈ Y such that a Pi ā and ā P′i a;5

(ii) when a /∈max[Ri,Y ], there is ā′ ∈ Y such that ā′ Pi a, and a′ P′i ā′.

The next property says that the agreement among all agents except one is never
possible.

No-Agreement on Y. For each R ∈D and each i ∈ N, ∩ j +=i max
[
R j,Y

]
= /0.

We show later that when Y = A or Z, these properties are very mild in several
economic environments including exchange economies and public goods economies.

5When a Pi a′, this part is met trivially be letting ā≡ a′.
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Note that since the agreement among all agents except one is never possible, NA on Y
implies WSV on Y (simply, let ei (a) = a for each i ∈ N and each a ∈ Y ).

Single-Minimum on Y. For each R ∈ D and each i ∈ N, if min[Ri,Y ] += /0, then
min[Ri,Y ] is a singleton.

Thus if there is a Ri-minimal alternative over Y , it is the only Ri-minimal element
in Y . Note that this property is different from the so-called single-dippedness. Clearly,
single-dipped preferences are examples but there a variety other examples that are not
single-dipped.

3 General Results

We use the following notation. Let Ri be a preference relation of agent i ∈ N and a an
alternative. For each Y ⊆ A, let LC (Ri,a,Y ) ≡ {a′ ∈ Y : a Ri a′} and SLC(Ri,a,Y ) ≡
{a′ ∈ Y : a Pi a′} be the lower contour set and the strict lower contour set in Y of Ri at
a. Given a strategy space S≡Πn

i=1Si, for each s ∈ S and each i ∈ N, let s−i ≡
(
s j

)
j∈N\i

and Atni(s)≡ {g(s′i,s−i) : s′i ∈ Si} (i’s attainable set at s).

Theorem 1. Assume that D satisfies RD on Y . If a rule on D is Nash implementable
under the range-restriction of Y and satisfies unanimity and no-punishment on Y , then
it is supported by an opportunity system in Y .

Proof. Assume that D satisfies RD on Y . Let ϕ be a rule on D and G ≡ (S,g) a
game form such that g(S) ⊆ Y and G implements ϕ . We constructs an opportunity
system in Y as follows. For each R ∈D , each a ∈ ϕ(R), and each i ∈ N, let Oi(R,a)≡
SLC(Ri,a,Y )∪ {a}. Let O(R,a) ≡ (Oi(R,a))i∈N . Let O ≡ {O(R,a) : R ∈ D and a ∈
ϕ(R)}.

By Lemma 1, we only have to show that for each R ∈ D and each a ∈ ϕ (R) ,
O(R,a) satisfies the two properties (i) and (ii) in the lemma. Let R ∈ D and a ∈
ϕ(R). Since for each i ∈ N, by definition, Oi (R,a) = SLC(Ri,a,Y )∪ {a}, then a ∈
max [Ri,Oi(R,a)]. Thus property (i) in Lemma 1 holds. Let R′ ∈D and a′ ∈ Z be such
that a′ ∈ ∩i∈N max [R′i,Oi (R,a)] . We prove property (ii) in Lemma 1 in two steps.

Step 1. If a′ +∈ ∩i∈N max[R′i,Y ], then a′ = a.

Assume a′ +∈ ∩i∈N max[R′i,Y ]. Suppose by contradiction a′ += a. Let i ∈ N be such
that a′ /∈ max[R′i,Y ]. Then a′ ∈ SLC(Ri,a,Y ) and so a Pi a′. Hence for each i ∈ N,

a′ R′i a and a Pi a′. By RD on Y , since a′ /∈ max[R′i,Y ], then there is ā ∈ Y such that
a Pi ā and ā P′i a′. Hence ā ∈ SLC(Ri,a,Y ) ⊆ Oi (R,a) and ā P′i a′. This contradicts
a′ ∈max [R′i,Oi (R,a)] .

Step 2. a′ ∈ ϕ (R′) .

By Step 1, a′ ∈ ∩i∈N max[R′i,Y ] or a′ = a. In the former case, a′ ∈ ϕ (R′) by una-
nimity on Y . In what follows, we consider the latter case a′ = a.
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Since a ∈ ϕ (R) and ϕ is Nash implementable by G ≡ (S,g) , then there is s ∈
NE (G,R) such that g(s) = a. Because s is a Nash equilibrium, for each i ∈ N, a ∈
max [Ri,Atni (s)], that is, Atni (s)⊆ LC (Ri,a) .

In order to show Atni(s)⊆ LC(R′i,a), suppose that there is a′′ ∈ Atni (s)\{a} such
that a′′ P′i a. Then a Ri a′′ and a′′ P′i a. By no punishment on Y , there is no i ∈ N
such that a ∈ min[Ri,Y ]. Hence by part (i) of RD on Y applied to the quadruple a,
a′′, Ri, and R′i, there is ā ∈ Y such that a Pi ā and ā P′i a. Hence ā ∈ SLC(Ri,a,Y ) and
ā P′i a′ (note a′ = a), contradicting a′ ∈ max [R′i,Oi (R,a)] . Therefore for each i ∈ N,

Atni(s) ⊆ LC(R′i,a). This shows s ∈ NE (G,R′) . Since ϕ is Nash implementable by
(S,g), then g(s) = a ∈ ϕ (R′) .

Adding other domain properties, we obtain:

Corollary 1. Consider a domain D that satisfies RD on Y .
(i) Assume that D also satisfies no-agreement over Y . Then if a rule on D is Nash
implementable under the range-restriction of Y and satisfies no-punishment on Y , then
it is supported by an opportunity system in Y .
(ii) Assume that D also satisfies single-minimum over Y . Then if a rule on D is Nash
implementable under the range-restriction of Y and satisfies unanimity on Y , then it is
supported by an opportunity system in Y .
(iii) Assume that D satisfies both no-agreement and single-minimum over Y . Then if a
rule on D is Nash implementable under the range-restriction of Y , it is supported by
an opportunity system in Y .

Proof. (i) If the domain satisfies no-agreement over Y , then unanimity on Y is trivially
satisfied by any rule.

(ii) To prove this part, we modify the proof of the theorem in the following way. To
show Atni(s)⊆ LC(R′i,a) in Step 2, we divide two cases. First is when a ∈min[Ri,Y ].
Then by the single-minimum property, LC(Ri,a)= {a} and so Atni(s)= {a}⊆LC(R′i,a).
Second is when a /∈ min[Ri,Y ]. In this case, we apply part (i) of RD as in the above
proof.

(iii) Thus on the domain satisfying both no-agreement and single-minimum, both
unanimity and no-punishiment in the theorem can be dropped.

We show by an example that without the domain property, RD on Y , Theorem 1
does not hold.

Proposition 1. If the domain D does not satisfy RD on Y , then a Nash implementable
rule on D may not be supported by an opportunity system in Y .

Proof. Let A = Z = Y ≡ {a,b,c,d} and N ≡ {1,2,3} . We write, for example, abcd to
denote the preference relation that ranks a the first, b the second, c the third, and d the
fourth. Consider the domain D consisting of the following five profiles of preference
relations, R0 ≡ (abcd,bacd,cbad), R1 ≡ (dabc,bacd,cbad), R2 ≡ (abcd,dbac,cbad),
R3 ≡ (abcd,bacd,cdba), and R4 ≡ (adbc,dabc,cdab) . Let ϕ be defined as follows:
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ϕ
(
R0)≡ {b,c} and ϕ

(
R1) = · · ·= ϕ

(
R4)≡ {c}. Then in order to check monotonicity,

we only need to confirm there is no R ∈D\{R0} such that for each i ∈ N, LC(R0
i ,b)⊆

LC(Ri,b) and b /∈ ϕ(R). This is true because for each R∈D\
{

R0}, there is i∈N such
that LC(R0

i ,b) +⊆ LC (Ri,b) . Note that the domain D satisifes no agreement. Thus ϕ
satisfies no-veto-power trivially.

Note that b P0
1 d and d P4

1 b. However two sets {x∈ A : x P0
1 b}= {a} and {x∈ A : d

P4
1 x} = {b,c} are disjoint. Therefore D violates RD on Y .

We now show that ϕ is not supported by any opportunity system. Suppose by
contradiction that there is a opportunity system O that supports ϕ. Then since b ∈
ϕ

(
R0) , there exists O ∈ O such that b ∈ ∩i∈N max[R0

i ,Oi]. Therefore, for each i ∈ N,
Oi ⊆ LC(R0

i ,b), that is, O1 ⊆ {b,c,d}, O2 ⊆ {a,b,c,d}, and O3 ⊆ {a,b,d}. We derive
a contradiction for each of the following cases.

Case 1: d +∈ ∩i∈NOi.

Subcase 1.1: d /∈ O1. Then O1 ⊆ {b,c}. Since b ∈ O1 ⊆ {b,c} = LC(R1
1,b), then

b ∈ max[R1
1,O1]. Note b ∈ max[R1

2,O2]∩max[R1
3,O3]. Therefore b ∈ ϕ

(
R1), contra-

dicting ϕ
(
R1) = {c}.

Subcase 1.2: d /∈ O2. Then O2 ⊆ {a,b,c}. Since b ∈ O2 ⊆ {a,b,c} = LC(R2
2,b),

then b ∈max[R2
2,O2]. Note b ∈max[R2

1,O1]∩max[R2
3,O3]. Therefore b ∈ ϕ

(
R2), con-

tradicting ϕ
(
R2) = {c}.

Subcase 1.3: d /∈ O3. Then O3 ⊆ {a,b}. Since b ∈ O3 ⊆ {a,b} = LC(R3
3,b), then

b ∈ max[R3
3,O3]. Note b ∈ max[R3

1,O1]∩max[R3
2,O2]. Therefore b ∈ ϕ

(
R3), contra-

dicting ϕ
(
R3) = {c}.

Case 2: d ∈ ∩i∈NOi.

Then d ∈ ∩i∈N max[R4
i ,Oi]. Therefore d ∈ ϕ(R4), contradicting ϕ

(
R4) = {c}.

We next consider the converse of Theorem 1. The next example shows that the
converse does not hold.

Example 3. This is an example by Maskin (1999) showing that Maskin monotonicity
is not sufficient for feasible Nash implementability. We use this example to show that
supporting a rule by an opportunity system is not sufficient for Nash implementability.
Let A = Z = Y ≡ {a,b,c}. As in the proof of Proposition 1, write, for example, abc to
denote the preference relation that ranks a in the top, b in the second, and c in the third.
Let D be the domain consisting of the following three profiles of preference relations:

R≡ (bca,cab,cab) ;R′ ≡ (abc,cba,cab) ;R′′ ≡ (bac,abc,abc) .

Let ϕ be the rule on D such that ϕ (R)≡ {b,c}, ϕ (R′)≡ {a}, and ϕ (R′′)≡ {b}. Then
it can be shown that ϕ is supported by the opportunity system O given by

O ≡ {({a,b,c},{b},{b}) ,({a,c},{b,c},{a,b,c}) ,({a,b,c},{a},{a,b})}.
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As is shown by Maskin (1999), ϕ is not Nash implementable.

In our next result, we focus on rules satisfying no-veto-power and establish the
converse of Theorem 1. For the implementation of a opportunity rule, we use the
following special game form that can be tailored for the opportunity system supporting
the rule.

Consider a domain satisfying WSV on Y . Let O be an opportunity system in Y.

Definition 1. [Opportunity Game Form GO ] For each i ∈ N, let Si ≡ O ×Y ×Z be
i’s strategy set with the generic element si ≡ (Oi,ai, ti). Let g : S → A be the outcome
function defined by the following three states.
State I: There is (O,a, t) ∈ O ×Y ×Z such that for each i ∈ N, (Oi,ai, ti) = (O,a, t)
and a ∈ ∩i∈NOi∩Z. Then let

g(s)≡ a.

State II: There are i∈N and (O,a, t)∈O×Y×Z such that for each j += i, (O j,a j, t j) =
(O,a, t), a ∈ ∩ j∈NO j∩Z, and (Oi,ai, ti) += (O,a, t). Then let

g(s)≡
{

ei
(
ai) , if ai ∈ Oi,

a, otherwise.

State III: In all other cases, let
g(s)≡ eh

(
ah

)

where h≡min
{

i ∈ N : ti ∈max
{

t1, · · · , tn}}
.

Thus each player announces a profile of opportunity sets for all players, his de-
mand, and an integer. When all players reach an agreement, the agreed outcome pre-
vails. If a partial agreement is reached among all players except one, then the agreed
outcome prevails unless the violator demands an outcome that is allowed by others
(ai ∈ Oi), in which case the violater gets his demand. When there is no full or partial
agreement, the player with the largest voice ti can get what he wants. Note that in this
game, players’ preferences are not necessarily a part of players’ strategies.6 We allow
strategies to depend on a opportunity system supporting the opportunity rule. Thus,
opportunity rules with ”simple” opportunity systems can have equally simple strategy
spaces.

Note that if the opportunity system O is in Y , then the opportunity game form GO

has the range (of the outcome function) in Y .

Theorem 2. Let D be a domain satisfying WSV on Y and |N| ≥ 3. If a rule on D is
supported by an opportunity system O in Y and satisfies no-veto-power on Y , then it is
Nash implementable in Y by the opportunity game form GO .

Proof. Let ϕ be a rule supported by an opportunity system O in Y . Under the stated
6Preferences announcement is essential in the game forms used by Maskin (1977, 1999), Saijo

(1988), and Moore and Repullo (1990).
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assumptions, we show that ϕ is Nash implemented by the opportunity game form GO .

In what follows, we fix R∗ ∈D and show that ϕ(R∗) = g(NE(GO ,R∗)) in two steps.

Step 1: ϕ (R∗)⊆ g
(
NE

(
GO ,R∗

))
.

Let a∗ ∈ ϕ(R∗). Then a∗ ∈ Z and there exists O ∈ O such that for each i ∈ N,

a∗ ∈max[R∗i ,Oi]. Let si = (O,a∗,1) for each i ∈ N. Then State I applies at s.
Let i ∈ N. Then for each a′ ∈ Oi\{a∗}, i can attain ei (a′) by announcing a′. Thus

Atni (s−i) = {ei (a′) : a′ ∈ Oi}∪ {a∗}. Since a∗ ∈ max[R∗i ,Oi] and for each a′ ∈ Oi, a′

I∗i ei (a′) , then g(si,s−i) = a∗ ∈ max [R∗i ,Atni (s−i)]. Therefore s ∈ NE(GO ,R∗) and
a∗ ∈ g(NE(GO ,R∗)).

Step 2: g
(
NE

(
GO ,R∗

))
⊆ ϕ (R∗) .

Let a∗ ∈ g(NE(GO ,R∗)) and s∗ ∈ NE(GO ,R∗) be such that g(s∗) = a∗. We con-
sider each of the three states one by one.

State I: There is (O,a, t) ∈ O×Y ×Z such that for each i ∈ N, s∗i = (O,a, t) and
a ∈ ∩NOi∩Z.

Clearly, then a = a∗ and as shown above, for each i∈N, Atni
(
s∗−i

)
= {ei (a′) : a′ ∈ Oi}∪

{a∗}. Since s∗ is a Nash equilibrium and for each a′ ∈ Oi, ei (a′) I∗i a′, then for each
i ∈ N, a∗ ∈max[R∗i ,Oi]. Therefore a ∈ ϕ(R∗).

State II: There exist i ∈ N and (O,a, t) ∈ O ×Y ×Z such that for each j += i,
s∗j = (O,a, t), a ∈ ∩ j∈NO j∩Z, and s∗i = (O′,a′, t ′) += (O,a, t).

We first show that the Nash equilibrium outcome g(s∗) = a∗ is feasible. Note
g(s∗) = a or ei (a′). Since a ∈ Z, then if g(s∗) = a∗ /∈ Z, g(s∗) = ei(a′) and by WSV
on Y , there are j += i and a′′ ∈ Y such that a′′ P∗j a∗. Since e j(a′′) ∈ Atn j(s∗− j), this
contradicts s∗ being a Nash equilibrium. Therefore, g(s∗) = a∗ ∈ Z.

For each j += i and each a′′ ∈ Y , j can attain e j(a′′) by announcing a sufficiently
large integer. Thus {e j(a′′) : a′′ ∈ Y} ⊆ Atn j

(
s∗− j

)
. Since a∗ ∈ Z and s∗ is a Nash

equilibrium, then a∗ ∈ ∩ j∈N\i max[R∗j ,Y ]∩Z. Therefore by no-veto-power on Y, a∗ ∈
ϕ (R∗) .

State III. We can show g(s∗) = a∗ ∈ Z using the same argument as in State II. On
the other hand, for each i ∈ N, {ei(a′) : a′ ∈ Y} ⊆ Atni(s∗−i). Therefore, since s∗ is a
Nash equilibrium, a∗ ∈ ∩i∈N max[R∗i ,Y ]∩Z. By no-veto-power on Y, a∗ ∈ ϕ (R∗) .

Remark 1. By Theorem 2, implementation of a rule can be decomposed into two
processes: (i) the first is to identify an opportunity system supporting the rule and
(ii) the second is to use this opportunity system in the definition of the game form
implementing the rule.

The assumption |N| ≥ 3 plays a crucial role in Theorem 2. When there are two
agents, even if an opportunity rule satisfies no-veto-power, it may not be Nash imple-
mentable. This is shown by the next example.
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Example 4. This example is due to Moore and Repullo (1990), where they use this
example to show that in the two-agent case, Maskin monotonicity and no-veto-power
do not imply feasible Nash implementability. Let A ≡ Z ≡ {a,b}. Using the same
notational convention used before, let R0 ≡ ab and R′0 ≡ ba. Let R ≡ {R0,R′0} and
D ≡R2. Let ϕ be defined as follows: ϕ

(
R0,R′0

)
≡ {a,b}≡ ϕ

(
R′0,R0

)
, ϕ (R0,R0)≡

{a}, and ϕ(R′0,R
′
0) ≡ {b}. Then ϕ is supported by the following opportunity system

O:

O ≡ {({a},{a,b}) ,({a,b},{a}) ,({b},{a,b}) ,({a,b},{b}) ,({a,b},{a,b})},

Clearly, ϕ satisfies no-veto-power. Since A = Z, the domain satisfies WSV. However, ϕ
is not Nash implementable. This can be shown as follows. Suppose to the contrary that
there exists a game form G≡ (S,g) such that ϕ = g(NE (·)) . Then given (R0,R′0), there
exists a Nash equilibrium strategy s̄ such that g(s̄) = a. Since b P′0 a, then for all s2 ∈ S2,

g(s̄1,s2) = a. Also, given (R′0,R0), there exists a Nash equilibrium strategy s̄′ such that
g(s̄′) = a. Then similarly, we can show that for all s′1 ∈ S1, g(s′1, s̄

′
2) = a. Therefore, for

(s̄1, s̄′2), both individuals have attainable set {a}. Therefore, a ∈ g(NE(R′0,R
′
0)). This

contradicts ϕ(R′0,R
′
0) = {b}.

We next establish a direct logical relation between opportunity supportability in Y
and monotonicity on Y .

Theorem 3. If a rule is supported by an opportunity system in Y , then it is a sub-
correspondence of Y and satisfies monotonicity on Y . Conversely, when the domain
satisfies RD on Y , if a rule is a subcorrespondence of Y and satisfies monotonicity and
unanimity on Y , then it is supported by an opportunity system in Y .

Proof. We omit the trivial proof of the first statement.
Let D satisfy RD on Y . Let ϕ be a subcorrespondence of Y satisfying monotonicity

on Y . We show that the opportunity system constructed in Proof of Theorem 1 supports
ϕ . For each R ∈D , each a ∈ ϕ (R) , and each i ∈ N, let Oi(R,a)≡ SLC (Ri,a;Y )∪{a}.
Let Oϕ ≡ {O(R,a) : R ∈D and a ∈ ϕ(R)}. Since ϕ is a subcorrespondence of Y , Oϕ

is a opportunity system in Y .
Let R ∈ D and a ∈ ϕ(R) be given. We only have to show that O(R,a) satisfies (i)

and (ii) in Lemma 1. Clearly, by construction, for each i ∈ N, a ∈ max [Ri,Oi(R,a)] .
Hence part (i) holds. Let R′ ∈ D and a′ ∈ Z be such that a′ ∈ ∩i∈N max [R′i,Oi (R,a)] .
We prove part (ii) of Lemma 1 in two steps.

Step 1: If a′ +∈ ∩i∈N max[R′i,Y ], then a′ = a.

Assume a′ +∈ ∩i∈N max[R′i,Y ]. Suppose by contradiction a′ += a. Let i ∈ N be such
that a′ /∈max[R′i,Y ]. Then a′ R′i a and a Pi a′. By RD on Y , since a′ /∈max[R′i,Y ], then
there is ā ∈Y such that a Pi ā and ā P′i a′. Hence ā ∈ SLC(Ri,a;Y )⊆Oi (R,a) and ā P′i
a′. This contradicts a′ ∈max [R′i,Oi (R,a)] .

Step 2: a′ ∈ ϕ(R′).
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By Step 1, a′ ∈ ∩i∈N max[R′i,Y ] or a′ = a. In the former case, a′ ∈ ϕ(R′) by una-
nimity on Y . Now consider the latter case a′ = a.

Since a∈∩i∈N max [R′i,Oi (R,a)] , then for each i∈N, SLC(Ri,a;Y )⊆ LC(R′i,a;Y ).
If there exist i∈N and â∈ LC(Ri,a;Y )\LC(R′i,a;Y ), then, â Ii a and â P′i a. And by

RD on Y , there is ā ∈Y such that a Pi ā and ā P′i a, contradicting a ∈max[R′i,Oi(R,a)].
Therefore, for each i ∈ N, LC(Ri,a;Y ) ⊆ LC(R′i,a;Y ). Since a′ = a, a ∈ ϕ(R) and ϕ
satisfies monotonicity on Y , then a′ ∈ ϕ(R′).

4 Applications and Further Results in Economic Environments

In this section, we assume that A is a subset of a topological vector space. For simplic-
ity, we consider the case when A is a subset of a Euclidean space Rl with l ∈N∪{∞}.

Additional Properties of Preferences

Associated with the added structure of the alternative space A, there are some
widely considered properties of preferences. A preference R0 is continuous if for each
z ∈ A, both SUC(R0,z) and SLC(R0,z) are open. It is convex if for each pair z,z′ ∈ A
and each λ ∈ [0,1] with z R0 z′, λ z+(1−λ )z′ R0 z′. It is strictly convex if for each pair
z,z′ ∈ A and each λ ∈ (0,1) with z R0 z′ and z += z′, λ z +(1−λ )z′ P0 z′. It is locally
non-satiated if for each z∈ A and each open neighborhood U ⊆ A of z, there is z′ ∈U

such that z′ P0 z.
Let Y be a subset of A that does not have any isolated point. A preference R0 has

no non-global-satiation over Y if for each z ∈ Y with z /∈ max[R0,Y ]7 and each open
neighborhood U ⊆ A of z, there is z′ ∈ U ∩Y such that z′ P0 z. Thus R0 may have
a “global satiation point” over Y , z ∈ max[R0,Y ], but it cannot have any local satia-
tion point that is not a global satiation point. Examples are monotonic preferences,
single-peaked preferences, multiple-peaked preferences where all peak points are in-
different, etc. When Y = A, local non-satiation implies no non-global-satiation over
A but the converse does not hold (for example, consider single-peaked preferences).
A preference R0 is conditionally non-inverse-satiated over Y if for each pair z,z′ ∈ Y
with z R0 z′ and z += z′ and each open neighborhood U ⊆ A of z′, there is z̄ ∈ U ∩Y
such that z P0 z̄ (when z P0 z′, this requirement is trivial because we may let z̄ = z′).
Thus any alternative with a non-singleton lower contour set (or indifference set, resp.)
has an inferior alternative in any of open neghborhoods of each element in the lower
contour set (or indifference set, resp.). Note that if a preference satisfies condition
non-inverse-satiation over Y , then it cannot have two minimal elements in Y . Thus the
domain satisfies single-minimum over Y . For example, in exchange economies with
two private goods, convex and conditionally non-inverse-satiated preferences cannot
have two indifferent alternatives with zero consumption of a good.

7Without this condition, the property is too strong. This is because when Y is closed and R0 is
continuous, z can be R0-maximal in Y and in this case, the condition to follow will not hold.
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4.1 Semi-Individualistic Environments

Alternatives in standard economic environments have both public and private compo-
nents. To capture this aspect and also to differentiate various examples, the following
domain property is useful. A domain D is semi-individualistic if there exist a nontriv-
ial partition Π≡ {π1, · · · ,πp} of N (nontriviality means p≥ 2) and (p+1)-component
sets denoted by X0,X1, · · · ,Xp such that A≡X0×X1× · · ·×Xp and for each R∈D , each
q ∈ {1, · · · , p}, and each pair z ≡ (x0,x1, · · · ,xp), z′ ≡ (x′0,x

′
1, · · · ,x′p) ∈ A, whenever

(x0,xq) = (x′0,x
′
q), all agents in πq are indifferent between z and z′. When each group

of the partition Π is a singleton, we say D is individualistic. An element wq ∈ Xq

is a never-a-best bundle for πq over Y if for each R ∈ D , each x0 ∈ X0, and each
x−0,q ∈ Πq′∈{1,...,p}\{q}Xq′ , there exist i ∈ πq and z ∈ Y such that z Pi (x0,xq,x−0,q).8

Note that each never-a-best bundle over Y can never be a part of a best alternative over
Y , whatever other components are combined with it.

When a domain is semi-individualistic with respect to both Π and Π′, the domain
is also semi-individualistic with respect to the coarsest common refinement of the two
partition. Therefore, for each semi-individualistic domain, there is the unique finest
partition with respect to which it is semi-individualistic.

Proposition 2. If a domain is composed of profiles of preferences that satisfy conti-
nuity, no non–global-satiation and conditional non-inverse-satiation over Y , then the
domain satisfies RD and single-minimum over Y .

Proof. Let D be a domain composed of profiles of preferences that satisfy continu-
ity, no non-global-satiation over Y and conditional non-inverse-satiation over Y . Let
R,R′ ∈D , i ∈ N, and z,z′ ∈Y be such that z Ri z′ and z′ P′i z. By continuity of R′i, there
is an open neighborhood U of z′ such that U ∩Y ⊆ SUC(R′i,z;Y ). Since Ri is condi-
tionally non-inverse-satiated over Y, there is z̄∈U ∩Y such that z Pi z̄. Therefore, z Pi z̄
and z̄ P′i z. Assume z /∈max[Ri,Y ]. By continuity of R′i, there is an open neighborhood
U ′ of z such that U ′ ∩Y ⊆ SLC(R′i,z

′;Y ). Since Ri has no non-global-satiation over Y
and z /∈max[Ri,Y ], there is z̄′ ∈U ′ ∩Y such that z̄′ Pi z. Therefore z̄′ Pi z and z′ P′i z̄′.

Single-minimum over Y follows from conditional non-inverse-satiation over Y .

Proposition 3. If a domain is semi-individualistic with respect to a partition Π and
each group in Π has a never-a-best bundle over Y , then the domain satisfies WSV on
Y .

Proof. Let D be semi-individualistic with respect to a partition Π ≡ {π1, · · · ,πp}
of N and X0,X1, · · · ,Xp. Thus A ≡ X0×X1× · · ·×Xp. For each q ∈ {1, · · · , p} , let
wq ∈ Xq be never-a-best for πq over Y . For each z ≡ (x0,x1, · · · ,xp) ∈ Y , each q ∈
{1, · · · , p}, and each i ∈ πq, let ei(z) ≡ (x0,w1, . . . ,wq−1,xq,wq+1, . . . ,wp). Then by
semi-individualisticity, for each R ∈D , z Ii ei(z). For each q′ += q, since wq′ is never-a-
best for πq′ over Y , then there exist j ∈ πq′ and z′ ∈ Y such that z′ Pj ei(z).

8Note the difference between never-a-best bundles and never-a-best alternatives.

14



Next are some well-known examples of economic environments where the two
propositions and our general results in Section 3 apply.

Example 5. [Classical Private Goods Economy] There are m ∈ N private goods. For
each i ∈ N, let Xi ≡ Rm

+. Let ωi ∈ Xi be the initial endowment of i. Let X0 ≡ ∅ and
A≡R|N|×m

+ . Let T ⊆Rm be the production possibility set and Z ≡ {(xi)i∈N ∈R|N|×m
+ :

∑i(xi −ωi) ∈ T} the set of feasible allocations. Let D be the class of all profiles
of preferences over A that satisfy the following property: for each i ∈ N and each pair
z≡ (x j) j∈N ,z′ ≡ (x′j) j∈N ∈ A, if xi = x′i, then i is indifferent between z and z′. Then D is
individualistic with respect to the finest partition. Assume further that each preference
in the domain satisfies continuity, local non-satiation, and conditional non-inverse-
satiation over A. Then each preference in the domain has no non-global-satiation over
A. Therefore, by Proposition 2, D satisfies RD and single-minimum over A. Since
preferences are locally non-satiated, then for each i ∈ N, any bundle for agent i is
never-a-best bundle for i over A. Thus by Proposition 3, D satisfies WSV on A.
If all preferences in D satisfy, in addition, monotonicity and convexity, then D has
no non-global-satiation “over Z” and so by Proposition 2, D satisfies RD and single-
minimum over Z.9 Since for each i ∈ N, there is a bundle, e.g. 0 ∈ Rm

+, which is a
never-a-best bundle for i over Z, by Proposition 3, D satisfies WSV on Z.

Example 6. [Classical Public Goods Economy] There are m ∈ N private goods and
l ∈ N public goods. For each i ∈ N, let Xi ≡ Rm

+ be i’s private goods consumption
space and ωi ∈ Rm·l

+ i’s endowment. Let Y ≡ Rl
+ be the public goods consumption

space. Let T ⊆ Rm·l be the production possibility set and Z ≡ {(x1, · · · ,xn,y) ∈ A :
((∑i xi,y)−∑i ωi)∈ T} the set of feasible allocations. Let D be the class of all profiles
of preferences over A that satisfy the following property: for each i ∈ N and each
pair z ≡ ((x j) j∈N ,y),z′ ≡ ((x′j) j∈N ,y′) ∈ A, and each R ∈ D , if (xi,y) = (x′i,y

′), i is
indifferent between z and z′, that is, z Ii z′. Then D is individualistic with respect
to the finest partition. Assume further that each preference satisfies continuity, local
non-satiation, and conditional non-inverse-satiation over A. Then as in the previous
example, each preference in the domain has no non-global-satiation over A. Therefore,
by Proposition 2, D satisfies RD and single-minimum over A. Since preferences are
locally non-satiated, then for each i ∈ N, any private bundle for agent i is never-a-best
bundle for i over A. Thus by Proposition 3, D satisfies WSV on A.
Assume that all preferences in D satisfy, in addition, monotonicity and convexity and
that zero private consumption 0 ∈ Rm

+ is a never-a-best bundle for each agent over Z.
Then D has no non-global-satiation “over Z” and so by Proposition 2, D satisfies RD
and single-minimum over Z. Since for each i∈N, there is a bundle, e.g. 0∈Rm

+, which
is a never-a-best bundle for i over Z, by Proposition 3, D satisfies WSV on Z.

Example 7. [Single-Peaked Preferences] Let A = Z ≡ R (we can also consider the
9Without either monotonicity or convexity, we can find preferences that have non-global satiation

points over Z.
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general case of multi-dimensional alternative space). Assume that each agent has a
single-peaked preference over A, R0, that is, there is a peak location x0 ∈ [a,b] such
that i’s welfare strictly increases by moving toward x0 in either direction. Given such
a domain, each preference has the unique global satiation point and no other local
satiation point. Thus it has no non-global-satiation point. Since moving away from
the peak always decreases the welfare and R is open, the preference has no minimal
point and so it satisfies conditional non-inverse satiation. This domain is not semi-
individualistic. Thus we cannot apply Proposition 3 to show WSV. However, because
A = Z, WSV on Z is trivially satisfied. Note that openness of A = Z plays an important
role for showing RD.

4.2 Closed or Convex Opportunity Systems and Asymptotically Feasible Nash Imple-
mentation

The opportunity sets used for proving Theorem 1 are not closed in economic environ-
ments. This was inevitable to prevent unwanted alternatives from becoming opportu-
nity equilibria while constructing a generally applicable opportunity system. A closed
opportunity system is an opportunity system with closed opportunity sets. We next
investigate what rules are represented by a closed opportunity system.

The next axiom is crucial. It says that if an alternative is considered as being
desirable, then any other alternative that is indifferent to this alternative for all agents
should also be considered as being desirable.

Pareto Indifference. For each R ∈D and each pair z,z′ ∈ Z, if z ∈ ϕ(R) and for each
i ∈ N, z′ Ii z, then z′ ∈ ϕ(R).

Although this axiom sounds very reasonable, some well known rules violate it.
No-envy rule is an example.

We now strengthen Theorem 1 and show closedness of opportunity system after fo-
cusing on Pareto indifferent rules and considering different domain conditions. Unlike
in Theorem 1, we do not need unanimity or no-punishment on A for the next result.

The following additional domain properties are important.

Weak Relative Denseness on Y. For each pair R,R′ ∈ D , each i ∈ N, and each pair
a,a′ ∈ Y , if a Ri a′ and a′ P′i a, then whenever a /∈max[Ri,Y ], there is ā ∈ Y such that
ā Pi a and a′ R′i ā′.

Uniform Peak on Y. For each pair R,R′ ∈D and each i ∈ N, max[Ri,Y ] = max[R′i,Y ].

Now we are ready to state the next result.

Theorem 4. Assume that D satisfies weak relative denseness and uniform peak on Y
and that all preferences in D are continuous. If a rule on D is Nash implementable
under the range-restriction of Y and satisfies Pareto indifference, then it is supported
by a closed opportunity system.
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Proof. Let ϕ be a rule on D satisfying the stated assumptions. Let O ≡ {(LC (Ri,a))i∈N :
R ∈ D and a ∈ ϕ (R)}. Let R ∈ D and a ∈ ϕ (R). Then clearly, for each i ∈ N,
a ∈ max[Ri,LC (Ri,a)] and so part (i) of Lemma 1 holds. To prove part (ii) of the
lemma, let R′ ∈ D and a′ ∈ Z be such that for each i ∈ N, a′ ∈ max[R′i,LC (Ri,a)].
Then a′ R′i a and a Ri a′.

Step 1. For each i ∈ N, a Ii a′.
Suppose to the contrary that there is i ∈ N such that a Pi a′ (note that if the indiffer-

ence a Ii a′ does not hold, then by a Ri a′, we have a Pi a′). This implies a′ /∈max[Ri,Y ].
Then by uniform peak condition for D , a′ /∈ max[R′i,Y ]. Therefore, by weak relative
denseness condition on D , there is ā ∈ Y such that ā P′i a′ and a Ri ā. This contradicts
a′ ∈max[R′i,LC(Ri,a)].

Step 2. a′ ∈ ϕ (R′) .
By Step 1 and Pareto indifference, a′ ∈ ϕ (R) . Let G ≡ (S,g) be a game form

implementing ϕ under the range-restriction of Y . Let s ∈ S be a Nash equilibrium at R
such that g(s) = a′. Then because s is a Nash equilibrium at R, for each i ∈ N and each
s′i ∈ Si, g(s′i,s−i) ∈ LC (Ri,a′). Since a′ Ii a, LC (Ri,a′) = LC (Ri,a) and so g(s′i,s−i) ∈
LC (Ri,a). Since a′ ∈max[R′i,LC (Ri,a)], then a′ = g(s) R′i g(s′i,s−i). Therefore, s is a
Nash equilibrium at R′ too. Since G implements ϕ , then a′ ∈ ϕ(R′).

Theorem 5. Assume that D satisfies RD on A and preferences in D are continuous
and locally non-satiated. If a rule on D is Nash implementable (without any range-
restriction) and satisfies Pareto indifference and no punishment on A, then it is sup-
ported by a closed opportunity system.

Proof. Let D satisfy RD on A. Let ϕ be a rule on D that is Nash implementable (under
no range-restriction) and satisfies Pareto indifference. Let G≡ (S,g) be the game form
implementing ϕ . For each R ∈ D , each z ∈ ϕ(R), and each i ∈ N, let Ōi(R,z) ≡
LC(Ri,z). Let Ō(R,z)≡ (Ōi(R,z))i∈N . Let O

ϕ ≡ {Ō(R,z) : R∈D ,z∈ ϕ(R)}. We only
have to show that for each R ∈ D and each z ∈ ϕ(R), Ō(R,z) satisfies (i) and (ii) of
Lemma 1.

Let R ∈ D and z ∈ ϕ(R). Then for each i ∈ N, by definition (Ōi = LC(Ri,z,Y )),
z ∈ max

[
Ri, Ōi(R,z)

]
and so (i) holds. Let R′ ∈ D and z′ ∈ Z be such that z′ ∈

∩i∈N max[R′i, Ōi(R,z)].

Step 1. For each i ∈ N, z′ Ii z.

Let i ∈ N. Note that z′ R′i z and z Ri z′. Suppose z Pi z′. Then z′ R′i z and z Pi z′.
By continuity of Ri, there is an open neighborhood U of z′ such that U ⊆ SLC(Ri,z).
By local non-satiation of R′i, there is z̄′ ∈U such that z̄′ P′i z′. Then z Pi z̄′ and z̄′ P′i z′,
contradicting z′ ∈max[R′i, Ōi] (recall Ōi = LC(Ri,z)).

Step 2. z′ ∈ ϕ(R′).
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By Step 1 and Pareto indifference, z′ ∈ ϕ(R). Note that for each i ∈ N, LC(Ri,z′) =
LC(Ri,z). Since ϕ is implemented by G≡ (S,g) and z′ ∈ ϕ(R), there is a Nash equilib-
rium strategy profile s∈ S such that g(s) = z′. Suppose that there exist i∈N and s′i ∈ Si

such that g(s′i,s−i) P′i z′. Then z′ Ri g(s′i,s−i) and g(s′i,s−i) P′i z′. By no punishment on
A, z′ /∈ min[Ri,A]. Hence applying part (i) of RD on A for the quodruple z′, g(s′i,s−i),
Ri, and R′i, there is z̄ ∈ A such that z′ Pi z̄ and z̄ P′i z′, contradicting z′ ∈ max[R′i, Ōi]
(recall Ōi = LC(Ri,z)). Therefore, s is a Nash equilibrium strategy profile for R′ too
and the result follows from Nash implementability.

The converse of Theorem 4 does not hold. We later show that in exchange economies,
no-envy rule is supported by a closed opportunity system but it does not satisfy Pareto
indifference.

When Y +⊂ Z, the outcome functions we used for the implementation of opportunity
rules associated with an opportunity system in Y may take infeasible values. We next
show that this infeasibility can be avoided approximately, when the opportunity system
has the convexity property. Formally, a system is called a convex opportunity system if
each opportunity set in a profile in the system is convex. Examples are Walrasian rule
in exchange economies, Lindahl rule in public goods economies, etc.

A rule ϕ is asymptotically feasibly Nash implementable with the range-restriction
of Y if there is a sequence of game forms (Gm ≡ (Sm,gm) : m ∈ N) such that for each
a ∈ Y\Z, there is m̄ such that when m ≥ m̄, a /∈ gm(Sm). When Z is compact and all
ranges of gm are compact, the convergence of (gm(Sm) : m ∈ N) to a subset of Z in
Hausdorff topology implies asymptotically feasible Nash implementability with the
range restriction of Y .

The next lemma is a well-known fact saying that for continuous and convex prefer-
ences, a local maximum over a convex opportunity set is a global maximum. Although
the proof is standard, we add it for completeness.

Lemma 2. Let B ⊆ A. Consider a continuous and convex preference relation R0.
If O0 ⊆ A is convex, z is an interior point of B and z ∈ max[R0,O0 ∩ B], then z ∈
max[R0,O0].

Proof. Let B, O0, z, and R0 be given as stated above. Assume z ∈ max[R0,O0 ∩B].
Suppose to the contrary that there exists z′ ∈ O0 such that z′ P0 z. Then by convexity
of O0, for all λ ∈ (0,1), λ z′ + (1− λ )z ∈ O0. Since z′ P0 z, then by convexity and
continuity of R0, for all λ ∈ (0,1), [λ z′+(1−λ )z] P0 z. Since z is an interior point of B,
there is λ ∈ (0,1) such that λ z′+(1−λ )z ∈O0∩B. This contradicts z ∈max[R0,O0∩
B].

We now show that under some additional but mild assumptions on the domain,
opportunity rules associated with a convex opportunity system are asymptotically fea-
sibly Nash implementable.
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Theorem 6. Assume that |N| ≥ 3 and Y is convex. Assume that there is a decreasing
sequence of subsets of Y , (Y k : k ∈ N,Y k ⊆ Y ), such that ∩k∈N[Y k ∩ Z] = Y ∩ Z, for
each k ∈ N, all alternatives of Y ∩Z are in the interior of Y k, and domain D satisfies
WSV on Y k.
Then if a rule on D is supported by a convex opportunity system in Y and satisfies
no-veto-power on Y , then it is asymptotically feasibly Nash implementable under the
range-restriction of Y .

Proof. Let Y , (Y k : k ∈ N,Y k ⊆ Y ) and D be given as stated in the theorem. Let ϕ
be a rule on D that is supported by a convex opportunity system O in Y and sat-
isfies no-veto-power on Y . In order to show that ϕ is asymptotically feasibly Nash
implementable, we make use of the following variant of the opportunity game form in
Definition 1 that is used in the proof of Theorem 2.

For each k ∈ N, let Y k ≡ Y ∩ Zk and let Gk,O be the game form defined by the
following strategy sets and outcome function. For each i ∈ N, let Si = O×Y k×N be
i’s strategy set with generic element si = (Oi,zi, ti). Let gk : S→A be the same outcome
function as in Definition 1 except for the above difference in its domain: that is, gk is
defined by the following states.

State I: There is (O,a, t)∈O×Y k×Z such that a∈∩i∈NOi∩Z and for each i∈N,

(Oi,ai, ti) = (O,a, t). Then let
gk(s)≡ a.

State II: There exist (O,a, t) ∈O×Y k×Z and i ∈ N such that a ∈ ∩ j∈NO j∩Z, for
each j += i, (O j,a j, t j) = (O,a, t), and (Oi,ai, ti) += (O,a, t). Then let

gk(s)≡
{

ei
(
ai) , if ai ∈ Oi,

a, otherwise,

where ei
(
ai) ∈ Y k is such that for each R ∈ D , (i) ei(ai) Ii ai and (ii) either ei(ai) ∈ Z

or for some j += i and some b ∈ Y k, b Pj ei(ai) (note that such ei(ai) exists because of
WSV on Y k).

State III: In all other cases, let

gk(s)≡ eh

(
ah

)
,

where h≡min
{

i ∈ N : ti ∈max
{

t1, · · · , tn}}
.

In what follows, we fix R∗ ∈D and show ϕ(R∗) = gk(NE(Gk,O ,R∗)) in two steps.

Step 1: ϕ (R∗)⊆ gk (
NE

(
Gk,O ,R∗

))
.

Let a∗ ∈ ϕ(R∗). Then a∗ ∈ Z and there exists O ∈ O such that for each i ∈ N,

a∗ ∈max[R∗i ,Oi]. Since O is an opportunity system in Y , a∗ ∈Y ∩Z. Thus a∗ ∈Y k∩Z.
For each i ∈ N, let si ≡ (O,a∗,1). Then State I applies at s.
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For each i ∈ N, Atni (s) =
{

ei (a′) : a′ ∈ Oi∩Y k}∪ {a∗}. Since a∗ ∈ max[R∗i ,Oi]
and for each a′ ∈Oi∩Y k, a′ I∗i ei (a′) , then gk(si,s−i) = a∗ ∈max [R∗i ,Atni (s)]. There-
fore s ∈ NE(Gk,O ,R∗) and a∗ ∈ gk(NE(Gk,O ,R∗)).

Step 2: gk (
NE

(
Gk,O ,R∗

))
⊆ ϕ (R∗) .

Let a∗ ∈ gk(NE(Gk,O ,R∗)) and s∗ ∈ NE(Gk,O ,R∗) be such that gk (s∗) = a∗. We
consider each of the three possible states one by one.

State I: There is (O,a, t)∈O×Y k×Z such that a∈∩i∈NOi∩Z and for each i∈N,

s∗i = (O,a, t).

Clearly, then a = a∗ and for each i ∈ N, Atni (s∗) =
{

ei (a′) : a′ ∈ Oi∩Y k}∪{a∗}.
Since s∗ is a Nash equilibrium and for each a′ ∈ Oi ∩Y k, ei (a′) I∗i a′, then for each
i ∈ N, a∗ ∈ max[R∗i ,Oi ∩Y k]. Since a∗ ∈ Y ∩ Z, a∗ is an interior point of Y k. Thus
by convexity of Oi, applying Lemma 2, a ∈ max[R∗i ,Oi]. Since ϕ is supported by O ,
a = a∗ ∈ ϕ(R∗).

State II: There exist (O,a, t) ∈O×Y k×Z and i ∈ N such that a ∈ ∩ j∈NO j∩Z, for
each j += i, s∗j = (O,a, t), and s∗i = (O′,a′, t ′) += (O,a, t).

We first show that the Nash equilibrium outcome gk(s∗) = a∗ is feasible. Note that
gk(s∗) = a or ei(a′). Since a ∈ Z, then if gk(s∗) = a∗ /∈ Z, gk(s∗) = ei(a′) and by WSV
on Y k, there exist j += i and b ∈ Y k such that b P∗j a∗. Since j can attain e j(b), this
contradicts s∗ being a Nash equilibrium.

For each j += i, {e j(b) : b ∈ Y k}⊆ Atni (s∗) . Since a∗ ∈ Z and s∗ is a Nash equilib-
rium, a∗ ∈ ∩ j∈N\{i} max[R∗j ,Y

k]∩Z. Since a∗ ∈Y ∩Z, then a∗ is an interior point of Y k.
Thus, since Y is convex and Y k∩Y = Y k, then by Lemma 2, a∗ ∈ ∩ j∈N\{i} max[R∗j ,Y ].
Therefore, by no-veto-power on Y , a∗ ∈ ϕ (R∗) .

State III. We can show a∗ = gk(s∗) ∈ Z using the same argument as in State II. On
the other hand, for each i ∈ N, Atni (s) = {ei(a′) : a′ ∈ Y k}. Then since s∗ is a Nash
equilibrium, a∗ ∈ ∩i∈N max[R∗i ,Y

k]∩ Z. Using Lemma 2 and the same argument as
in State II, we can show a∗ ∈ ∩ j∈N max[R∗j ,Y ]∩ Z. Hence by no-veto-power on Y,

a∗ ∈ ϕ (R∗) .

In classical private goods economies, Walrasian rule is supported by the convex op-
portunity system consisting of Walrasian budget sets and so is asymptotically feasibly
Nash implementable. We will provide some other examples in Section 4.3. In classical
public goods economies, Lindahl rule is asymptotically feasibly Nash implementable.

4.3 Opportunity Rules in Exchange Economies

In this section, we focus on exchange economies with m goods and provide some
examples of opportunity rules. Let Ω ∈ Rm

+ be the social endowment. Let A ≡ Rm·n
+ ,

Z ≡ {z ∈ Rm·n
+ : ∑zi ≤Ω} and Z0 ≡ {x ∈ Rm

+ : 0≤ x≤Ω}.
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Assume that agents have individualistic preferences: for each i ∈ N and each pair
z≡ (x j) j∈N ,z′ ≡ (x′j) j∈N ∈A, if xi = x′i, then i is indifferent between z and z′. Then each
preference relation R0 over A can also be considered as a preference relation over Rm

+
without any confusion. Let D be the domain of profiles of individualistic preferences
that satisfy continuity, monotonicity and convexity.

Walrasian, W(·). For each R ∈ D , let W (R) ≡ {z ∈ Z : there is p ∈ ∆m−1 such that
for each i ∈ N, p · zi ≤ p ·Ω/n and for each z′i ∈ Rm

+ with p · z′i ≤ p ·Ω/n, zi Ri z′i}.

Constrained Walrasian, Wc (·). For each R ∈ D , let W c (R) ≡ {z ∈ Z : there is p ∈
∆m−1 such that for each i ∈ N, p · zi ≤ p ·Ω/n and for each z′i ∈ Z0 with p · z′i ≤ p ·Ω/n,
zi Ri z′i}.

Pareto, P(·). For each R ∈D , let P(R)≡ {z ∈ Z : there is no z′ ∈ Z such that for each
i ∈ N, z′i Ri zi and for some j ∈ N, z′j Pj z j}.

Strong Pareto, P∗(·). For each R ∈ D , let P∗ (R) ≡ {z ∈ P(R) : for each i ∈ N, zi Pi

0}.

No-Envy, F(·). For each R ∈D , let F (R)≡ {z ∈ Z : for each pair i, j ∈ N, zi Ri z j}.

Super No-Envy, K(·). For each R ∈ D , let K (R) ≡ {z ∈ Z : for each i ∈ N and each
x ∈ co{z1, . . . ,zn}, zi Ri x}, where co{z1, . . . ,zn} is the set of convex combinations of
z1, . . . ,zn.

Equal division lower bound rule, Bed (·). For each R ∈D , let Bed (R)≡ {z ∈ Z : for
each i ∈ N, zi Ri Ω/n}.

We denote the intersection of two rules ϕ (·) and ϕ ′ (·) by ϕϕ ′ (·) whenever it is
well-defined: for example, FP(·), FP∗ (·), BedP(·), etc. We give examples of oppor-
tunity systems that support the above rules.

Example 8. [Walrasian and Constrained Walrasian Rules] For each price vector p ∈
∆m−1, let B(p) = {x ∈ Rm

+ : p · x ≤ p · Ω/n} be the budget set with price p. Let
Bc(p) = {x ∈ Z0 : p · x ≤ p ·Ω/n} be the intersection of B(p) and Z0, called the con-
strained budget set with price p. We extend these two sets as sets of alternatives (al-
locations) which give the same opportunities. For each i ∈ N, let Bi(p) ≡ {z ∈ A :
zi ∈ B(p)} and Bc

i (p) ≡ {z ∈ Z : zi ∈ Bc(p)}. Then Bi (p) gives the same opportunity
for agent i as B(p) does and Bc

i (p) gives the same opportunity as Bc (p) does. Let
OW ≡ {(Bi(p))i∈N : p ∈ ∆m−1} and OW c ≡ {(Bc

i (p))i∈N : p ∈ ∆m−1}. Then it can be
easily shown that Walrasian rule is supported by OW and constrained Walrasian rule is
supported by OW c.

Example 9. [No-Envy and Super No-Envy Rules] Let Π be the set of all permutations
on N. For each z ∈ Z and each i ∈ N, let OF

i (z) ≡ {zπ : for all π ∈ Π}, where for
each j ∈ N, the jth component of zπ is given by zπ( j). And let OK

i (z) ≡ {z′ ∈ Z : z′i ∈
co{z1, · · · ,zn}}. Let OF ≡ {(OF

i (z))N : z ∈ Z} and OK ≡ {(OK
i (z))N : z ∈ Z}. Then it
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is easy to show that no-envy rule F is supported by OF and super no-envy rule K is
supported by OK .

Example 10. [Equal Division Lower Bound Rule] Let zed ≡ (Ω/n, . . . ,Ω/n) be the
equal division allocation. For each z ∈ Z and each i ∈ N, let OBed

i (z) ≡ {z,zed}. Let
OBed ≡ {(OBed

1 (z), · · · ,OBed
n (z)) : z ∈ Z}. It is easy to show that equal division lower

bound rule is supported by OBed .

Example 11. [Pareto and Strong Pareto Rules] Let OP ≡ {(O1(p,z), · · · ,On(p,z)) :
there exists z ∈ Z and p ∈ ∆m−1 such that for all i ∈ N, Oi(p,z) = {z′ ∈ Z : z′i ∈
Bt(p,zi)}. Let OP∗ ≡ {(O1(p,z), · · · ,On(p,z)) : there exists z ∈ Z and p ∈ ∆m−1 such
that for all i ∈ N, Oi(p,z) = {z′ ∈ Z : p · z′i ≤ p · zi += 0}. We show that Pareto rule P
and strong Pareto rule P∗ are supported by OP and OP∗ respectively. Since the proofs
for the two rules are similar, we only show this for P∗.
Suppose z ∈ P∗(R). Then by definition of P∗, there exists a price vector p ∈ ∆m−1

such that for all i ∈ N, p · zi > 0 and zi ∈ max[Ri,Bt(p,zi)]. Then for all i ∈ N, z ∈
max[Ri,Oi(p,z)]. Hence z ∈ ϕOP∗ (R). Suppose z ∈ ϕOP∗ (R). Then there exists z′ ∈ Z
and p ∈ ∆m−1 such that for all i ∈ N, p · z′i > 0 and zi ∈ max[Ri,O(p,z′)].Then by
strict monotonicity of preference, if there exists z′′ ∈ Z such that for all i ∈ N, z′′i Ri

zi and for some j ∈ N, z′′j Pj z j, then for all i ∈ N, p · z′′i ≥ p · z′i and for some j ∈ N,

p · z′′j > p · z′j. This implies p ·∑z′′j = p ·Ω > p ·Ω = p ·∑z′j. This is a contradiction.
Therefore z ∈ P∗(R).

Example 12. [The Intersection of No-Envy and Pareto Rules] Let Bt
0(p,zi) = {z′i ∈

Z0 : p · z′i < p · zi}. For each z ∈ Z and each p ∈ ∆m−1, let Oi(p,z) ≡ {z′ ∈ Z : z′i ∈
Bt

0(p,zi)∪{z1, · · · ,zn}} for all i ∈ N. Let OFP ≡ {(Oi(p,z))N : z ∈ Z, p ∈ ∆m−1}. It is
clear that OFP is a feasible and simple opportunity system. In the following argument
we prove that ϕOFP = FP.
If z ∈ FP(R), then it is easy to show that there exists p ∈ ∆m−1 such that for all
i ∈ N, zi ∈ max[Bt(p,zi)∪{z1, · · · ,zn};Ri] hence zi ∈ max[Bt

0(p,zi)∪{z1, · · · ,zn};Ri].
Therefore z ∈ ϕOFP(R). To prove the converse inclusion, let R = (Ri)N ∈ RN and
z ∈ ϕOFP(R). Then z ∈ Z and there exists z′ ∈ Z and p ∈ ∆m−1 such that for all i ∈ N,

zi ∈ max[Bt
0(p,z′i)∪ {z′1, · · · ,z′n};Ri]. Then since ∑N zi = ∑N z′i = Ω, whenever there

exists i ∈ N such that p · zi > p · z′i, there exists j ∈ N such that p · z j < p · z′j and so
by the strict monotonicity of preference, z j /∈max[Bt

0(p,z′j);R j]. This contradicts zi ∈
max[Bt

0(p,z′i)∪{z′1, · · · ,z′n};Ri]. Hence for all i ∈ N, p · zi ≤ p · z′i. Therefore for all i ∈
N, since zi ∈M[Bt

0(p,z′i)∪{z′1, · · · ,z′n};Ri] and preferences are strict monotonic, p ·zi =
p · z′i. This implies that for all i ∈ N, zi ∈ {z′1, · · · ,z′n}: i.e. {z1, · · · ,zn} ⊆ {z′1, · · · ,z′n}.
Therefore for all i∈N, Bt(p,zi) = Bt(p,z′i) and zi ∈max[Bt

0(p,z′i)∪{z′1, · · · ,z′n};Ri] im-
plies that zi ∈max[Bt(p,zi);Ri] and zi ∈max[{z1, · · · ,zn};Ri]. This implies z ∈ FP(R).

Example 13. [The Intersection of Equal Division Lower Bound and Pareto Rules] For
each z ∈ Z and each p ∈ ∆m−1, let Oi(p,z)≡ {z′ ∈ Z : z′i ∈ Bt(p,zi)∪{Ω/n}}}, for all
i ∈ N. Let OBedP = {(Oi(p,z))i∈N : p ∈ ∆m−1,z ∈ Z}. It is clear that OBedP is a feasible,
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closed, and simple opportunity system. We have only to prove that ϕOBedP = BedP.
Let z ∈ BedP(R). Then since z ∈ P(R), there exists a normal vector p ∈ ∆m−1 such
that for all i ∈ N, zi ∈ max[Bt(p,zi);Ri]. Then it is clear by definition of BedP that for
all i ∈ N, zi ∈ max(Ri;Bt(p,zi)∪ {Ω/n}). Therefore z ∈ ϕOBedP(R). In order to prove
the converse inclusion, let R = (Ri)N ∈RN and z ∈ ϕOBedP(R). Then z ∈ Z and there
exists z′ ∈ Z and p ∈ ∆m−1 such that for all i ∈ N, zi ∈ max[Bt(p,z′i)∪ {Ω/n};Ri].
Since zi ∈ max[Bt(p,z′i)∪ {Ω/n};Ri] and preferences are monotonic, for all i ∈ N,
p · zi ≥ p · z′i. Since ∑zi = ∑z′i = Ω, for all i ∈ N, p · zi = p · z′i. Hence for all i ∈ N,

zi ∈max[Bt(p,zi)∪{Ω/n};Ri]. This implies that z ∈ P(R) and for all i ∈ N, zi Ri Ω/n.
Therefore z ∈ BedP(R).
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