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1 Introduction

We propose a revised version of the perfect Bayesian equilibrium in general multi-period

games with observed actions. Fudenberg and Tirole (1991) formulated the perfect Bayesian

equilibrium in the setting of finite games that allow only a finite number of types and strate-

gies. In finite games, this perfect Bayesian equilibrium satisfies criteria of rational solution

concepts such as weak consistency and the subgame perfect Nash equilibrium condition.

However, it might not satisfy these criteria in general games that allow a continuum of types

and strategies. To solve this problem with the perfect Bayesian equilibrium, we revise its

definition by replacing Bayes’rule with a regular conditional probability. We refer to this

revised version of the perfect Bayesian equilibrium as the perfect regular equilibrium. We

show that it satisfies these criteria of rational solution concepts in general multi-period games

with observed actions. In addition, this perfect regular equilibrium is equivalent to a simple

version of the perfect Bayesian equilibrium in finite games. Therefore, we conclude that the

perfect regular equilibrium extends the perfect Bayesian equilibrium into general games as

a simple version of it.

In game theory, most of the solution concepts were developed as refinements of the Nash

equilibrium introduced by Nash (1951). The Nash equilibrium, as the most popular solution

concept, embodies the behavior of rational players. So, it consists of a set of strategies for

each player such that each strategy is the best response to the other strategies. This Nash

equilibrium became known as a compelling condition for rational strategies, and thus it

became a necessary condition for rational solution concepts. However, the Nash equilibrium
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was defined in strategic form games in which all players chose their strategies once and

simultaneously. Hence, this solution concept might not properly predict players’behavior in

multi-period games where players choose their actions in each period after observing actions

taken before. In multi-period games, players could also have different incentives in different

periods. Since the Nash equilibrium requires all players to decide what actions they should

take once and simultaneously, it might not reflect these changes in incentives in multi-period

games. As a result, a Nash equilibrium could include incredible threats.

The subgame perfect Nash equilibrium by Selten (1975) improved the Nash equilibrium.

The basic idea behind this solution concept was to break a whole game into subgames

and to find Nash equilibria in every subgame. When we analyze each of the subgames

separately, we are able to consider players’ incentives within those subgames. Thus, if

situations in different periods lead to the formation of different subgames, then the subgame

perfect Nash equilibrium could reflect different incentives in different periods in multi-period

games. As a result, it could exclude incredible threats1 . Here, subgames can be regarded

as complete units in the analysis of games in that we can find Nash equilibria, which reflect

players’ rational behavior, within subgames without referring to any information outside

those subgames. In games with incomplete information, however, these complete units of

analysis are too large to catch each of the players’incentives separately. So, the subgame

perfect Nash equilibrium might fail to reflect players’incentives in different periods.

1 To find a subgame perfect Nash equilibrium in practice, it is convenient to analyze subgames from back
to front. This is because, by analyzing backward, we can naturally consider players’future incentives in any
period. In this sense, we may think the subgame perfect Nash equilibrium is a combination of the Nash
equilibrium and backward induction.
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Perfect Bayesian equilibrium and sequential equilibrium introduced by Kreps and Wilson

(1982) improved the subgame perfect Nash equilibrium. These solution concepts break a

whole game into information sets and search strategies that satisfy sequential rationality at

each information set. The sequential rationality is a condition for the strategies of rational

players and requires that each strategy be the best response to the other strategies at each

of the information sets. This sequential rationality, therefore, inherits the spirit of the Nash

equilibrium condition. As units of analysis in multi-period games, information sets are small

enough to catch each of the players’ incentives separately. Consequently, these solution

concepts could reflect different incentives in different periods in multi-period games, and thus

they could exclude incredible threats. Particularly in finite games, these solution concepts

can exclude all of the incredible threats. In general games that allow a continuum of types

and strategies, however, these solution concepts might cause more serious problems than

including incredible threats because of their new approaches through information sets.

Information sets can be regarded as the smallest units of analysis. In games, players

cannot distinguish decision points in a common information set. So, whatever action they

choose, the same action must be applied to all decision points in a common information

set. That is, players can choose only one action at each of their information sets. Hence,

information sets would be the smallest units used to analyze players’rational behavior.

These smallest units of analysis, however, might be smaller than complete units of analy-

sis. For this reason, we might need more information to find rational strategies at each

information set. In games, suffi cient information to find rational strategies at each of the
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information sets encompasses players’beliefs regarding probability distributions over infor-

mation sets. Accordingly, the perfect Bayesian equilibrium and the sequential equilibrium

require the players’beliefs to be part of these solution concepts themselves. Note that these

solution concepts embody players’rationalities in games. Therefore, the perfect Bayesian

equilibrium and the sequential equilibrium propose conditions for rational beliefs as they

propose sequential rationality, which is the condition for rational strategies.

In general games, however, those conditions for rational beliefs might cause problems

with these solution concepts. The perfect Bayesian equilibrium and the sequential equi-

librium propose reasonability and consistency, respectively, as their conditions for rational

beliefs. These conditions are defined based on Bayes’rule. However, Bayes’rule has limited

application in practice and this limited application could result in these solution concepts

being incapable of satisfying the criteria of rational solution concepts in general games. In

this paper, we propose two criteria of rational solution concepts in general games, namely,

weak consistency and the subgame perfect Nash equilibrium condition. Therefore, the lim-

ited application of Bayes’rule might mean that these solution concepts are unable to satisfy

the weak consistency and the subgame perfect Nash equilibrium condition in general games.

The weak consistency is a criterion of the rational beliefs that places restrictions only on

the beliefs on the equilibrium path. This condition for weak consistency is a requirement for

all criteria related to rational beliefs. Thus, it is a necessary condition for rational beliefs.

However, it is weak in that it does not locate any restriction on the beliefs off the equilibrium

path. The subgame perfect Nash equilibrium condition, on the other hand, is a criterion
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of the rational strategies. It places restrictions on all actions on the equilibrium path.

Moreover, it sets restrictions on some of the actions off the equilibrium path, and in this way

it can indirectly inspect some of the beliefs off the equilibrium path. Consequently, it can

compensate for the weakness of the weak consistency, and therefore these two conditions can

serve as the criteria of the rational solution concepts. In fact, the sequential rationality is also

known as an important criterion of the rational solution concepts in multi-period games. This

condition, however, is a requirement for the perfect Bayesian equilibrium and the sequential

equilibrium. Furthermore, it is a requirement for our solution concept, namely, the perfect

regular equilibrium. So these solution concepts always satisfy the sequential rationality, and

thus we do not use this criterion to evaluate the rationality of these solution concepts.

Perfect regular equilibrium satisfies the weak consistency and the subgame perfect Nash

equilibrium condition in general games, and thus it solves the incapability problem with the

perfect Bayesian equilibrium and the sequential equilibrium. The perfect regular equilibrium

is defined as a pair of beliefs and strategies such that the beliefs are updated from period to

period according to the regular conditional probability and taking the beliefs as given, no

player prefers to change its strategy at any of its information sets. So, the perfect regular

equilibrium still breaks a whole game into information sets and searches strategies that satisfy

sequential rationality at each of the information sets just as those two solution concepts do.

However, this solution concept defines its condition for rational beliefs as not being based

on Bayes’rule, but rather on a regular version of the conditional probability. This regular

conditional probability does not have a limited application. Hence, the perfect regular
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equilibrium based on the regular conditional probability can always satisfy the two criteria

of the rational solution concepts in general games. Moreover, in finite games, the perfect

regular equilibrium is equivalent to a simple version of the perfect Bayesian equilibrium.

Therefore, this perfect regular equilibrium extends the perfect Bayesian equilibrium into

general games as a simple version of it.

The rest of the paper is organized as follows. Section 2 formulates a general multi-period

game with observed actions. Section 3 provides a simple extension of the perfect Bayesian

equilibrium in general games and then illustrates its incapability to satisfy the two criteria of

the rational solution concepts, namely, the weak consistency and the subgame perfect Nash

equilibrium condition. Section 4 formally defines the perfect regular equilibrium. Finally,

Section 5 shows that every perfect regular equilibrium satisfies these two criteria of the

rational solution concepts and concludes that a perfect regular equilibrium is an extended

and simple version of the perfect Bayesian equilibrium in general multi-period games with

observed actions.

2 General multi-period game with observed actions

We adopt the “multi-period games with observed actions”from Fudenberg and Tirole (1991)

and adapt it to general games that allow infinite actions and types, but only finite players.

Hence, like the game from Fudenberg and Tirole (1991), a general multi-period game with

observed actions is represented by five items: players, a type and state space, a probability

measure on the type and state space, strategies, and utility functions. Based on these items,
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we define two more items, namely, a system of beliefs and expected utility functionals. We

use all seven items to define the solution concept, namely, the perfect regular equilibrium.

Finally, based on this setting of the general game, we extend the definitions of the Nash

equilibrium and the subgame perfect Nash equilibrium. Consequently, this section is devoted

to defining the setting of the general multi-period game with observed actions and the basic

solution concepts.

In a general multi-period game with observed actions, there are a finite number of players

denoted by i = 1, 2, ..., I. Each player i has its type θi ∈ Θi and this type is its private

information as in Harsanyi (1967—68). In addition, there exists a state θ0 ∈ Θ0 and the

players do not have information about the actual state. Thus, each player has information

about its type θi, but no information about the other players’types and the state θ−i ∈ Θ−i =

Θ0 × (×i′ 6=iΘi′). We assume that Θ = ×Ii=0Θi is a non-empty metric space. Realizations θ

∈ Θ are governed by a probability measure η on the class of the Borel subsets2 ×Ii=0ß(Θi)

of Θ. Given players’types θi, a conditional probability measure of η exists and is denoted

by η−i : Θi × (×j 6=iß(Θj)) −→ [0, 1] so that for each θi ∈ Θi and B ∈ ×j 6=iß(Θj), η−i(θi;B)

represents a probability of B given θi.

The players play the game in periods t = 1, 2, ..., T where T ∈ N ∪ {∞}. In each period

t, all players simultaneously choose actions, and then their actions are revealed at the end of

the period. We assume, for simplicity, that each player’s available actions are independent

of its type so that each player i’s action space in period t is Ati regardless of its type. In

2 Given a metric space X, the class of the Borel sets ß(X) is the smallest class of subsets of X such that
i) ß(X) contains all open subsets of X and ii) ß(X) is closed under countable unions and complements.
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addition, we assume that At = ×Ii=1A
t
i is a non-empty metric space

3 for each t. Finally, we

consider only the perfect recall games introduced by Kuhn (1950).

A strategy is defined as follows. For each i = 1, ..., I and t = 1, ..., T , let δti be a measure

from Θi ×A1 × · · · ×At−1×ß(Ati) to [0, 1]. Then, a behavioral strategy δi is an ordered list

of measures δi = (δ1
i , ..., δ

T
i ) such that 1) for each (θi, a

1, ..., at−1) ∈ Θi × A1 × · · · × At−1,

δti(θi, a
1, ..., at−1; ·) is a probability measure on ß(Ati) and 2) for every B ∈ ß(Ati), δ

t
i(·;B)

is ß(Θi) × (×t−1
t′=1×Ii′=1ß(At

′
i′)) measurable. The condition 1) requires that each δti(θi, a

1,

..., at−1; ·) specify what to play at each information setΘ−i×{(θi, a1, ..., at−1)}. The condition

2) requires that δti allow a well-defined expected utility functional, which is defined later.

Hereafter, we simply call a behavioral strategy a strategy. Let Πi be the set of strategies

for player i and let Π be the set of strategy profiles, that is, Π = ×Ii=1Πi. Note that these

definitions originated from Milgrom and Weber (1985) and Balder (1988) and are adapted

to the general multi-period games with observed actions.

A system of beliefs is a set of probabilistic assessments about other players’types condi-

tional on reaching each of the information sets. It therefore consists of conditional probability

measures over each of the information sets and each measure denotes players’beliefs about

the others’types given actions taken before and private information on their own types. Its

formal definition is similar to that for the strategy. For each i and t, let µti be a measure on

Θi×A1 ×···×At−1×(×j 6=iß(Θj)) into [0, 1]. In addition, for each t, let µt denote (µt1, ..., µ
t
I).

Then, a system of beliefs µ is an ordered list of measures µ = (µ1, ..., µT ) such that 1) for

3 Therefore, the space Θ × A1 × · · · × AT is a non-empty metric space. On this space, expected utility
functionals are well-defined according to Ash (1972, 2.6).
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each (θi, a
1, ..., at−1) ∈ Θi × A1 × · · · × At−1, µti(θi, a

1, ..., at−1; ·) is a probability measure

on ×j 6=iß(Θj) and 2) for every B ∈ ×j 6=iß(Θj), µti(·;B) is ß(Θi) × (×t−1
t′=1×Ii′=1ß(At

′
i′)) mea-

surable. Here, the condition 1) requires that each µti(θi, a
1, ..., at−1; ·) specify a probability

distribution of other players’types over the information set Θ−i × {(θi, a1, ..., at−1)}. The

condition 2) requires that µti allow a well-defined expected utility functional. Let Ψ be the

set of all systems of beliefs. Then, an element4 (µ, δ) in Ψ× Π is called an assessment.

AVon Neumann-Morgenstern utility function for player i is defined as Ui : Θ×A1×···×AT

−→ R. We assume that each Ui is bounded above or bounded below and ×Ii=0ß(Θi) ×

(×Tt=1×Ii=1ß(Ati)) measurable, which guarantees that Ui is integrable. In addition, we assume

that each Ui can be expressed as a sum of finite-period utility functions. Formally, for each Ui,

we assume that there exist both a partition {K} ≡ Γ of {1, 2, ..., T} and its associated finite-

period utility functions UK : Θ× (×k∈KAk) −→ R such that Ui(θ, a) =
∑

K∈Γ U
K(θ, aK) for

every (θ, a) ∈ Θ×A1 × · · · ×AT where aK = (ak)k∈K ∈ ×k∈KAk. Here, the partition Γ is a

disjoint collection of non-empty subsets K of {1, 2, ..., T} such that ∪K∈ΓK = {1, 2, ..., T}.

These two assumptions ensure the existence of a well-defined expected utility functional.

An expected utility functional for player i is implicitly defined as a unique function Ei :

Π −→ R̄ (= R ∪ {−∞,∞}) satisfying the following two conditions given any arbitrary

strategy profile δ. First, if Ei(δ) is finite, then for any ε > 0, there exist both a period t′ ≤ T

4 For each i and t, the measures µti(·; ·) and δti(·; ·) are known as transition probabilities. For more
information on the transition probability, please refer to Neveu (1965, III), Ash (1972, 2.6), and Uglanov
(1997).
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and a sequence of actions (ǎt
′+1, ..., ǎT ) ∈ At′+1 × · · · × AT such that for any t ≥ t′,

| Ei(δ)−
∫

Θ

∫
A1
···
∫
At
Ui(θ, a

1, ..., at−1, at, ǎt+1, ..., ǎT )δt(θ, a1, ..., at−1; dat)···δ1(θ; da1)η(dθ) |< ε

where for each t, δt denotes the product measure of {δt1, ..., δtI} on×Ii=1ß(Ati), that is, δ
t = δt1×

· · · × δtI . Second, if Ei(δ) is infinite, then for any M ∈ N, there exist both a period t′ ≤ T

and a sequence of actions (ǎt
′+1, ..., ǎT ) ∈ At′+1 × · · · × AT such that for any t ≥ t′,

∫
Θ

∫
A1
· · ·
∫
At
Ui(θ, a

1, ..., at−1, at, ǎt+1, ..., ǎT )δt(θ, a1, ..., at−1; dat) · · · δ1(θ; da1)η(dθ)

> M when Ei(δ) =∞ and < −M when Ei(δ) = −∞.

This definition of the expected utility functional makes sense according to Ash (1972, 2.6)5 .

In this definition of the expected utility functional, the necessity of the second assumption

on the utility function, which is that the utility functions Ui can be expressed as sums of

finite-period utility functions UK , that is, Ui =
∑

K∈Γ U
K , might not be clearly seen This

assumption is necessary to well-define an expected utility functional because the definition

uses finitely iterated integrals. The following example shows that without this assumption,

we might not be able to define an expected utility functional. Consider a game with just

one player. Let a function U : {α, β}∞ −→ {0, 1} be a utility function for the player such

that for any a ∈ {α, β}∞, U(a) = 0 if a contains infinitely many α, otherwise U(a) = 1.

5 Let zj be a σ − field of subsets of Ωj for each j = 1, ..., n. Let µ1 be a probability measure on z1,
and for each (ω1, ..., ωj) ∈ Ω1 × · · · × Ωj , let µ(ω1, ..., ωj ;B), B ∈ zj+1, be a probability measure on zj+1

(j = 1, 2, ..., n− 1). Assume that µ(ω1, ..., ωj ;C) is measurable for each fixed C ∈ zj+1. Let Ω = Ω1 × · · ·
×Ωn and z = z1 × · · · ×zn.
(1) There is a unique probability measure µ on z such that for each measurable rectangle A1 × · · · ×An
∈ z, µ(A1 × · · · ×An) =

∫
A1

∫
A2
· · ·
∫
An
µ(ω1, ... , ωn−1; dωn) · ·· µ(ω2; dω1)µ1(dω1).

(2) Let f : (Ω,z) −→ (R̄,ß(R̄)) and f ≥ 0. Then,
∫

Ω
fdµ =

∫
Ω1
· ··
∫

Ωn
f(ω1, ... , ωn)µ(ω1, ... , ωn−1; dωn) · ··

µ1(dω1).
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Suppose the player chooses its strategy δ such that 1) δ1(α) = δ1(β) = 1
2
and 2) for any

t ≥ 2, δt(a1, ..., at−1;α) = 1 if at−1 = α and δt(a1, ..., at−1; β) = 1 if at−1 = β. Then, the

expected utility value with respect to δ is obviously 1
2
. However, according to our definition

of the expected utility functional E, E(δ) cannot be 1
2
since E(δ′) = 0 or 1 for any arbitrary

strategy δ′. Accordingly, we cannot define an expected utility functional for this game. In

fact, this assumption regarding the utility function is a weak requirement in that it is always

satisfied in finite-period games and also satisfied in repeated games that consist of infinitely

repeated finite-period games. Nevertheless, this assumption is so potent that we can define

an expected utility functional by using only finitely iterated integrals.

Based on this expected utility functional, the Nash equilibrium by Nash (1951) and the

subgame perfect Nash equilibrium by Selten (1975) are extended in the general multi-period

games with observed actions. In this paper, we suggest two conditions for rational solution

concepts in the general games. One is the subgame perfect Nash equilibrium condition. The

other is weak consistency introduced by Myerson (1991, 4.3). This weak consistency is a

criterion of a consistent relation between players’beliefs and players’actual strategies. A

formal definition of the weak consistency is presented in Section 5.

Definition 1 A strategy profile δ = (δ1, ..., δI) is a Nash equilibrium if δ satisfies Ei(δ) =
maxδ′i∈Πi

Ei(δ
′
i, δ−i) for each i ≤ I. A Nash equilibrium is subgame perfect if it induces a

Nash equilibrium in every subgame6 .

6 For a formal definition of the subgame, please refer to Selten (1975, Section 5).
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3 Example: Incapable simple perfect Bayesian equilib-
rium in a general game

This section shows that an extension of the perfect Bayesian equilibrium in general multi-

period games with observed actions might be incapable of satisfying the weak consistency

and the subgame perfect Nash equilibrium condition. We first provide a simple and for-

mal extension of the perfect Bayesian equilibrium in general games. Originally, the perfect

Bayesian equilibrium was defined in finite games. However, it has been extended and ap-

plied to general games on various economic issues, such as the Auction, Bargaining game,

and Signaling game. Here, we try to present a universal definition of the perfect Bayesian

equilibrium that can be commonly applied to such general games. Next, we describe the

setting of the example which is the famous signaling game by Crawford and Sobel (1982).

Then, based on this setting, we show that the simple extension of the perfect Bayesian equi-

librium might be incapable of satisfying the weak consistency and the subgame perfect Nash

equilibrium condition.

3.1 Simple perfect Bayesian equilibrium in a general game

According to Fudenberg and Tirole (1991), a perfect Bayesian equilibrium in a finite game

is defined as an assessment (µ, δ), which is a pair consisting of a system of beliefs µ and a

strategy profile δ, such that (µ, δ) is both 1) reasonable and 2) sequentially rational. Here, an

assessment (µ, δ) is said to be reasonable i) if µ is updated from period to period with respect

to δ and µ itself according to Bayes’rule whenever possible and ii) if it satisfies the “no-

signaling-what-you-don’t-know”condition that constrains µ off the equilibrium path which
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players would not reach if they would play according to δ. In addition, δ is sequentially

rational with respect to µ if, taking µ as given, no player prefers to change its strategy δi at

any of its information sets.

Of these two conditions for a perfect Bayesian equilibrium, the first condition, reason-

ability, might lead it to being incapable of satisfying the weak consistency and the subgame

perfect Nash equilibrium condition in general multi-period games with observed actions. To

be precise, the incapability of a perfect Bayesian equilibrium is caused by the weakness of

Bayes’rule. Bayes’rule is a way of formulating a conditional probability or a conditional

probability density function and defines them as a fraction between two probabilities or a

fraction between two probability density functions. So, Bayes’rule can be employed only

when the probability of a given event, which becomes a denominator in the fraction, is pos-

itive or when the probability density functions are well-defined. This limited application of

Bayes’rule consequently gives rise to the incapability of a perfect Bayesian equilibrium in

general games.

To clearly see this incapability of a perfect Bayesian equilibrium, we formally extend

the definition of the reasonability into general multi-period games with observed actions.

Notice that, in this extension, we omit the “no-signaling-what-you-don’t-know” condition

for simplicity’s sake. This condition was designed to improve the reasonability condition

so that this reasonability condition might become as plausible as the consistency condition

introduced by Kreps and Wilson (1982). As shown by Osborne and Rubinstein (1994,

234.3), however, the reasonability condition including the no-signaling-what-you-don’t-know
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condition is fundamentally different from the consistency condition. Hence, we conclude that

its contribution to the reasonability condition is not suffi cient compared with the complexity

caused by this condition7 . As a result, we simplify the definition of the reasonability in

general games by excluding this no-signaling-what-you-don’t-know condition. We call this

simple extension of the reasonability reasonable consistency.

Definition 2 An assessment (µ, δ) is reasonably consistent if given each i, 1) µ1
i is the

same as η−i and 2) for each (θi, a
1, ..., at−1) ∈ Θi×A1×· · ·×At−1 and each B ∈ ×j 6=iß(Θj),

µti(θi, a
1, ..., at−1;B) indicates the same probability as∫

Θ−i

∫
{at−1}IB(θ−i)δ

t−1(θ, a1, ..., at−2; dat−1)µt−1
i (θi, a

1, ..., at−2; dθ−i)∫
Θ−i

∫
{at−1}δ

t−1(θ, a1, ..., at−2; dat−1)µt−1
i (θi, a1, ..., at−2; dθ−i)

whenever t ≥ 2 and
∫

Θ−i

∫
{at−1}δ

t−1(θ, a1, ..., at−2; dat−1)µt−1
i (θi, a

1, ..., at−2; dθ−i) > 0 where
IB(·) is an indicator function, i.e. IB(θ−i) = 1 if θ−i ∈ B and IB(θ−i) = 0 if θ−i /∈ B.

In other words, an assessment (µ, δ) is reasonably consistent if 1) in the first period, each

player correctly forms its beliefs µ1
i based on the type and state probability measure η, and

2) from the second period, each player employs Bayes’ rule to update its beliefs µti with

respect to the previous action plans δt−1 and the previous beliefs µt−1
i whenever possible.

Here, “whenever possible”means whenever an information set Θ−i ×{(θi, a1, ..., at−1)} is

reached with positive probability with respect to δt−1 and µt−1
i , that is,

∫
Θ−i

∫
{at−1}δ

t−1(θ, a1,

..., at−2; dat−1)µt−1
i (θi, a

1, ..., at−2; dθ−i) > 0. Note that, in finite games, this definition of the

reasonable consistency represents the same condition as the definition of the reasonability in

7 According to Fudenberg and Tirole (1991), this condition requires that “no player i’s deviation be
treated as containing information about things that player i does not know.”Here, “player i’s deviation”is
its behavior off the equilibrium path, so this condition places restrictions on the beliefs off the equilibrium
path. However, the incapability problem with a perfect Bayesian equilibrium occurs more significantly on
the equilibrium path than off the equilibrium path. Therefore, this condition cannot solve the problem with
the solution concept of the perfect Bayesian equilibrium. This is another reason why we conclude that the
contribution of this condition is not suffi cient.
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Fudenberg and Tirole (1991, Definition 3.1) except for the no-signaling-what-you-don’t-know

condition.

There is another version of Bayes’rule, a continuous version of Bayes’rule, but we cannot

use this version to extend the definition of the reasonability into general multi-period games

with observed actions. A continuous version of Bayes’rule defines a conditional probability

density function as a fraction between two probability density functions. Accordingly, this

version requires well-defined probability density functions. In general games with a contin-

uum of actions, however, only mixed strategies that assign zero probability to every single

action can be represented as probability density functions. As a result, this version of Bayes’

rule is not well-defined for any strategies that assign positive probability to a single action.

In particular, this version is not well-defined for any of the pure strategies under which

players would play a single action at each information set. Therefore, we cannot extend the

definition of the reasonability into general games by using this continuous version of Bayes’

rule8 .

Based on the reasonable consistency condition, a perfect Bayesian equilibrium is extended

in general multi-period games with observed actions. We call this simple extension of the

perfect Bayesian equilibrium a simple perfect Bayesian equilibrium.

Definition 3 An assessment (µ, δ) is a simple perfect Bayesian equilibrium if (µ, δ)

8 There is a way to combine these two versions of Bayes’ rule. This way does not solve the limited
application problem with Bayes’ rule in general games, either. This is because it requires well-defined
probability or probability density functions. In general games, however, players’ strategies might induce
neither probability nor a probability density function. For example, the sender’s strategy introduced in the
next subsection induces neither probability nor a probability density function. As a result, this combined
version of Bayes’rule still has limited application, and therefore it could result in the incapability of a perfect
Bayesian equilibrium in general games.
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is both 1) reasonably consistent and 2) sequentially rational9 .

3.2 Example

Now, we are ready to exemplify the incapability of a simple perfect Bayesian equilibrium in

a general multi-period game with observed actions. Consider the information transmission

game introduced by Crawford and Sobel (1982). There are two players, a sender and a

receiver. The sender is assigned a type θ that is a random variable from a uniform distribution

on [0, 1] and she makes a signal s ∈ [0, 1] to the receiver. Then, after observing the signal

s, the receiver chooses his action a ∈ [0, 1]. The sender has a von Neumann-Morgenstern

utility function US(θ, a, b) = −(θ − (a + b))2 where b > 0 and the receiver has another von

Neumann-Morgenstern utility function UR(θ, a) = −(θ − a)2.

In this game, the sender’s strategy s(θ) = θ and the receiver’s strategy a(s) = max{s−

b, 0} are a simple perfect Bayesian equilibrium together with the receiver’s system of beliefs

µ(max{s− b, 0}; s) = 1 which denotes that given a signal s, the type max{s− b, 0} would be

assigned to the sender with probability one. First, the system of beliefs µ(max{s− b, 0}; s)

= 1 is reasonably consistent with the sender’s strategy s(θ) = θ because it does not violate

the conditions for the reasonable consistency in Definition 2. Under the strategy s(θ) = θ,

each signal θ occurs with probability zero, and thus we cannot employ Bayes’rule. In this

case, no system of beliefs is considered to violate Bayes’ rule formulated in Definition 2.

Consequently, µ(max{s − b, 0}; s) = 1 is reasonably consistent with s(θ) = θ. Second, the

sender’s strategy s(θ) = θ is the best response to the receiver’s strategy a(s) = max{s−b, 0},

9 For a formal definition of the sequential rationality, please refer to Definition 5 in Section 4.
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and a(s) = max{s − b, 0} is the best response to his system of beliefs µ(max{s − b, 0}; s)

= 1. This proves that they satisfy the sequential rationality. Therefore, these strategies and

the system of beliefs are a simple perfect Bayesian equilibrium.

This simple perfect Bayesian equilibrium, however, is incapable of satisfying the weak

consistency and the subgame perfect Nash equilibrium condition. In the scenario of this

equilibrium, the receiver constantly mistakes a true type θ for a wrong typemax{θ−b, 0}. As

a result, the sender’s strategy s(θ) = θ and the receiver’s system of beliefs µ(max{s−b, 0}; s)

= 1 do not induce the same probability distribution on the equilibrium path which the players

would actually reach if they were to play according to their strategies s(·) and a(·). Since

the weak consistency10 requires them both to induce the same probability distribution on

the equilibrium path, this simple perfect Bayesian equilibrium does not satisfy the weak

consistency. Moreover, the receiver’s strategy a(s) = max{s− b, 0} is not the best response

to the sender’s strategy s(θ) = θ. So this simple perfect Bayesian equilibrium does not

satisfy the Nash equilibrium condition, and thus it does not satisfy the subgame perfect

Nash equilibrium condition11 .

This incapability of the simple perfect Bayesian equilibrium is caused mainly by the

10 Definition 7 in Section 5 formally defines this weak consistency in general multi-period games with
observed actions.
11 Crawford and Sobel (1982) tried to solve this problem with a simple perfect Bayesian equilibrium

by adopting a continuous version of Bayes’ rule. Their approach to the problem naturally led them to
only consider the probability density strategies of the sender. That is, they did not consider the overall
strategies of the sender. Their partial consideration of the sender’s strategies might be justified by Lemma
1 in their paper which guaranteed that, in equilibrium, any sender’s strategy can be replaced with her
probability density strategies while preserving the strategies of the receiver. Lemma 1, however, was not
proven correctly, and thus it cannot justify their partial consideration of the sender’s strategies or any other
results. For more information, please refer to Jung (2009).
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setting12 that the sender has a continuum of types and signals. Accordingly, most games

having similar settings can testify that there exist simple perfect Bayesian equilibria that

break the weak consistency and the subgame perfect Nash equilibrium condition. Since

this setting represents a usual situation, there is a large class of games including similar

settings. Therefore, we conclude that this incapability is a ubiquitous problem with the

solution concept of the simple perfect Bayesian equilibrium. In the next section, we revise

this simple perfect Bayesian equilibrium to develop a solution concept that is capable of

satisfying both the weak consistency and the subgame perfect Nash equilibrium condition.

4 Perfect Regular Equilibrium

The incapability of a simple perfect Bayesian equilibrium is due to the limited application

of Bayes’rule in general multi-period games with observed actions. Bayes’rule cannot be

employed if a conditional event, whose probability becomes a denominator in a conditional

probability formula according to Bayes’rule, takes place with probability zero. In general

games, however, it is possible for every conditional event to take place with probability zero.

In this case, we cannot employ Bayes’rule at all either on the equilibrium path or off the

equilibrium path. Hence, no system of beliefs is considered to violate Bayes’rule, which

means that every system of beliefs satisfies the reasonable consistency for a simple perfect

Bayesian equilibrium. As a result, some intuitively inconsistent system of beliefs could be

part of a simple perfect Bayesian equilibrium, and this system of beliefs could lead the simple

12 Jung (2010) showed that, under this setting, an extension of the sequential equilibrium in general games
can cause the same problem, namely, the incapability to satisfy both the weak consistency and the Nash
equilibrium condition.
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perfect Bayesian equilibrium to the incapability as shown in the example.

To solve this incapability problem with the simple perfect Bayesian equilibrium, we revise

it by replacing Bayes’rule with a regular version of the conditional probability and refer to

the revised solution concept as a perfect regular equilibrium. The regular version of the con-

ditional probability is another way of formulating a conditional probability and is especially

designed to well-define the probability given probability zero events. It therefore defines a

conditional probability implicitly through a functional equation without referring to a frac-

tion between probabilities of events. Accordingly, it does not show the limited application

problem as Bayes’rule does, and it can well-define the conditional probabilities given ‘almost

every’probability zero event. Therefore, the perfect regular equilibrium equipped with this

regular conditional probability13 can solve the incapability problem with the simple perfect

Bayesian equilibrium.

The definition of the perfect regular equilibrium is the same as that of the simple perfect

Bayesian equilibrium except for its approach to the conditional probabilities. Thus, the

perfect regular equilibrium is defined as an assessment (µ, δ) such that 1) µ is updated

from period to period with respect to δ and µ itself according to the regular conditional

probability, and 2) taking µ as given, no player prefers to change its strategy δi at any of

its information sets. The first condition for the perfect regular equilibrium is referred to as

regular consistency and the second condition is referred to as the sequential rationality. In

this section, we formally define these conditions and the perfect regular equilibrium.

13 For more information regarding the regular version of the conditional probability, please refer to Ash
(1972, 6.6).
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We first provide a formal definition of the regular consistency in general multi-period

games with observed actions.

Definition 4 An assessment (µ, δ) is regularly consistent if given each i, 1) µ1
i is the

same as η−i and 2) for each t ≥ 2 and each (θi, a
1, ..., at−2) ∈ Θi×A1×···×At−2, µti satisfies

the following functional equation:
∫
B

∫
A
δt−1(θ, a1, ..., at−2; dat−1)µt−1

i (θi, a
1, ..., at−2; dθ−i) =∫

Θ−i

∫
A
µti(θi, a

1, ..., at−1;B)δt−1(θ, a1, ..., at−2; dat−1)µt−1
i (θi, a

1, ..., at−2; dθ−i) for every B ∈
×j 6=iß(Θj) and A ∈ ×Ii=1ß(A

t−1
i ).

That is, an assessment (µ, δ) is regularly consistent if 1) in the first period, each player

correctly forms its beliefs µ1
i based on the type and state probability measure η, and 2) from

the second period, each player employs the regular conditional probability to update its

beliefs µti with respect to the previous action plans δ
t−1 and the previous beliefs µt−1

i given

the information about its type and the previous actions (θi, a
1, ..., at−2). Here, Definition

4 implicitly defines µti as a regular conditional probability measure through the functional

equation governed by δt−1 and µt−1
i . In this way, Definition 4 can avoid the limited applica-

tion problem since the functional equation is well-defined for any arbitrary set B ×{(θi, a1,

..., at−2)} ×A where B ∈ ×j 6=iß(Θj) and A ∈ ×Ii=1ß(At−1
i ). As a result, beliefs µti can be

properly updated with respect to δt−1 and µt−1
i . Note that the functional equation can de-

termine a conditional probability of µti only within the support
14 of the product measure of

δt−1 and µt−1
i . This is because if a set A ∈ ×Ii=1ß(At−1

i ) is outside the support of the product

measure δt−1µt−1
i , then both sides in the functional equation become zero, and so the con-

ditional probability of µti given A can be arbitrary. Consequently, a conditional probability

of µti is only meaningful given a set of actions within the support of the product measure

14 In a metric space, a support of a measure is defined as the smallest closed set within which the measure
lives.
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δt−1µt−1
i .

Next, we formally define the sequential rationality in general games. For notational

simplicity, given a player i and a period t, let a functional Et
i : Θi × A1× · · · × At−1 ×

Ψ×Π −→ R̄ (= R ∪ {−∞,∞}) be a conditional expected utility functional15 where Ψ×Π

is the set of all assessments. That is, for each (θi, a
1, ..., at−1) ∈ Θi × A1 × · · · × At−1,

Et
i (θi, a

1, ..., at−1;µ, δ) denotes an expected utility value with respect to the system of beliefs µ

and the strategy profile δ conditional on reaching the information set Θ−i×{(θi, a1, ..., at−1)}.

Definition 5 A strategy profile δ is sequentially rational with respect to a system of beliefs
µ if, given each i and t, and given each (θi, a

1, ..., at−1) ∈ Θi × A1 × · · · × At−1, we have
Et
i (θi, a

1, ..., at−1;µ, δ) ≥ Et
i (θi, a

1, ..., at−1;µ, (δ′i, δ−i)) for every δ
′
i ∈ Πi.

Here, a set Θ−i × {(θi, a1, ..., at−1)} denotes an information set of player i. Thus, the

sequential rationality requires that, in responding to the other players’strategies δ−i, each

player i make its best response δi with respect to the system of beliefs µ, which would induce

the greatest expected utility value given any of its information sets Θ−i×{(θi, a1, ..., at−1)}.

15 Formally, the conditional expected utility functional is implicitly defined just like the expected utility
functional. So, given i and t, the conditional expected utility functional Eti is a unique function satisfying
the following conditions for any arbitrary strategy profile δ. First, if Eti (θ̇i, ȧ

1, ..., ȧt−1;µ, δ) is finite, then, for
any ε > 0, there exist both a period t′ ∈ {t, ..., T} and a sequence of actions (ǎt

′+1, ..., ǎT ) ∈ At′+1×· · ·×AT
such that for any t′′ ≥ t′,

| Eti (θ̇i, ȧ1, ..., ȧt−1;µ, δ)−
∫

Θ−i

∫
At · · ·

∫
At′′Ui(θ̇i, θ−i, ȧ

1, ..., ȧt−1, at, ..., at
′′
, ǎt
′′+1, ...,

ǎT )δt
′′
(θ̇i, θ−i, ȧ

1, ..., at
′′−1; dat

′′
) · · · δt(θ̇i, θ−i, ȧ1, ..., ȧt−1; dat)µti(θ̇i, ȧ

1, ..., ȧt−1; dθ−i) |< ε.

Second, if Eti (θ̇i, ȧ
1, ..., ȧt−1;µ, δ) is infinite, then, for any M ∈ N, there exist both a period t′ ∈ {t, ..., T}

and a sequence of actions (ǎt
′+1, ..., ǎT ) ∈ At′+1 × · · · ×AT such that for any t′′ ≥ t′,∫

Θ−i

∫
At · · ·

∫
At′′Ui(θ̇i, θ−i, ȧ

1, ..., ȧt−1, at, ..., at
′′
, ǎt
′′+1, ..., ǎT )δt

′′
(θ̇i, θ−i, ȧ

1,

..., at
′′−1; dat

′′
) · · · δt(θ̇i, θ−i, ȧ1, ..., ȧt−1; dat)µti(θ̇i, ȧ

1, ..., ȧt−1; dθ−i)

> M when Eti (θ̇i, ȧ
1, ..., ȧt−1;µ, δ) =∞ and < −M when Eti (θ̇i, ȧ

1, ..., ȧt−1;µ, δ) = −∞.

Again, this definition of the conditional expected utility functional makes sense according to Ash (1972, 2.6).
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As a result, no player prefers to change its strategy at any of its information sets. Originally,

Kreps and Wilson (1982) defined the sequential rationality in finite games. We adapt their

definition to general multi-period games with observed actions.

Finally, Definition 6 defines the perfect regular equilibrium.

Definition 6 An assessment (µ, δ) is a perfect regular equilibrium if (µ, δ) is both 1)
regularly consistent and 2) sequentially rational.

5 Properties of the perfect regular equilibrium

The first property of the perfect regular equilibrium is that it always satisfies the weak

consistency, which is a criterion of the rational beliefs. Since the weak consistency was

originally defined in finite games, we start by extending its definition to general multi-period

games with observed actions.

Definition 7 An assessment (µ, δ) is weakly consistent16 if given each i, 1) µ1
i is the

same as η−i and 2) for each t ≥ 2, µti satisfies the following functional equation:
∫

Θ

∫
A1
· · ·∫

At−1IB×A(θ, a1, ..., at−1)δt−1(θ, a1, ..., at−2; dat−1) · · ·δ1(θ; da1)η(dθ) =
∫

Θ

∫
A1
· · ·
∫
At−1IA(θi, a

1,
..., at−1)µti(θi, a

1, ..., at−1;B)δt−1(θ, a1, ..., at−2; dat−1)···δ1(θ; da1)η(dθ) for every B ∈ ×j 6=iß(Θj)
and A ∈ß(Θi) × (×t−1

t′=1×Ii′=1ß(A
t′
i′)) where IB×A(·) and IA(·) are indicator functions, i.e.

IB×A(θ, a1, ..., at−1) = 1 if (θ, a1, ..., at−1) ∈ B × A and IB×A(θ, a1, ..., at−1) = 0 otherwise.

In plain words, an assessment (µ, δ) is weakly consistent if 1) in the first period, each

player correctly forms its beliefs µ1
i based on the type and state probability measure η, and

2) from the second period, each player employs the regular conditional probability to update

its beliefs µti with respect to all the previous action plans δ
1, ...,δt−1 and the probability

measure η given the information about its type and the previous actions (θi, a
1, ..., at−1).

16 We adapt Myerson’s (1991, 4.3) definition to general multi-period games with observed actions.
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In this definition, the functional equation can determine a conditional probability of µti

only on the equilibrium path. This is because if a set A ∈ ×Ii=1ß(At−1
i ) is off the equilibrium

path, then both sides in the functional equation become zero, so a conditional probability of

µti given A can be arbitrary. Consequently, this definition indicates that the weak consistency

imposes restrictions only on the beliefs on the equilibrium path, and thus it imposes no

restriction on the beliefs off the equilibrium path. Note that the regular consistency places

restrictions on the beliefs on the support of the product measure δt−1µt−1
i , which includes

all the beliefs on the equilibrium path. As a result, in general multi-period games with

observed actions, if an assessment satisfies the regular consistency, then it also satisfies the

weak consistency. This statement is formulated in Proposition 1.

Proposition 1 If an assessment is regularly consistent, then it is weakly consistent.

Proof. The result directly follows from the definitions.

Kreps and Ramey (1987) introduced another criterion of the rational beliefs, convex

structural consistency. According to them, the convex structural consistency is defined as a

consistency criterion under which the beliefs of the players should reflect the informational

structure of a game through a convex combination of players’strategies. Thus, under this

consistency criterion, if players would be unexpectedly located, they should then form their

beliefs such that a convex combination of strategies can induce the beliefs17 . This criterion

17 In fact, this convex structural consistency is a weak version of the structural consistency of Kreps and
Wilson (1982). Kreps and Wilson defined the structural consistency as a consistency criterion under which
the beliefs of the players should reflect the informational structure of a game through a single strategy profile.
Thus, this structural consistency requires players to use only one strategy profile to form one belief. Because
of the strong requirement, however, most of the solution concepts including the sequential equilibrium and
the perfect equilibrium do not satisfy this criterion even in finite games.
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of the rational beliefs imposes restrictions on all the beliefs off the equilibrium path as well

as on the equilibrium path. Note that the perfect regular equilibrium, just like the perfect

Bayesian equilibrium in finite games, places restrictions only on the beliefs on the support

of the product measure δt−1µt−1
i . Since the support of the product measure δt−1µt−1

i might

not cover all the beliefs off the equilibrium path, the perfect regular equilibrium might not

put restrictions on all the beliefs off the equilibrium path. Accordingly, the perfect regular

equilibrium might not satisfy the convex structural consistency18 .

The second property of the perfect regular equilibrium is that it always satisfies the

subgame perfect Nash equilibrium condition, which is a criterion of the rational strategies.

This property is due to the sequential rationality, which is one of the two conditions for the

perfect regular equilibrium. If an information set initiates a subgame, then the conditional

probability on the information set given the information set itself is uniquely determined

as one. Then, the sequential rationality condition, given the information set, becomes the

same as the Nash equilibrium condition, which means that the perfect regular equilibrium

induces a Nash equilibrium in the subgame. As a result, the perfect regular equilibrium

satisfies the subgame perfect Nash equilibrium condition. Proposition 2 formally presents

this second property of the perfect regular equilibrium in general multi-period games with

observed actions.

Proposition 2 Every perfect regular equilibrium is a subgame perfect Nash equilibrium.

Proof. The result directly follows from the definitions.

18 Jung (2010) introduced a new solution concept, complete sequential equilibrium, in general finite-period
games with observed actions and presented conditions under which the complete sequential equilibrium
satisfies the convex structural consistency.
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Next, Proposition 3 reveals the relationship between the regular consistency for the per-

fect regular equilibrium and the reasonable consistency for the simple perfect Bayesian equi-

librium in finite games. In general games, Bayes’rule in the reasonable consistency might

give rise to the incapability problem with a simple perfect Bayesian equilibrium. In finite

games, however, Bayes’rule does not cause this problem, and it functions as well as the

regular conditional probability does. As a result, the reasonable consistency based on Bayes’

rule is equivalent to the regular consistency based on the regular conditional probability in

finite games.

Proposition 3 In finite games, an assessment is regularly consistent if and only if it is
reasonably consistent.

Proof. The result directly follows from the definitions.

Finally, Theorem 1 aggregates all the results. Propositions 1 and 2 together ensure that

the perfect regular equilibrium satisfies both conditions, namely, the weak consistency and

the subgame perfect Nash equilibrium condition, which we have suggested as criteria of

rational solution concepts in general games. So, we conclude that the perfect regular equi-

librium successfully extends the perfect Bayesian equilibrium to general games. In addition,

Proposition 3 guarantees that the perfect regular equilibrium is equivalent to the simple

perfect Bayesian equilibrium in finite games. Note that the simple perfect Bayesian equi-

librium is defined as a simple version of the perfect Bayesian equilibrium. Therefore, as a

corollary of these propositions, Theorem 1 brings all the properties of the perfect regular

equilibrium together and provides evidence that it is indeed an extended and simple version

of the perfect Bayesian equilibrium in general multi-period games with observed actions.
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Theorem 1 Every perfect regular equilibrium satisfies both the weak consistency and the
subgame perfect Nash equilibrium condition. Furthermore, in finite games, an assessment
(µ, δ) is a perfect regular equilibrium if and only if it is a simple perfect Bayesian equilibrium.

There is another solution concept for general games. Jung (2010) developed complete

sequential equilibria in general finite-period games with observed actions by improving se-

quential equilibria. In general games, the sequential equilibrium might give rise to the inca-

pability problem as in the case of the perfect Bayesian equilibrium. The complete sequential

equilibrium solves this incapability problem by replacing beliefs with complete beliefs. The

complete beliefs are probability measures defined, not on each information set, but on the

whole class of information sets in each period. Note that all strategy profiles lead to the

whole class of information sets in each period with probability one and thus they can well-

define probability distributions over the whole class of information sets. As a result, any

arbitrary strategy profile can properly induce consistent complete beliefs, and therefore the

complete sequential equilibrium can improve the sequential equilibrium in general games.

This complete sequential equilibrium, however, is not closely related to the perfect regular

equilibrium in general games in that it might not be a perfect regular equilibrium and vice

versa. This is because the consistency for the complete sequential equilibrium and the

regular consistency for the perfect regular equilibrium place different restrictions on the

beliefs off the equilibrium path. Consequently, a complete sequential equilibrium might not

be a perfect regular equilibrium in general games and a perfect regular equilibrium might

not be a complete sequential equilibrium either.
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