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1 Introduction

The all-pay auction is often used as a model of political lobbying or fund-raising, because

its “all-pay feature” captures the point that political donation or campaign cost is irre-

versible even if a lobbyist cannot enjoy a rent after all. However, by using the all-pay

auction, we neglect another aspect: lobbying in the real world is not a static competition

as is a sealed-bid auction but a dynamic activity. As long as a politician or a party raises

the political fund through time, a lobbyist chooses not only the amount of his contribu-

tion but also its timing, taking the strategic effect of commitment into account. That is, a

lobbyist can commit his contribution at an earlier point of time, or it is also possible that

he waits and observes the rival’s behavior and makes a decision later. Then, the timing

itself can have a strategic effect. For example, an early contribution might be beneficial

because it would work as a kind of preemption and lead the lobbyist to victory. On the

contrary, it is also possible that an early commitment is harmful because, after observing

it, the rival would commit more money and thereby intensify the competition.

To examine such strategic interactions through time and the roles of commitment in

political lobbying, the present paper investigates a two-person two-period all-pay auction

with complete information. In the first period, two bidders (i.e., lobbyists) simultaneously

offer non-negative bids (i.e., contributions). In the second period, after the bids in the first

period are publicly observed, each bidder can increase but not decrease his bid. Finally,

a good (i.e., political reward or rent) is allocated to the bidder with the higher total bids

and each bidder pays his total bid even if he does not win the good. It is assumed that

the valuations for the reward are common knowledge between the bidders.

The primary finding is that in this dynamic setting, the seller (i.e., politician) can

raise the same revenue as in the standard winner-pay auctions. This contrasts with the

key property of the static model, which is so-called “under-dissipation.” Namely, the
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static all-pay auction with complete information possesses an equilibrium only in non-

degenerate mixed strategies and the expected revenue is smaller than in the standard

first- and second-price auctions. In the dynamic model, this problem is fully reconciled

in two steps. First, the present dynamic game possesses a subgame perfect equilibrium

(henceforth, SPE) that yields the same revenue as in the standard auctions, although there

also exists a continuum of SPEs that yield smaller revenue. Second, we perturb the origi-

nal game and show that the maximal revenue equilibrium is the only SPE in the perturbed

game. Therefore, the present study suggests that the seller can raise (almost) the same rev-

enue in the dynamic all-pay auction as in the standard auctions. The perturbation can be

interpreted as the seller’s bias towards early contributions.1 The (perturbed) mechanism

demonstrated here is robust in the sense that it works even if the seller does not know the

bidders’ values, the rank order between the values, or even the distribution of the values.

The logic behind the under-dissipation is as follows. If a pure strategy equilibrium

exists in the static all-pay auction between two bidders, the agent who cannot obtain the

good must bid zero in the equilibrium. Then, the other agent has no incentive to offer

any bid bounded away from zero. This yields a clear contradiction and thus, the static

all-pay auction possesses an equilibrium only in mixed strategies. In the mixed strategy

equilibrium, there is social inefficiency that the bidder with the lower value obtains the

good with a positive probability, and this results in smaller revenue.

On the contrary, the present dynamic setting possesses an efficient SPE in which the

higher value bidder obtains the good with probability one. On the equilibrium-path of

this SPE, the bidders do not take probabilistic actions; in the first period, the higher value

bidder submits the opponent’s value while the lower value bidder bids zero, and in the

second period, both bid zero. This SPE induces the socially optimal allocation with proba-

1In the literature on procurement auctions, the buyer’s bias toward a particular bidder is frequently
discussed. See, for example, Hubbard and Paarsch (2009) and Rezende (2009). In the present paper, on the
contrary, the seller treats all the bidders equally.
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bility one and yields the same revenue as of the standard winner-pay auctions. However,

this is not a unique SPE. It can be shown that the lower value bidder bids zero in the first

period of any SPE, but the higher value bidder’s best response cannot be uniquely deter-

mined. Specifically, it is a best response of the higher value bidder (in the reduced game)

to bid any amount between zero and the opponent’s value in the first period, given that

the opponent bids zero in the first period. As a consequence, there exists a continuum of

equilibria on which the bidders’ payoffs are equivalent. It is also shown that the seller’s

revenue is not equivalent on the continuum of SPE: it is increasing in the higher value

bidder’s commitment. This is because, a large commitment by the higher value bidder

induces a larger probability of his winning and thus, larger social welfare.

Although multiple equilibria exist, the seller can implement the efficient equilibrium

that yields the highest revenue at an arbitrarily small cost. Since the bidders’ expected

payoffs are the same among the equilibria, giving an arbitrarily small but positive incen-

tive suffices to implement the efficient equilibrium. In this paper, the seller’s bias towards

the bids in the first period is considered; i.e., the seller evaluates a payment of 1 − ε dol-

lars in the first period and that of 1 dollar in the second period as equal. It is shown

that under a sufficiently small degree of bias ε, the efficient equilibrium that yields the

highest revenue of (1 − ε) times the lower value becomes the unique SPE. Thus, taking

ε → 0, the seller can raise almost the same revenue as in the standard auctions. It should

be noted that this mechanism works as well as the standard auctions, even if the seller

does not know the bidders’ values. Namely, given a distribution of the bidders’ values,

as the rate of bias approaches zero, (i) the probability that the “best” equilibrium is imple-

mented converges to one and (ii) the revenue converges to that in the standard auctions

at any realization. Therefore, the seller can earn an expected revenue arbitrarily close to

that in the standard auctions, even though the bidders’ values are unknown to her. This

feature distinguishes the present model from existing all-pay mechanisms, as discussed
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in Section 3.3.

The paper is organized as follows. Section 2 describes the model. Section 3 presents

the main results and discussions. Section 4 contains an extension of the model to a general

cost environment. Section 5 concludes. All proofs are presented in the Appendix.

1.1 Related Literature

The present study relates to a wide variety of existing research on the all-pay auction and

all-pay contests.2 Hillman and Samet (1987) first apply the all-pay auction to political

lobbying. Hillman and Riley (1989) and Baye et al. (1993, 1996) provide the full character-

ization of the mixed strategy equilibria in the all-pay auction under complete information.

Siegel (2009) investigates the mixed strategy equilibria of the all-pay contests with com-

plete information in a general environment. Konrad and Leininger (2007) characterize the

equilibria under complete information in the Stackelberg-type sequential move contests,

where some contestants move first, and then the remainder decide their own bids.

Che and Gale (1998) shows a related result within the static framework. They inves-

tigate the mixed strategy equilibria in the all-pay auction with complete information and

asymmetric value when a bid cap is imposed. They show that the seller can make her ex-

pected revenue arbitrarily close to that in the first- and second-price sealed bid auctions.

This seems similar to the present study, but two distinctions are worth mentioning. First,

the social welfare is higher in the present mechanism than in the static model with the

bid cap. Second, the seller needs some information about the bidders’ values in order to

increase her revenue imposing the bid cap.

A number of papers further investigate the effect of bid cap in the all-pay auctions and

contests. Kaplan and Wettstein (2006) and Che and Gale (2006) consider the situation in

2The term “all-pay auction” in this paper refers to the first-price all-pay auction with linear bidding
costs. Non-linear cost models are referred to as (all-pay) contests.
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which a bid cap cannot be rigidly enforced; i.e., bidding costs are continuous even though

they are kinked at the cap. Kaplan and Wettstein (2006) show that any bid cap (i.e., any

upward shift of cost functions) reduces the expected revenue as long as costs and shifts are

identical between the bidders. On the contrary, Che and Gale (2006) consider asymmetric

bidding costs and present a sufficient condition that asymmetric shifts in costs raise the

revenue. Gavious et al. (2002) examine bid caps in the standard contests with incomplete

information in which the valuation of the reward is private information and contestants

are ex ante symmetric.

Yildirim (2005) also provides a relevant result to the present study. He investigates the

two-stage version of Tullock’s (1980) auction and shows that there exists a continuum of

SPEs.3 In Tullock’s auction, each bidder’s winning probability is continuous and is usu-

ally assumed to be concave to ensure the existence of pure strategy equilibrium. Thus,

the underlying game is different between Yildirim (2005) and the present paper.4 More-

over, the present study puts emphasis on equilibrium selection and/or mechanism design

perspective, whereas Yildirim (2005) considers endogenous information disclosure.

The dollar auction (Shubik, 1971; Leininger, 1989, 1991) is a model of dynamic all-

pay auction. The major distinction between the present model and dollar auction can

be summarized into two points. First, the players bid alternately in the dollar auction,

whereas the bidders move simlutaneously at each stage in the present setting. Second,

the dollar auction has no exgoneous final stage, while the horizon is fixed and known

in the present model. The latter distinction is technically important because each theory

exploits its ending rule. That is, the theory of dollar auction depends on its recursive

structure, where the present paper employs backward induction.

3Tullock’s model also possesses the all-pay feature and is intensively discussed in the literature. Recent
research includes Baharad and Nitzan (2008), Fey (2008), Fu and Lu (2008), and Lim and Matros (2009).

4The intermediate cases where the winning probability is continuous but convex are not fully investi-
gated probably because of technical difficulty. For research on such cases, see Baye et al. (1994) and Che
and Gale (2000).
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Finally, there also exist various papers on elimination tournaments (Amegashie and

Runkel, 2007; Gradstein and Konrad, 1999; Groh et al., 2008; Moldovanu and Sela, 2006;

Zhan and Wang, 2009) and on repeated competitions (Konrad and Kovenock, 2009; Sela

2008) in all-pay environments. These models also analyze some dynamic aspects of all-

pay auctions and contests. However, in these models, each stage of the multi-stage game

is a static competition.

2 The Model

Consider the following auction G of a single indivisible good. The set of bidders is N =

{A, B}.5 For each bidder i ∈ N, his valuation for the good is denoted by vi > 0 and is

common knowledge between the bidders. We focus on the asymmetric valuation case

where vA 6= vB, and assume without loss of generality that vA > vB.6 The time line is as

follows. In the first period, each bidder i independently and simultaneously offers his first

bid b1
i ≥ 0. In the second period, after both bidders observe (b1

A, b1
B), they simultaneously

submit the second bids denoted by b2
i ≥ 0. Finally, the good is allocated to the bidder

with the higher total bid b1
i + b2

i . In case of a tie, each bidder obtains the good with an

equal probability. Each bidder has to pay his total bid b1
i + b2

i even when he does not

obtain the good. In summary, the payoff function for bidder i is given by

Ui

(
(b1

i , b2
i ), (b1

j , b2
j )

)
= Pri · vi − (b1

i + b2
i ), (1)

5 The results in this paper does not depend on this two-bidder assumption, because (generically) only
two bidders are active in an equilibrium. For the proof in the static model, see Baye et al. (1996). An
analogue also holds in the present setting.

6The symmetric case in which vA = vB is relatively uninteresting since herein, there is no allocational
inefficiency. The results in the asymmetric case can be easily extended to the symmetric case.
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where j ∈ N \ {i} and Pri is the probability of i’s winning, which is equal to 1 if b1
i + b2

i >

b1
j + b2

j , to 1/2 if b1
i + b2

i = b1
j + b2

j , and to 0 otherwise.

As in the usual static all-pay auction, the second stage subgames do not possess a

pure strategy Nash equilibrium in general and thus, we have to consider mixed strate-

gies. Throughout the paper, let Fi be a cumulative distribution function on R+ denoting

i’s mixed strategy in the second period.7 Then, the payoff functions can be naturally

extended to the domain of the mixed strategies as

Ui

(
(b1

i , Fi), (b1
j , Fj)

)
:=

∫∫
Ui

(
(b1

i , b2
i ), (b1

j , b2
j )

)
dFi(b2

i ) dFj(b2
j ). (2)

To simplify the description of the second stage subgames, we define

ui(b2
i , b2

j ; b1
i , b1

j ) := Ui((b1
i , b2

i ), (b1
j , b2

j )) + b1
i . (3)

Here, ui represents i’s payoff in the subgame after (b1
i , b1

j ) exclusive of his sunk cost b1
i . It

can also be naturally extended to mixed strategies. In what follows, Ui and ui are referred

to as i’s net payoff and gross payoff, respectively. Furthermore, b1
i and b1

j in ui are omitted

as long as they are given and fixed.

3 Results

3.1 Equilibrium Characterization

In this subsection, we investigate the SPEs of the two-stage all-pay auction G. To be-

gin with, let us consider the Nash equilibria in the second stage subgames. Notice that

in the second stage, bidder i still potentially has an incentive to bid b2
i = vi, because

7We do not consider mixed strategies in the first period. This is just for simplicity and does not restrict
the results at all.
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b1
i is already sunk. Following Siegel’s (2009) terminology, let us refer to vi + b1

i as i’s

reach. Given (b1
A, b1

B), let (H, L) = (A, B) or (B, A) so that H has a longer reach than L,

i.e., vH + b1
H ≥ vL + b1

L. Siegel (2009) shows that in a general environment that includes

the subgames of G as special cases, the equilibrium payoffs in the all-pay contests are

determined by each player’s reach. That is because the reach represents the range of un-

dominated strategies, and the max-min payoff in undominated strategies (i.e., the payoff

that one can reserve as long as the rivals take undominated strategies) determines the

lower bound of the equilibrium payoff.8 In fact, Siegel (2009, Theorem 1) proves that the

equilibrium payoffs must be equal to these lower bounds. Although Siegel (2009) does

not provide a characterization of equilibrium strategies that is directly applicable to the

present setting, we can fully characterize the equilibria as follows.

If the difference of the bids in the first stage (i.e., b1
H − b1

L) is so large that L does not

have an incentive to submit a positive bid in order to catch up with H, both must bid zero

in the second stage. The first proposition states this transparent fact.

Proposition 1. Consider the second stage subgame after (b1
H, b1

L). If b1
H − b1

L ≥ vL, then the

unique Nash equilibrium of the subgame is (b2∗
H , b2∗

L ) = (0, 0). The equilibrium gross payoffs are

(u∗
H, u∗

L) = (vH, 0).

Proof. See the Appendix. ¥

In the other cases, the second stage subgame possesses no pure strategy Nash equilib-

rium. However, we can fully characterize the unique mixed strategy equilibrium along

almost the same lines as the static all-pay auction.9

8Namely, H and L can reserve the payoffs of vH + b1
H − vL − b1

L and 0 by bidding vL + b1
L − b1

H and 0,
respectively. (Recall that L does not have an incentive to bid b2

L > vL.)
9Recall that the domain of Fi is restricted to R+. Thus, Fi(0) > 0 implies that a positive probability is

assigned to b2
i = 0.
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Proposition 2. Consider the second stage subgame after (b1
H, b1

L). If b1
H − b1

L < vL, the unique

mixed strategy equilibrium (F∗
H, F∗

L ) of the subgame is characterized by

F∗
H(b) = min

{
1,

max{b + b1
H − b1

L, 0}
vL

}
, and (4)

F∗
L (b) = min

{
1,

∆ + max{b + b1
L − b1

H, 0}
vH

}
, (5)

where ∆ := vH + b1
H − vL − b1

L. The equilibrium gross payoffs are (u∗
H, u∗

L) = (∆, 0).

Proof. See the Appendix. ¥

Let us briefly see how the equilibrium gross payoffs are determined. Let αi and βi

denote i’s lowest and highest bid in the support of his mixed strategy in an equilibrium,

respectively; i.e., αi := min(supp F∗
i ) and βi := max(supp F∗

i ). To begin with, recall that

in a mixed strategy equilibrium, (almost) all bidding amounts in the support of his mixed

strategy must be indifferent to each bidder. To sustain i’s incentive to offer αi, therefore,

either (i) he can win with a positive probability even when he submits αi or (ii) he earns

the equilibrium gross payoff u∗
i = 0 so that he has an incentive to bid αi = 0 even though

bidding zero yields the winning probability of zero. As a consequence, it is shown that at

least one of the bidders earns the equilibrium gross payoff of zero. That is, both bidders

can earn positive equilibrium payoffs only if both A and B win the reward with a positive

probability by bidding αA and αB, respectively. This condition implies that b1
A + αA =

b1
B + αB, and that F∗

A and F∗
B assign a positive mass at αA and αB, respectively. However,

this is followed by a contradiction that each bidder i strictly prefers bidding slightly more

than αi to bidding αi so as to increase the probability of winning discontinuously.

Hence, it follows that at least one of the bidders earns the equilibrium gross payoff

zero. Given that one bidder i earns u∗
i = 0, the other bidder j must take a strategy so that i

cannot earn a positive gross payoff by any bid. Then, b1
j + β j must be at least as large as i’s
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reach b1
i + vi, because otherwise i can profitably deviate by bidding b2

i ∈ (b1
j + β j − b1

i , vi).

Since i has no incentive to offer any bid b2
i > vi, it follows that b1

j + β j = b1
i + vi. Moreover,

we can also conclude that j can win with probability one by bidding b2
j = β j, because

otherwise j prefers bidding slightly more than β j to bidding β j. These conditions pin

down j’s equilibrium gross payoff. Moreover, since j’s equilibrium gross payoffs cannot

be negative, it follows that (i, j) = (L, H).

Using these results on the subgame equilibria, the SPEs of the whole game G can also

be characterized. Notice that each bidder can reserve the net payoff Ui = 0 by bidding

zero in both periods and thus, U∗
i must be non-negative in any equilibrium. Note also that

by Propositions 1 and 2, at least one of the bidders must earn u∗
i = 0 in the subgame on

the equilibrium-path. Recalling that Ui ≡ ui − b1
i , it follows that in any SPE, U∗

i = 0 and

b1∗
i = 0 for (at least) one of the bidders. These arguments imply that b1∗

B = 0 in any SPE

of G as follows. If b1∗
B > 0 in an SPE, it follows that u∗

B > 0 on the equilibrium-path and

thus that U∗
A = u∗

A = 0 and b1∗
A = 0. Then, to sustain such an equilibrium, B’s maximal

total payment b1∗
B + βB must be equal to vA, because otherwise A can profitably deviate

by bidding (b1
A, b2

A) such that b1
A + b2

A ∈ (b1∗
B + βB, vA). However, a clear contradiction

occurs that B must earn a negative net payoff by offering a total payment of vA even

though he can obtain the reward.

Therefore, it is shown that b1∗
B = 0 in any SPE. On the contrary, b1∗

A cannot be uniquely

determined. Unless b1∗
A > vB, in the second stage, A must take a mixed strategy such

that b1∗
A + βA = vB in order to control B’s incentive. In other words, no matter how

much A commits in the first period, he is provided in the second stage an incentive to

obtain the good by making a total payment of vB. This implies that UA = vA − vB for

any b1
A ∈ [0, vB], given that b1

B = 0. Since it is clearly suboptimal for A to bid b1
A > vB,

any b1
A ∈ [0, vB] is a best response to b1

B = 0 in the reduced game. The next proposition

summarizes this equilibrium indeterminacy.
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O

1

vB

ΦA

ΦB

(a) SPE in which b1∗
A = 0.

O

1

ΦA

ΦB

b vB

(b) SPE in which b1∗
A = b > 0.

Figure 1: Distributions of total bids. The horizontal and vertical axes represent the total
bid b1

i + b2
i and its cumulative distribution, respectively.

Proposition 3. The two-stage all-pay auction G has a continuum of SPEs corresponding to each

(b1
A, b1

B) ∈ [0, vB] × {0}. However, the equilibrium net payoffs are equivalent on the continuum:

(U∗
A, U∗

B) = (vA − vB, 0).

Proof. See the Appendix. ¥

To observe how the equilibrium distributions of the bidders’ total payments vary with

b1∗
A , see Figure 1. Given (b1

i , Fi), let Φi be the cumulative distribution of i’s total bid b1
i + b2

i ;

i.e., Φi(b1
i + b2

i ) = Fi(b2
i ). Figure 1 (a) shows the cumulative distributions ΦA and ΦB in

the SPE where b1∗
A = b1∗

B = 0. Note that these distributions are equivalent to those of the

equilibrium bids in the static all-pay auction. Figure 1 (b) illustrates ΦA and ΦB in the SPE

where (b1∗
A , b1∗

B ) = (b, 0) with b ∈ (0, vB). As compared to Figure 1 (a), we can (roughly)

check that these actually constitute an equilibrium as follows. Notice that Φi is identical

between Figure 1 (a) and (b) on the interval [b, vB]. Thus, the equilibrium conditions (in

the second period) are satisfied on this interval. On the other hand, since A commits b in
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the first period, it is also obvious that B does not have an incentive to bid b2
B < b and that

A cannot decrease his total payment (in the second stage) so that b1
A + b2

A < b. Finally,

both bidders clearly earn the same payoffs in the two SPEs.

Using these graphs, the next proposition that states the revenue non-equivalence on

the continuum of SPEs is easily derived. Let Φ be a distribution function on [0, T] given in

the form of Φ(t) = Φ(0) + φ · t for all t ∈ [0, T]. Such Φ is drawn in Figure 2 (a). Then, the

expectation of t with respect to Φ is
∫ T

0 t dΦ(t) =
∫ T

0 t · φ dt =
∫ T

0 (Φ(t)− Φ(0)) dt, which

is the shaded triangular region in Figure 2 (a). Applying this to Φi in Figure 1 (a) and

(b), we can compare E[b1
i + b2

i ] in the two SPEs where (b1∗
A , b1∗

B ) = (0, 0) and (b, 0). The

differences in i’s expected payment are illustrated in Figure 2 (b). The upper (resp. lower)

shaded triangular region represents the decrease (increase) in B’s (A’s) expected payment.

Since the lower triangular region is larger than the upper one, the sum of payments (i.e.,

the seller’s revenue) is larger in the SPE with (b1∗
A , b1∗

B ) = (b, 0) than in the SPE with

(b1∗
A , b1∗

B ) = (0, 0). It is also obvious from Figure 2 (b) that the revenue is monotonically

increasing in b1∗
A . More precisely, the seller’s expected revenue is given as follows.

Proposition 4. Let R(b) denote the expected revenue of the seller in the SPE with b1∗
A = b. Then,

R(b) is given by

R(b) =
(vA + vB)vB

2vA
+ b2 · vA − vB

2vAvB
, (6)

which is increasing in b.

Proof. See the Appendix. ¥

The intuition behind Proposition 4 is as follows. Although A’s large commitment does

not benefit A himself, it has an externality. Recall that it is socially optimal that A obtains

the good because vA > vB. Then, since a larger b1
A induces a longer reach of A and thus

a larger probability of A’s winning, an increase in b1
A enlarges social welfare. Since the
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O

1

T

∫ t dΦ(t)
Φ

(a) Example of linear distribution.

O

1

ΦA

ΦB

b vB

(b) Differences in E[b1
i + b2

i ].

Figure 2: Expectation with respect to a linear distribution and the differences in the ex-
pected total bids between the two SPEs.

payoffs are the same across all SPEs, the increment in social welfare must result in a rise

in the seller’s revenue. That is, the seller’s expected revenue is increasing in b1∗
A .

Let us compare R(b) with the revenues in other auctions. It is obvious that R(0) =

(vA + vB)vB/2vA is equal to the expected revenue in the static all-pay auction. Thus,

any SPE in the present setting yields a (weakly) higher revenue than in the static all-pay

auction. Notice also that R(vB) = vB is the revenue of the first- and second-price auctions.

Hence, if the SPE in which b1∗
A = vB is realized, the present auction performs as well as

the standard auctions from the seller’s point of view. In the next subsection, a perturbed

mechanism that implements this efficient SPE is considered.

3.2 Bias towards Commitments

In this subsection, we consider a class of perturbed mechanisms by which the seller can

implement the efficient equilibrium eliminating all the other inefficient equilibria. Given a

parameter ε ∈ (0, 1/2), the corresponding perturbed game Gε is formulated by replacing
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the payoff function Ui in the original game G with

Uε
i

(
(b1

i , Fi), (b1
j , Fj)

)
:= Ui

(
(b1

i , Fi), (b1
j , Fj)

)
+ ε · b1

i . (7)

The restriction ε < 1/2 is to guarantee the existence of a pure strategy equilibrium in the

reduced game.

The intended interpretation of Gε is as follows. The seller is biased towards the pay-

ments of b1
i committed in the first period, in the sense that a payment of 1 − ε dollars in

the first period has the same effect as that of 1 dollar in the second period. In this sense,

ε represents the degree of the seller’s bias towards commitments. When bidder i offers

(b1
i , b2

i ), he only needs to pay (1 − ε)b1
i + b2

i , and the seller’s net revenue is given by

(b1
A + b2

A + b1
B + b2

B) − ε(b1
A + b1

B). (8)

However, bidder i’s winning probability Pri still depends on b1
i + b2

i . For example, if ε = .1

and ((b1
A, b2

A), (b1
B, b2

B)) = ((100, 10), (0, 105)), A and B pay 100 and 105, respectively,

although A wins the reward.

In the original auction G, a bid bt
i has two aspects. On the one hand, it represents i’s

payment and thus his cost. On the other hand, it also refers to the score on which the

allocation of the reward depends. Technically, the only important point in the definition

of Gε is that b1
i and b2

i are not perfectly substitutable from the viewpoint of i’s cost, but

are so from the viewpoint of the score. The gap between the two aspects represents the

seller’s bias.10

10 This gap should not be regarded as a consequence of interest. If interest rate r is not negligible, 1 dollar
in the first period is worth 1 + r dollars in the second period. Thus, one might feel natural that the seller
assigns a larger score to 1 dollar in the first stage rather than that in the second stage. However, in such a
case, the bidder’s cost should be measured by the present value rather than the face value and thus, 1 dollar
in the first period and 1 + r dollars in the second period are identical also from the viewpoint of bidder’s
cost. What is assumed here is that in such a case, bidding 1 dollar in the first period is better than bidding
1 + r dollars in the second period from the viewpoint of score.
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Recall that the bidders earn the same payoffs across the continuum of SPEs in the

original game G. The multiple equilibria arise due to the multi-valuedness of A’s best

response. Hence, small incentives provided by a small ε suffice to induce the maximal

commitment. More specifically, under a sufficiently and arbitrarily small ε, the revenue

maximising SPE becomes the unique equilibrium. The seller can make her expected net

revenue arbitrarily close to vB by imposing a sufficiently small ε.

Proposition 5. For any ε ∈ (0, 1/2), the biased auction Gε has an SPE of which outcome is

((b1∗
A , b2∗

A ), (b1∗
B , b2∗

B )) = ((vB, 0), (0, 0)). This SPE is unique if ε 6∈ [ vA−vB
vA

, vB
vA+vB

]; otherwise,

there is another SPE whose outcome is ((b1∗
A , b2∗

A ), (b1∗
B , b2∗

B )) = ((0, 0), (vA, 0)).

Proof. See the Appendix. ¥

Proposition 5 implies that the seller can raise almost the same revenue as in the stan-

dard auctions, maintaining the all-pay feature of the mechanism. As discussed in the next

subsection, there exist other all-pay mechanisms that yield (almost) the same revenue.

Before comparing these mechanisms, one property of the present mechanism should be

noted: it is robust in the sense that it is independent of the seller’s knowledge of the

bidders’ values. For a moment, ignore the assumption that vA > vB and suppose that

(vA, vB) is randomly drawn from a probability distribution. Suppose also that at each

realization, (vA, vB) is known to both bidders but not to the sellers. Even then, as ε ap-

proaches zero, at any realization of (vA, vB), the seller’s expected revenue converges to

min{vA, vB}, which is equivalent to that in the standard auctions.11 This property distin-

guishes the present mechanism from other all-pay mechanisms, as discussed in the next

subsection.

11In the symmetric case of vA = vB, two SPEs exist under any ε > 0. However, the two SPEs yield the
same revenue. Therefore, the probability of an SPE being unique does not converge to one if vA = vB with
a positive probability, but this does not matter from the viewpoint of the revenue.

15



3.3 Discussion

In this subsection, the results in the previous subsections are compared with other all-pay

mechanisms that yield the same revenue as the standard auctions. In the context of po-

litical lobbying or rent seeking, the seller (politician) has to design an all-pay mechanism.

This is so because the politician cannot explicitly “sell” a rent in the literal sense, and the

fund must be raised as if it is irrelevant to the rent.

3.3.1 Comparison with the optimal bid cap

Che and Gale (1998) show that in the static all-pay auction with complete information, the

seller can increase the revenue by imposing a bid cap. Let m denote the level of bid cap,

i.e., the maximum permissible bidding amount. They demonstrate that the revenue con-

verges to vB as m ↗ vB/2, while there exists a continuum of equilibria under m = vB/2.

This might seem similar to Propositions 3–5 in the present study. However, comparing

the two mechanisms, two points should be noted.

First, the social welfare is higher in the present dynamic mechanism than in the static

all-pay auction with the optimal bid cap. Note that the socially optimal allocation (i.e.,

A wins the reward) realizes with probability one in the present mechanism under suffi-

ciently small ε. Thus, the social surplus is always maximized. In contrast, as Che and Gale

(1998) emphasize, a bid cap increases the revenue only by decreasing the welfare. Under

a bid cap m < vB/2, lower value bidder B has a larger chance to win than when with-

out the cap.12 This increases B’s expected bid, and hence the revenue. However, since

vA > vB, a higher probability of B winning the reward implies a larger social inefficiency.

Therefore, the bid cap decreases the welfare although it increases the revenue.

Second, the performances of the two mechanisms are different even for the seller, if

12Note that when m < vB/2, B can reserve a positive payoff because he can win at least with probability
1/2 by bidding m.
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she does not know vA and vB. As discussed above, the present mechanism works even

in such cases. On the contrary, the bid cap does not do the same. Since the optimal level

of bid cap depends on (vA, vB), any fixed m cannot raise the revenue of min{vA, vB} with

probability one when vA and vB are uncertain for the seller.

3.3.2 Comparison with the Stackelberg auction

There is another all-pay mechanism that yields the highest expected revenue vB: the

Stackelberg auction studied by Konrad and Leininger (2007). Consider a sequential move

game in which A only bids in the first period and B only bids in the second period. In

this setting, there is a unique equilibrium where A and B bid vB and 0 on the equilibrium-

path, respectively. This outcome in the Steckelberg auction might seem similar to that of

the efficient SPE in the present model.

However, this mechanism also has a problem when (vA, vB) is unknown to the seller.

It requires the seller to know which bidder has the larger (or the largest if there are more

than two bidders) value. If the seller let the lower value bidder move first, the unique

equilibrium revenue becomes zero.13 Thus, when the seller does not know the rank order

between the bidders’ valuations, she is unable to determine which bidder should move

first.

4 Extension

In this section, an extension of the results in the previous section to a generalized bidding

cost environment is considered. Although the linear cost is frequently assumed in the

literature and may seem plausible as a model of lobbying, such a generalization could

13As Konrad and Leininger (2007) show, this unpleasant timing is likely to realize when the timing is
endogenized by the observable-delay game. On the contrary, the present model corresponds to the action-
commitment game. See Hamilton and Slutsky (1990) for the original formulation of the two timing games.
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be of interest possibly because of, for example, non-risk-neutral lobbyists, incomplete

financial markets, or non-linear transaction costs.14 Furthermore, it would be important

to consider non-linear costs when we apply the all-pay auction to other competitions such

as promotion tournaments where the bids are not interpreted as monetary payments.

The generalized contest Γ is the game defined by replacing Ui in the original model G

with

Ui((b1
i , b2

i ), (b1
j , b2

j )) = Pri · vi − C(b1
i + b2

i ), (9)

where Pri is defined the same as in the previous sections and C : R+ → R+ is a strictly

increasing and twice continuously differentiable function with C(0) = 0. As in the previ-

ous section, the gross payoffs in the second stage are defined by ui(b2
i , b2

j ) := Ui + C(b1
i ),

given b1
i and b1

j .

Notice that the definition of Γ does not exclude a certain class of cost asymmetries.

Suppose that i’s bidding cost is Ci = θi · C, where θi ∈ R+ is a parameter representing

i’s efficiency. Even if θA 6= θB, the present model can incorporate the cost asymmetry by

replacing vi and Ci with vi/θi and C, respectively. Note also that this transformation does

not affect the scale of equilibrium bids; i.e., the implications on the seller’s revenue do not

change.

The assumption that the bidding cost only depends on the total bid b1
i + b2

i might

be more restrictive. This means that, given an amount of total bid b1
i + b2

i , the division

into b1
i and b2

i does not matter. This might seem non-plausible in some situations other

than lobbying, in particular when the bids represent non-monetary effort. However, as a

model of political lobbying and fund-raising in which bt
i is a monetary transfer, there is a

possible justification. When the bids are monetary, bt
i should be regarded as the present

value of the transfer in period t, as discussed in footnote 10. Then, it would not be peculiar

to assume that the cost depends only on the total present value of the transfers b1
i + b2

i ,
14Fibich et al. (2006) study the all-pay auction among risk-averse bidders under incomplete information.
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even though C is non-linear.

As in the previous section, given (b1
A, b1

B), let (H, L) = (A, B) or (B, A) so that vH +

C(b1
H) ≥ vL + C(b1

L).15 Then, Propositions 1 and 2 are naturally extended as follows.

Proposition 6. Consider the second stage subgame after (b1
H, b1

L). Then, the unique equilibrium

is characterized as follows. (A) When C(b1
H) − C(b1

L) ≥ vL, then the equilibrium is given by

b2∗
H = b2∗

L = 0. The equilibrium gross payoffs are (u∗
H, u∗

L) = (vH, 0). (B) Otherwise, the unique

equilibrium mixed strategies are given by

F∗
H(b) = min

{
1,

C
(

M(b) + b1
L
)
− C(b1

L)
vL

}
, and (10)

F∗
L (b) = min

{
1,

∆ + C
(
m(b) + b1

L
)
− C(b1

L)
vH

}
, (11)

where M(b) := max{b + b1
H − b1

L, 0}, m(b) := max{b + b1
L − b1

H, 0}, and ∆ := vH + C(b1
H)−

vL − C(b1
L) ≥ 0. The equilibrium gross payoffs are (u∗

H, u∗
L) = (∆, 0).

Proof. See the Appendix. ¥

Further, an analogue of Proposition 3 also holds in this environment.

Proposition 7. The generalized contest Γ has a continuum of SPEs corresponding to each

(b1
A, b1

B) ∈ [0, C−1(vB)] × {0}. However, the equilibrium net payoffs are equivalent on the

continuum: (U∗
A, U∗

B) = (vA − vB, 0).

Proof. See the Appendix. ¥

It should be noted that even in this generalized setting, the SPEs with (b1
A, b1

B) = (0, 0)

and (C−1(vB), 0) correspond to the equilibrium outcomes in the static all-pay contest and

the standard winner-pay auctions under bidding cost C, respectively. However, in this

15Note that vi + C(b1
i ) is the maximal cost that i would pay given that C(b1

i ) is sunk. Notice also that a
larger total cost is equivalent to a larger total bid because C is increasing.
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generalized environment, the SPE with (b1
A, b1

B) = (C−1(vB), 0) may not be the best for

the seller. In other words, Proposition 4 can only be partially extended. The seller’s

revenue may not be monotonically increasing in b1∗
A , although the sum of the bidders’

costs is.

Proposition 8. In the SPE with b1∗
A = b, the expected revenue is given by

R(b) =
∫ C−1(vB)

0

vA + vB

vAvB
t · C′(t) dt +

∫ b

0

(
b

vB
− (vA + vB)t

vAvB

)
C′(t) dt, (12)

which may or may not be increasing in b. On the contrary, the sum of the expected costs,

E[C(b1
A + b2

A)] + E[C(b1
B + b2

B)], is given by

X(b) =
vB(vA + vB)

2vA
+

vA − vB

2vAvB
[C(b)]2, (13)

which is increasing in b.

Proof. See the Appendix. ¥

We have to distinguish the seller’s revenue and the bidders’ costs in the generalized

model Γ that are equivalent in the linear model G. If we replace the revenue with cost in

Proposition 4, it is fully extended by the second half of Proposition 8. Even with a general

cost function, a larger commitment of the high value bidder yields a higher probability

of optimal allocation. Since the equilibrium payoffs are the same across SPEs, the benefit

from optimal allocation must be offset by the increment in the expected costs. However,

when C is non-linear, the increment in the expected costs does not necessarily mean that

the expected revenue increases.

That is, the reason why Proposition 4 cannot be fully extended is that there is another

source of social inefficiency in the generalized cost environment. Even when taking the

revenue (b1
A + b2

A) + (b1
B + b2

B) as fixed, its allocation between (b1
A + b2

A) and (b1
B + b2

B)
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matters under a non-linear C. For example, given that the revenue is R, it is socially

optimal that either bidder pays all if C is concave and that A and B equally pay R/2 if C

is convex.

The seller’s bias still works in the sense that she can raise the revenue arbitrarily close

to that in the standard auctions. It is easily seen that the seller can implement the SPE

with ((b1∗
A , b2∗

A ), (b1∗
B , b2∗

B )) = ((vB, 0), (0, 0)) by a sufficiently small rate of bias towards

commitments even in Γ. However, when C is non-linear, Proposition 8 states that the

revenue under the maximal commitment SPE may not be the highest. In other words, the

simple bias for commitments may not implement the best equilibrium for the seller.

The last proposition provides a sufficient condition that the revenue is monotonically

increasing in b1∗
A for any (vA, vB) and thus, the maximal commitment SPE is the best for

the seller. The property that the revenue is increasing in b1∗
A regardless of (vA, vB) is of

importance from the viewpoint of the robustness of the mechanism. Under this prop-

erty, using the simple bias, the seller can raise the revenue as if she knows the bidders’

values and can implement the best equilibrium, even though she does not have such in-

formation. Note also that the concavity of C is sufficient for the condition in Proposition

9.16

Proposition 9. The expected revenue R(b) is increasing in b for any (vA, vB), if the elasticity of

C is globally less than one, i.e., (xC′(x))/C(x) ≤ 1 for all x ∈ R++.

Proof. See the Appendix. ¥

To conclude this section, two situations in which the conditions of Proposition 9 would

be plausible are mentioned. First, there might exist a fixed cost to offer a positive bid, or

a concave transaction cost. Suppose that C(b) = I(b > 0) · c + b, where c > 0 and I is an

index function that takes one if b > 0 and zero, otherwise. This function is discontinuous

16Since C(0) = 0, if C is concave, x · C′(x) ≤ C(x) for all x ∈ R++.
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and thus does not satisfy the assumptions made above. However, we can approximate it

arbitrarily well by a continuous concave function. Therefore, Proposition 9 provides an

insight on such a situation with a fixed or concave transaction cost. Moreover, it is easily

checked that the revenue is also increasing in the limit where C is discontinuous. Second,

in other applications of the all-pay contest such as R&D races, there could be increasing

returns to scale, which can be represented by the concavity of C.

5 Concluding Remarks

This paper examines the role of commitment in political lobbying using a simple model

of two-stage all-pay auction. When the bidders have a chance of commitment, the politi-

cian can overcome the under-dissipation problem, which is a central property of the static

all-pay auction. Specifically, the seller can raise almost the same revenue as in the stan-

dard winner-pay auctions by having an arbitrarily small degree of bias. Moreover, this

dynamic mechanism is robust in the sense that it does not require the seller to have any in-

formation about the bidders’ values. These results provide a new insight to the literature,

which mainly investigates static models, elimination tournaments, or repeated contests.

In the literature, the campaign expenditure of lobbyists is often regarded as a social

waste rather than the politician’s revenue. From such a perspective, the equilibria in the

dynamic all-pay auction is indifferent for the society. A larger commitment of the high

value bidder implies a larger social waste, but it is offset by the allocational efficiency.

However, as long as the campaign expenditure has some benefit to the society, the maximal

commitment equilibrium is the most preferable.

To conclude, let us discuss the assumptions made in the present paper. First, it is worth

mentioning that we can extend the present results to general numbers of bidders and

periods. As noted in footnote 5, adding additional bidders does not change the results,
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because only two bidders make a positive bid in equilibria as in the static all-pay auctions.

Moreover, the results do not depend on the two-period setting, either. Adding additional

periods just increases the dimension of continuum of equilibria. For example, in a three-

period model, for each (b1, b2) with b1 + b2 ≤ vB, there exists an SPE in which higher

value bidder A bids b1 in the first period and b2 in the second period, on the equilibrium-

path. Therefore, we can extend the present results to a general n-bidder T-period model.

On the contrary, it might be crucial to assume that the horizon is fixed and certain, because

the equilibrium characterization in the present paper depends on backward induction. It

remains for future research to analyze models with uncertain horizons.

Second, although the present mechanism does not require the seller to have any infor-

mation, it is assumed that the values are common knowledge among bidders. It is also

of interest to investigate dynamic incomplete-information models in future research. Un-

der incomplete information, early commitments can play a different role because bids in

earlier stages can reveal bidders’ private information.

Appendix: Proofs

Proof of Proposition 1.

The statement is obvious, because any b2
L > 0 is strongly dominated by bidding zero. ¥

Proof of Proposition 2.

Let (F∗
H, F∗

L ) and (u∗
H, u∗

L) be a Nash equilibrium and the pair of gross equilibrium payoffs,

respectively. For each i ∈ {H, L}, define Si := supp F∗
i and (αi, βi) := (min Si, max Si).

Notice that,

u∗
i = lim

b↘αi
ui(b; F∗

j ) = lim
b↗βi

ui(b; F∗
j ), (14)
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must hold by definition.17

First of all, we show that b1
H + βH = b1

L + βL. By way of contradiction, suppose b1
i +

βi > b1
j + β j. Then, since b1

j + b2
j ≤ b1

j + β j with probability one, any b2
i > b1

j − b1
i + β j

cannot be a best response to F∗
j , which is a contradiction to the supposition.

Then, it directly follows that βi is not a mass point of F∗
i for all i ∈ {H, L}. This is

because, if βi is a mass point of F∗
i ,

lim
b↗β j

uj(b; F∗
i ) < uj(β j; F∗

i ) < lim
b↘β j

uj(b; F∗
i ), (15)

which is a contradiction to equation (14) and the equilibrium condition.

Second, it is demonstrated that βL = vL. On the contrary, suppose that βL < vL. (It

is clear that βL ≤ vL because any b2
L > vL is strongly dominated by b2

L = 0.) Then, it

follows that βH < vH, because b1
H + vH ≥ b1

L + vL by definition and b1
H + βH = b1

L + βL.

Therefore, for each (i, j) ∈ {(H, L), (L, H)}, equation (14) implies

u∗
i = lim

b↗βi
ui(b; F∗

j ) = vi − βi > 0, (16)

since β j is not a mass point of F∗
j . That is, u∗

H, u∗
L > 0. Now, assume without loss of

generality that b1
i + αi ≤ b1

j + αj. If b1
i + αi < b1

j + αj or αj is not an atom of F∗
j , then,

lim
b↘αi

u(b; F∗
j ) = ui(αi; F∗

j ) = −αi, (17)

which is a contradiction to equations (14) and (16). Hence, the only possible case is that

b1
i + αi = b1

j + αj and αj is an atom of F∗
i . In order that αj is an atom of F∗

j , a similar

discussion yields that αi is an atom of F∗
i , which implies ui(αi; F∗

j ) = u∗
i . Then, however,

17This statement follows from an analogue of Pitchik’s (1982) Lemma 1 and the transparent fact that
b1

A + b2
A = b1

B + b2
B only with probability zero in an equilibrium.
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a contradiction occurs that

u∗
i = ui(αi; F∗

j ) < lim
b↘αi

u(b; F∗
j ). (18)

Thus, we have obtained that βL = vL. Now, we can pin down the equilibrium gross

payoffs. Recalling that βi is not a mass point of F∗
i for any i, it follows that

u∗
H = lim

b↗βH
uH(b; F∗

L ) = ∆ and u∗
L = lim

b↗βL
uL(b; F∗

H) = 0, (19)

where ∆ := (b1
H + vH) − (b1

L + vL).

Third, it is shown that F∗
i must be continuous on (0, βi) for each i ∈ {H, L}. By way of

contradiction, suppose that F∗
i has a mass point at b̄i ∈ (0, βi). It is clear that b̄i ≥ b1

j − b1
i ,

because otherwise b̄i is a strongly dominated strategy. Moreover, b̄i = b1
j − b1

i also yields

a contradiction, since it implies that ui(b̄i; F∗
j ) < 0 if F∗

j (0) = 0 and that ui(b̄i; F∗
j ) <

limb↘b̄i
ui(b; F∗

j ) otherwise. Hence, the only possible case is b̄i > b1
j − b1

i . Let b̃j = b̄i +

b1
i − b1

j > 0. Then, it follows that limb↗b̃j
uj(b; F∗

i ) < limb↘b̃j
uj(b; F∗

i ) and thus, F∗
j must

be constant on a left neighborhood of b̃j. However, it implies that there exists ¯̄bi < b̄i such

that ui( ¯̄bi; F∗
j ) > ui(b̄i; F∗

j ), which is a contradiction.

Finally, let us explicitly solve for (F∗
H, F∗

L ). Notice that as long as b + b1
i > b1

j ,

ui(b; F∗
j ) = F∗

j (b + b1
i − b1

j )vi − b, (20)

and hence, the equilibrium condition, ui(b; F∗
j ) ≤ u∗

i , implies

F∗
j (b + b1

i − b1
j ) ≤

u∗
i + b
vi

. (21)
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Therefore, for b′ ≥ max{b1
i − b1

j , 0}, it follows that

F∗
j (b′) ≤

u∗
i + (b′ + b1

j − b1
i )

vi
. (22)

By way of contradiction, suppose that there exists b̂ ∈ (max{b1
i − b1

j , 0}, β j) such that

F∗
j (b̂) <

u∗
i + (b̂ + b1

j − b1
i )

vi
. (23)

Notice that we can take b̂ ∈ Sj without any loss of generality, because of the continuity of

F∗
j .18 Moreover, the continuity also implies that there exists an open interval I 3 b̂ such

that

F∗
j (b) <

u∗
i + (b + b1

j − b1
i )

vi
for all b ∈ I. (24)

Then, ui(b + b1
j − b1

i ; F∗
j ) < u∗

i for any b ∈ I and thus, F∗
i must be constant on the interval

(inf I + b1
j − b1

i , sup I + b1
j − b1

i ). However, it follows that for bidder j, any strategy b ∈ I

is strongly dominated by inf I, which is a contradiction to the assumption that b̂ ∈ Sj.

Hence, we can conclude that

F∗
j (b) =

u∗
i + (b + b1

j − b1
i )

vi
, (25)

for all b ∈ (max{b1
i − b1

j , 0}, βi) and hence, for all b ∈ [max{b1
i − b1

j , 0}, βi] by continuity.

When b1
i − b1

j > 0, any b ∈ (0, b1
i − b1

j ) is a strongly dominated strategy for j, and thus F∗
j

must be constant on (0, b1
i − b1

j ).

18This can be formally shown as follows. Let B := {b : F∗
j (b) < [u∗

i + (b + b1
j − b1

i )]/vi}. By way of
contradiction, suppose that B 6= ∅ and B ∩ Sj = ∅. Since B is open and Sj is closed, for an arbitrary b ∈ B,
there exists an open interval I 3 b such that I ⊂ B ∩ Sc

j . Let I∗, which is an open interval itself, be the union
of all such intervals. Then, it is clear that sup I∗ ∈ ∂(B ∩ Sc

j ) ⊂ ∂B ∪ ∂Sc
j . Moreover, by the supposition

that B ∩ Sj = ∅ and the fact that ∂Sc
j = ∂Sj ⊂ Sj, a contradiction occurs if sup I∗ ∈ B◦ ∩ ∂Sc

j . Therefore,

sup I∗ ∈ ∂B = {b : F∗
j (b) = [u∗

i + (b + b1
j − b1

i )]/vi}. However, since F∗
j must be constant on I∗, this gives

rise to a clear contradiction to the definition of I∗.
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As a summary, if (F∗
H, F∗

L ) is an equilibrium, it follows that

F∗
H(b) = min

{
1,

max{b + b1
H − b1

L, 0}
vL

}
, (26)

F∗
L (b) = min

{
1,

∆ + max{b + b1
L − b1

H, 0}
vH

}
. (27)

It can be easily checked that these actually constitute an equilibrium. ¥

Proof of Proposition 3.

To begin with, it is shown that b1
B = 0 is B’s strongly dominant strategy in the reduced

game. Fix an arbitrary b̄1
B > 0. If b1

A + vA ≥ b̄1
B + vB, B’s gross payoff in the second

stage is u∗
B = 0 and thus, his net payoff is UB = −b̄1

B < 0. If b1
A + vA < b̄1

B + vB, he can

earn a positive gross payoff, (b̄1
B + vB) − (b1

A + vA), but his net payoff is still negative:

UB = vB − (vA + b1
A) < 0. On the contrary, if b1

B = 0, B’s gross payoff u∗
b in the second

stage equilibrium is zero no matter what b1
A is, and thus so is his net payoff UB. Therefore,

b1
B = 0 dominates b̄1

B.

Then, what remains to examine is A’s best response to b1
B = 0 in the reduced game.

Given b1
B = 0, A’s gross equilibrium payoff in the second stage subgame is vA if b1

A ≥ vB

and b1
A + vA − vB otherwise. Thus, his net payoff is UA = vA − vB as long as b1

A ∈ [0, vB]

and UA = vA − b1
A < vA − vB otherwise. This implies that any b1

A ∈ [0, vB] is a best

response to b1
B = 0 and the proof is complete. ¥

Proof of Proposition 4.

Let (F0
A, F0

B) denote the equilibrium mixed strategies in the subgame after (b1
A, b1

B) =

(0, 0). That is, F0
A(b) = b/vB and F0

B(b) = (b + vA − vB)/vA on [0, vB]. Fix an arbi-

trary (b1
A, b1

B) ∈ [0, vB]× {0}. Then, using the results in Proposition 2, the distributions of
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b1
A + b2

A and b1
B + b2

B are given by

ΦA(b) =


0 for b ∈ [0, b1

A]

b/vB for b ∈ [b1
A, vB]

(28)

and,

ΦB(b) =


(b1

A + vA − vB)/vA for b ∈ [0, b1
A]

(b + vA − vB)/vA for b ∈ [b1
A, vB].

(29)

Note that F0
i (b) = Φi(b) for b ∈ [b1

A, vB]. Therefore, the difference in expected revenue is

R(b1
A) − R(0) =

∫ b1
A

0

[
b1

A − t
vB

− t
vA

]
dt

=
(

b1
A

)2
(

1
vB

− 1
2vB

− 1
2vA

)
=

(
b1

A

)2 vA − vB

2vAvB
.

(30)

Since

R(0) =
∫ vB

0
t dF0

A(t) +
∫ vB

0
t dF0

B(t) =
vB(vA + vB)

2vA
, (31)

we obtain

R(b1
A) =

vB(vA + vB)
2vA

+
(

b1
A

)2 vA − vB

2vAvB
, (32)

and the proof is complete. ¥

Proof of Proposition 5.

Notice that the bias does not affect the second stage gross payoff ui. Thus, the equilibria

of the subgames do not change and Propositions 1 and 2 also hold in Gε. That is, we only

need to investigate the reduced game.
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Notice that there exists i ∈ {A, B} such that u∗
i = 0 in any subgame. If u∗

i = 0 on an

equilibrium-path, it clearly implies b1∗
i = 0. That is, in any (pure strategy) equilibrium of

the reduced game, there exists i with b1∗
i = 0.

Therefore, it is easily seen that the only candidates of equilibria of the reduced game

are (b1∗
A , b1∗

B ) = (vB, 0) and (0, vA). In the former case, the equilibrium conditions are

(1 − ε)vB ≤ vA and (1 − ε)(vA + vB) ≥ vB, (33)

which are always satisfied as long as ε ∈ (0, 1/2). In the latter, the equilibrium conditions,

(1 − ε)vA ≤ vB and (1 − ε)(vA + vB) ≥ vA, (34)

are satisfied if and only if ε ∈ [ vA−vB
vA

, vB
vA+vB

]. ¥

Proof of Proposition 6. Part (A) is transparent as well as Proposition 1. We can also prove

part (B) along the same line as Proposition 2 and thus, we present only the sketch of the

proof.

Let (F∗
H, F∗

L ) be an equilibrium pair of mixed strategies and define Si, αi, and βi the

same as in the proof of Proposition 2. First, it is shown that b1
H + βH = b1

L + βL and βi is

not a mass point of F∗
i for each i ∈ {H, L}. Second, it can be shown that βL = C−1(vL +

C(b1
L)) − b1

L and it follows that (u∗
H, u∗

L) = (∆, 0), where ∆ := vH + C(b1
H) − vL − C(b1

L).

Then, as long as b + b1
i > b1

j , the equilibrium condition,

ui(b; F∗
j ) = F∗

j (b + b1
i − b1

j )vi −
(

C(b + b1
i ) − C(b1

i )
)
≤ u∗

i , (35)

implies that

F∗
j (b + b1

i − b1
j ) ≤

u∗
i +

(
C(b + b1

i ) − C(b1
i )

)
vi

. (36)
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Letting b′ = b + b1
i − b1

j > 0 yields

F∗
j (b′) ≤

u∗
i +

(
C(b′ + b1

j ) − C(b1
i )

)
vi

. (37)

By continuity, inequality (37) must hold with equality for all b′ ∈ (max{b1
i − b1

j , 0}, βi).

When b1
i − b1

j > 0, it is clear that F∗
j must be constant on (0, b1

i − b1
j ). It follows that

F∗
j (b′) =

u∗
i

vi
, (38)

for all b′ ∈ (0, b1
i − b1

j ). As a summary, we can obtain that

F∗
j (b) = min

1,
u∗

i + C
(

max{b + b1
j − b1

i , 0} + b1
i

)
− C(b1

i )

vi

 , (39)

and the proof is complete. ¥

Proof of Proposition 7. The proof is exactly the same as of Proposition 3 and thus omit-

ted. ¥

Proof of Proposition 8. Define (F0
A, F0

B) and (ΦA, ΦB) the same as in the proof of Propo-

sition 4. Further, let λ := C−1(vB) for expositional simplicity. Then, the revenue and the

costs in the subgame after (b1
A, b1

B) = (0, 0) are given by

R(0) =
∫ λ

0
t dF0

A(t) +
∫ λ

0
t dF0

B(t)

=
∫ λ

0

t · C′(t)
vB

dt +
∫ λ

0

t · C′(t)
vA

t dt

=
∫ λ

0

vA + vB

vAvB
t · C′(t) dt,

(40)
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and,

X(0) =
∫ λ

0
C(t) dF0

A(t) +
∫ λ

0
C(t) dF0

B(t)

=
∫ λ

0

t · C′(t)
vB

dt +
∫ λ

0

t · C′(t)
vA

t dt

=
∫ λ

0

vA + vB

vAvB
C(t)C′(t) dt =

vB(vA + vB)
2vA

,

(41)

respectively. (Note that
∫

C · C′ = C2/2 follows from integration by parts.) Regarding

that Φi(b) = F0
i (b) for b ∈ [b1

A, λ], the difference in R and X are given by

R(b) − R(0) =
∫ b

0
(b − t)dF0

A(t) −
∫ b

0
t dF0

B(t)

=
∫ b

0

b − t
vB

C′(t)dt −
∫ b

0

t
vA

C′(t)dt

=
∫ b

0

(
b

vB
− (vA + vB)t

vAvB

)
C′(t)dt,

(42)

and,

X(b) − X(0) =
∫ b

0
(C(b) − C(t))dF0

A(t) −
∫ b

0
C(t)dF0

B(t)

=
∫ b

0

C(b) − C(t)
vB

C′(t)dt −
∫ b

0

C(t)
vA

C′(t)dt

=
∫ b

0

(
C(b)
vB

− (vA + vB)C(t)
vAvB

)
C′(t)dt

=
{C(b)}2

vB
− vA + vB

vAvB

{C(b)}2

2
=

vA − vB

2vAvB
[C(b)]2,

(43)

and the proof is complete. ¥

Proof of Proposition 9. Suppose that b · C′(b)/C(b) ≤ 1 for all b. Then,

d
db

∫ b

0

(
b

vB
− (vA + vB)t

vAvB

)
C′(t)dt =

C(b) + b · C′(b)
vB

− (vA + vB)b · C′(b)
vAvB

>
1

vB

(
C(b) − b · C′(b)

)
≥ 0,

(44)
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for all b ∈ (0, vB) and the proof is complete. ¥
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