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when the proportional fair -share equals the expected payoff at the market price and 
holds for a specific market belief over the species' survival. Whereas rare diseases 
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Abstract 

 

Agents face an ambiguous risk of biodiversity survival as well as ambiguous expected losses 

from its extinction. Indeed, as a collectivity, agents are faced with the option of privately 

funding the protection of biodiversity for biomedical research. We propose two evolutionary 

models of threshold public goods game and public goods option market, where we consider 

population dynamics with proportional fair-share contributors versus free-riders. In the first 

model, we find that agents contribute only if they face ambiguous risks. They contribute if 

their proportional fair-share is less than their expected salvage of wealth. While a common 

disease can induce social cooperation, a rare disease will provoke unconditional social free-

riding. In the second model, in case of ambiguous survival, the public good is provided when 

the agents exchanging option contracts are equally divided into buyers and sellers. This is true 

when the proportional fair-share equals the expected payoff at the market price and holds for a 

specific market belief over the species’ survival. Whereas rare diseases and/or low probability 

of survival induce negative option prices, common diseases and/or high probability of 

survival induce quasi-null option prices. The absence of surplus captured on the option market 

condemns its raison d’être. 
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1. Introduction 

 

As a collectivity, agents are faced with the option of privately funding the protection from 

extinction of biodiversity. Presently, 1.7 million species have been identified, but this number 

is believed to be to a great extent higher. Climate change has produced shifts in the 

distribution and abundance of species (Thomas et al. 2004, Wright and Muller-Landau 2006); 

a number of species are likely to become extinct and some of them face extinction before 

being identified and studied (Schelling 1992). Yet, species conservation can be beneficial 

(Polasky and Solow 1995), that is, they have an important quasi-option value (Arrow and 

Fisher 1974) or the value of the future option made available through their preservation. 

Indeed, the loss of species deprives of tools for biomedical research and precludes new 

medicines for untreatable human diseases (Chivian and Bernstein 2004).  

 

Are agents willing to reduce an ambiguous risk by collectively contributing to a threshold 

public good? To estimate the monetary value of changes in probabilities of health risks, 

economists mostly use contingent valuation and stated-preference methods (Acton 1973, 

Jones-Lee et al. 1985, Thompson et al. 1984) where the metric is the willingness-to-pay to 

reduce the risk (Pratt and Zeckhauser 1996). As such, Weinstein et al. (1980) find that the 

willingness-to-pay for a mortality reduction is contingent on the reduction amount and the 

initial probability level. Further, values do vary, depending on whether the valuation is ex ante 

(health insurance, environmental health) or ex post (medical care). Papers show a significant 

diminishment in the risk reduction value despite a positive expected value of such reductions 

(Viscusi et al. 1987, Hammitt and Graham 1999). On the one side, increased threshold 

uncertainty increases the equilibrium contributions if the public good’s value is sufficiently 

high (McBride 2006) or under low social uncertainty (Wit and Wilke 1998). On the other 

side, ambiguity aversion affects the agents’ monetary-equivalents with ambiguous mortality 

risks (Treich 2010). Also, agents are discouraged by environmental uncertainty and the fear 

that their contributions be a waste (Au 2004). This leads to the sequential collapse of 

contributions (Gangadharan and Nemes 2009).  

 

In principle, rational agents have an incentive to avoid contributing and to free-ride on others’ 

provisions, that is, they attempt to exploit the common enterprise, as contributors provide 

benefit to the others while inflicting a personal sacrifice. This rationale leads to the well-

known social dilemmas (Hauert et al. 2006) and settles on underfunding and the abandonment 
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of the public good. However, many theoretical propositions of why agents cooperate to some 

extent have emerged. Developed ideas of how to overcome social dilemmas include direct 

and indirect reciprocity (Dreber and Nowak 2008); money-back guarantee (Cadsby and 

Maynes 1999); personal benefit from contributing (Doebeli et al. 2004); punishment of free-

riding (Sigmund et al. 2001, Hauert et al. 2006); coercive threat (Okada and Bingham 2008); 

voluntary participations (Croson and Marks 2000, Hauert et al. 2002); collective bad risk (Fon 

1988); leadership (Zimmermann and Eguiluz 2005); sequential contributing (Erev and 

Rapoport 1990); private losses (Milinski et al. 2008, Wang et al. 2009), warm-glow 

(Andreoni 1990) or competition (Dragicevic and Meunier 2010), to name just a few. 

 

In this paper, we are interested in the capacity of agents to jointly produce threshold public 

goods when they face ambiguous risks and losses, through the population dynamics in 

replication. Evolutionary dynamics are helpful as they introduce cooperation. Indeed, an agent 

has to reduce her wealth for another to increase hers (Dreber and Nowak 2008). In public 

goods games, population dynamics are relevant, for the reason that the intervention of the 

entire population is necessary to produce the threshold public good. We confront proportional 

fair-share contributors – under the distribution of disease in the population – who donate the 

minimum average amount with free-riders who provide null contributions.  

 

First, we propose a model of threshold public goods game with ambiguous risk of the species 

survival and individual ambiguous expected salvage of wealth from saving the species. This 

work is inspired by the literature on collective social dilemmas (Bach et al. 2006, Milinski et 

al. 2008, Wang et al. 2009, Wang et al. 2010). In order to lower ambiguous losses, agents can 

jointly produce public goods if they attain the threshold level of cost to produce the public 

good. Specifically, public goods are provided if joint fair-share contributions equal or exceed 

the required threshold level of provisions; otherwise, no public good is provided. 

 

We find that agents contribute only if they face an ambiguous probability of survival of the 

species. Our results show that when the probability of survival is null, free-riding is the only 

steady state. When the probability is ambiguous, agents contribute if the proportional fair-

share is less than the expected salvage of wealth; otherwise, they free-ride. So considered, 

there is a unique unstable Nash equilibrium in which the trade-off rule determines the agents’ 

collective behavior. While a common disease can induce social cooperation, a rare disease 

will provoke unconditional social free-riding. 
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Second, we propose an evolutionary game of an option or a prediction market for a public 

good. Prediction markets are markets where agents exchange contracts whose payoffs are tied 

to the outcomes of unknown events. In an efficient prediction market, the market price best 

predicts the event (Wolfers and Zitzewitz 2004). The issue of any market is its performance as 

a predictive tool. In the political domain, Berg et al. (2008) document that the Iowa Electronic 

Markets yield accurate predictions. Nevertheless, a widespread behavioral bias of agents is to 

trade according to their subjective beliefs and desires, rather than objective probability 

assessments (Forsythe et al. 1999). This is all the more interesting in our case, for the 

probability of species survival is ambiguous. By entering the market, the agent who decides to 

trade at a certain probability level reveals her beliefs over the threshold attainment. Finally, 

prediction markets can be used for policy analysis. Link and Scott (2005) show that a 

prediction market with private investors can be used to value the success of governmental 

research projects. Prediction markets can also assist public institutions in managing social 

risks such as environmental disasters (Arrow et al. 2008). 

 

Our results show that agents buy option contracts only if they face an ambiguous probability 

of survival. They are net sellers if proportional fair-shares exceed expected payoffs at the 

market price. When equal, agents are evenly divided into buyers and sellers and provide the 

public good. This result holds for a certain level of market belief over the species’ survival. In 

this case, the full market efficiency is the unique unstable Nash equilibrium. Still, the results 

show that no surplus can be captured at the equilibrium, which will put a stop to exchanging. 

Indeed, while a high probability induces quasi-null option prices, low probability induces 

negative option prices, that is, a willingness-to-protect oneself from the probable loss. Rare 

diseases unconditionally induce social free-riding. In all cases, the option market is doomed to 

disappear. 

 

Section 2 introduces the threshold public goods games, both in the static and dynamic 

contexts. Likewise, we present a static then a dynamic model of an option market for public 

goods in Section 3. Conclusive remarks are given in Section 4. 

 

2. Threshold public goods game 

 

2.1. Compound probability 
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Let us first identify the subject of species’ survival for biomedical research in terms of 

probabilities. The reasoning is more complex than it seems on the surface. In fact, the agent 

has to deal with three consecutive bets. The first is on the existence of the unidentified species 

capable of supplying medicinal substances; the second is on the survival of such a species 

given its uncertain survival; and the third is of whether the agent willing to fund the species’ 

protection will ever benefit from medical treatment in her lifetime. Therefore, we consider 

three independent lotteries A, B and C which respond to the three following questions: 

- Does the species exist? Lottery A 

- Will the species survive? Lottery B 

- Will the species be of use rapidly enough? Lottery C 

 

  

 

Fig. 1 Three-stage lottery 

 

We have a three-stage lottery of : ( , ;0,1 )A B   , : ( , ;0,1 )B C p p  and : ( , ; 0,1 )C w q q . If 

the compound probability axiom holds, we can transform this multi-stage lottery into a 

reduced compound lottery 3D  with a single stage such as
1
  

 

3D : [ , ; 0, (1 );0, (1 ); 0,1 ]w pq p q p         (1) 

 

                                                 
1
 We ignore the case of (1 )p   on purpose. Indeed, contrary to   and q, the probability p of species’ survival 

depends on whether the agent decides to contribute to the public good. This bet is under her control. 

q 

p 

0 

0 

0 w

1 

1 p

1 q

 A

B

C
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Fig. 2 Compound lottery 

 

The probability of realization of the public good and thus the expected salvage of wealth 

amounts to 

     

(1 )(0) (1 )(0) ( ) ( ) ( )p q pq w pq w w          3D ,   (2) 

          

Where pq  . Nonetheless, the probability of existence and the probability of usefulness of 

the species do not affect its probability of survival, so the joint probability of survival given 

the other events is simply p.  So ( | )p q p  , and ( )w  reduces to ( )p w . In other words, an 

agent who decides to act on the species’ survival and thus to affect its probability considers its 

existence and usefulness as granted. Otherwise, her reasoning has no sense. We consider the 

context of ambiguity because the subjective probability of survival remains ambiguous after 

the agent contributed to the public good. Indeed, the agent ignores whether there is a free-

rider, who might have jeopardized the threshold attainment and thus the probability of 

survival of the species, among all other agents in the population. 

 

2.2. Static game 

 

Let 0w   be the agent’s endowment or amount of wealth and g her contribution to the public 

good. To satisfy Nash equilibria, her contribution in the population of size N  is bounded by 

the constraints of efficiency Ng G  and rationality g w . The population is composed of 

contributors n and N n  free-riders. All agents must contribute their proportional fair-share 

1 1 / 0gk Gk N    to attain the threshold. The proportional fair-share is a fair-share in view 

of the spread of disease [0,1]k  in the whole population. The proportional threshold is then 

0 w

pq

(1 )p q 

0 

3D

1 
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1 1Gk Ngk  . When 1k  , the whole population is at risk of suffering from a disease, so the 

proportional fair-share equals 
1GN 
. As 0k  , the proportion at risk rarefies. By means of 

prevalence proportion, we know that the probability of an agent, randomly picked from the 

population, of being at risk is equal to the proportion of the population which is at risk. As k 

decreases, it is more and more costly for an agent to fund the public good.  

 

Now consider the following expected payoff matrix. 

 

 Contributor Free-rider 

Contributor 1( )p w gk  ; 
1( )p w gk  

1(1 )( )p w gk   ; (1 )p w  

Free-rider (1 )p w  ; 
1(1 )( )p w gk   (1 )p w  ; (1 )p w  

 

If all agents contribute their proportional fair-share, we have n N . The threshold is attained 

and the survival is certain 1p  . In this case, the analysis ceases, since the purpose of 

collective contributing is to increase the probability of survival of the species.  

 

Some agents may free-ride. In this case, we have ( / ) 0ng G n G N G N n      . The 

payoffs of a contributor and a free-rider facing an uncertain probability of survival are 

 

1 1(1 )( ) ( )

(1 )

c

f

p w gk p w gk

p w





      


 
.   (3) 

 

If there is a free-rider, the threshold cannot be attained. The probability that a contributor 

salvages her wealth given her contribution is p, and 1 p  that she does not in presence of a 

free-rider. An agent who free-rides runs a risk of 1 p  to fail savaging her wealth, not without 

reminding that she compromises p for every other contributing agent in the population. 

Simulations of g given p and k are presented in Table 1. 

 

2.2.1. Null survival 

 

When the survival of species, i.e. probability of realization of the public good, is null or 0p   

(3) reduces to  
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Table 1 Simulations of fair-shares given p and k for 10w  : g pwk  

 

 p / k              0.01                 0.10                 0.20                 0.30                 0.40                 0.50                 0.60                 0.70                 0.80                 0.90                 1.00    

 0.00              0.00                  0.00                 0.00                 0.00                 0.00                 0.00                 0.00                 0.00                 0.00                 0.00                 0.00    

 0.10               0.01                  0.10                 0.20                 0.30                 0.40                 0.50                 0.60                 0.70                 0.80                 0.90                 1.00    

 0.20                 0.02                  0.20                 0.40                 0.60                 0.80                 1.00                 1.20                 1.40                 1.60                 1.80                 2.00    

 0.30                 0.03                  0.30                 0.60                 0.90                 1.20                 1.50                 1.80                 2.10                 2.40                 2.70                 3.00    

 0.40                 0.04                  0.40                 0.80                 1.20                 1.60                 2.00                 2.40                 2.80                 3.20                 3.60                 4.00    

 0.50                 0.05                  0.50                 1.00                 1.50                 2.00                 2.50                 3.00                 3.50                 4.00                 4.50                 5.00    

 0.60                 0.06                  0.60                 1.20                 1.80                 2.40                 3.00                 3.60                 4.20                 4.80                 5.40                 6.00    

 0.70                 0.07                  0.70                 1.40                 2.10                 2.80                 3.50                 4.20                 4.90                 5.60                 6.30                 7.00    

 0.80                 0.08                  0.80                 1.60                 2.40                 3.20                 4.00                 4.80                 5.60                 6.40                 7.20                 8.00    

 0.90                 0.09                  0.90                 1.80                 2.70                 3.60                 4.50                 5.40                 6.30                 7.20                 8.10                 9.00    

 1.00                 0.10                  1.00                 2.00                 3.00                 4.00                 5.00                 6.00                 7.00                 8.00                 9.00               10.00    
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1

c

f

w gk

w





  



.   (4) 

 

We see that 
1w w gk  . Free-riding always dominates because it provides a higher expected 

payoff. 

 

2.2.2. Ambiguous survival 

 

When the survival of species is ambiguous or [0,1]p , the outcome depends on the tradeoff 

between the proportional fair-share and the salvage of wealth in expectation. Two outcomes 

arise. If 1

c f gk pw     , so free-riding dominates because the cost of contributing or 

the proportional fair-share is greater than the benefit from contributing or the expected 

salvage of wealth. If
 

1

c f gk pw     , so contributing dominates because the cost of 

contributing to the public good is less than the expected benefit from its production. 

 

2.3. Dynamic game 

 

We now combine game theory and population dynamics in a replicator equation. We consider 

infinite populations consisting of x contributors and y free-riders, where 1x y  , that is, the 

sum denotes a normalized population density such that 0 corresponds to a null population 

density and 1 is the maximal population density.  

 

According to replicator dynamics (Hofbauer and Sigmund 1998) the evolution of the system 

is given by the following differential equations 

 

( )

( )

c

f

x x f f

y y f f

  


 

,   (5) 

 

The system in (5) establishes the expected payoffs of contributors cf  and free-riders ff  in 

time, given the average expected payoff in the population 
c ff xf yf  . This payoff is 

determined by the interactions in randomly formed groups of contributors and free-riders. The 
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groups are formed by interpreting densities as probabilities for drawing either strategy. We 

study the interactions of model-agents or average agents issued from those random groups.  

 

Let us set a mixed population where N agents are randomly chosen according to the Binomial 

probability function. Following Bailey et al. (2005) and Hauert et al. (2006), the probability 

that there are n contributors among the 1N   other agents in the population of size N in which 

the model-contributor or model-free-rider finds herself is determined by 

 

  11
( | 1, ) n N nN

f n N x x y
n

 
  .   (6) 

 

This probability is independent of whether the model-agent is a contributor or a free-rider. 

Every model-agent encounters the same expected number of contributors, and hence the same 

expected payoff from others during the game. The only determinant of success in the well-

mixed populations is the payoff that the model-agent herself receives.  

 

The expected payoffs of a model-contributor and a free-rider are 

 

1 1 1(1 )( ) ( )

(1 )

N

c

f

f p w gk p w gk x

f p w

       


 
.   (7) 

 

where 
1Nx 
 is the random variable issued from the Binomial distribution. Agents adopt the 

strategy of the model-agent with a probability proportional to the difference between her 

payoff and their own. Substituting 1y x   into the differential equations yields a single 

differential equation 

 

(1 )( )c fx x x f f   ,   (8) 

 

So the dynamic evolution of ( )x t  amounts to 

 

1 1 1(1 )[ ( ) (1 ) ]Nx x x p w gk x p gk       .   (9) 

 

2.3.1. Null survival 
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When the survival of species is null or 0p  , we obtain 

 

1(1 )x x x gk   . (10) 

 

Solving 0x   gives two fixed points of the replicator dynamics which cancel out (1 )x x : 

0x   and 1x  . We now proceed to the study of stability of steady states by the Lyapunov 

method. The derivative of ( )F x  is 

 

1 1( ) 2F x gk xgk     . (11) 

 

At 0x  , (0) 0F  , that is, a stable equilibrium. Since 0 (0)x F x   if 0x  , a deviation 

brings x back to 0. At 1x  , (1) 0F  , that is, an unstable equilibrium (see Table 2). In this 

case, a deviation removes x from 1. Figure 3 illustrates the dynamics with null survival. 

 

 

 

Fig. 3 Dynamics of x and y for 0p  .  

 

Proposition 1. In case of null survival of the species, free-riding is the only steady state. 

 

This result is consistent with the dead-anyway effect (Pratt and Zeckhauser, 1996), which 

states that the marginal cost of contributing decreases with risk. The effect can be potentially 

important in magnitude when the risk tends to one (Treich 2010). Species being unlikely to 

survive or their risk of extinction equals one, agents expect to suffer from their certain 

extinction and invariably free-ride. 

 

2.3.2. Ambiguous survival 

x

y

1

1

0
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When the survival of species is ambiguous or 0 1p  , we have 

 

1 1 1(1 )[ ( ) (1 ) ]Nx x x p w gk x p gk       .     (12) 

 

Fixing 0x   gives two fixed points of the replicator dynamics: 0x   and 1x  . We look at 

the derivative of ( )F x  which is 

 

1 1 1 1 2( ) (1 2 )[ ( ) (1 ) ] (1 )[( 1) ( ) ]N NF x x p w gk x p gk x x N p w gk x              .     (13) 

 

At 0x  , (0) 0F  , that is, a stable equilibrium. At 1x  , (1) 0F . Just as in the static 

framework, if 
1gk pw  , we are in presence of a steady state. If greater, the equilibrium is 

unstable (see Table 2). 

 

Proposition 2. Contributing dominates when the proportional fair-share is less than the 

expected salvage of wealth. Otherwise, the model-agent is better off free-riding. 

 

2.3.3. Existence and uniqueness of an interior equilibrium 

 

Let us now prospect the interior equilibrium. We reduce ( )x t  to the function ( ) c fT x f f   

 

1 1 1( ) ( ) (1 )NT x p w gk x p gk      .      (14) 

 

The interior equilibrium is the root of ( )T x  in the interval [0,1] . If 
1gk pw  , 

1 0gk pw  
 

but (1) 0T   so there is no interior equilibrium. If 
1gk pw  , 

1 0gk pw  
 
and (1) 0T  . 

Furthermore, [0,1]p  verifies (0) 0T  . Up to now, the fulfilled conditions are necessary but 

not sufficient. At last, we have  

 

1 2( ) ( 1) ( ) NT x N p w gk x     .       (15) 
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( ) 0T x   is increasing which ends the proof. There is a unique root of ( ) 0T x   situated in 

[0,1]  and it equals 

 

1/
1 1

1
*

N

gk pgk
x

pw pgk

 



 
  

 
.        (16) 

 

At *x x , ( *) 0T x  , that is, an unstable equilibrium (see Table 2). Figures 4 and 5 show 

the ambiguous survival dynamics relative to the trade-off rule. 

 

Proposition 3. There is a unique unstable Nash equilibrium *x  where the trade-off between 

the proportional fair-share and the expected salvage of wealth determines whether agents end 

up contributing or free-riding. 

 

 

 

Fig. 4 Dynamics of x and y 
for [0,1]p  and 

1gk pw   

 

 

Fig. 5 Dynamics of x and y 

for [0,1]p  and 
1gk pw   

 

Table 2 Stability of equilibria 

 

 0p   0 1p   

  1gk pw   
1gk pw   

0x   stable  [●] stable [●] stable [●] 

*x x    unstable [○] 

1x   unstable [○] unstable [○] stable [●] 

 

x

y

1

1

*x

0x

y

1

1

0
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At last, let us linger on the k parameter. When the risk is high or 1k  , the trade-off 

1gk pw
 depends on the probability of species’ survival. As the risk turns low or 0k  , 

the constraint against contributing gets unbounded or 
1gk  . In parallel, when 1p   we 

have pw w . The trade-off is conceivable only if the fair-share equals reasonable and 

bounded amounts of wealth, whereas low k  leads to a cost of contributing greater than what 

the wealth constraint permits. Thenceforth, when the risk is low, the proportional fair-share 

exceeds the expected salvage of wealth. We have 
1gk pw  . 

 

Proposition 4. Low k provokes social free-riding and disinterest in the public good. 

 

This result invalidates the argument defended by Olson (1968) and Marwell and Ames (1979) 

who state that public goods are provided by groups in which an individual has an interest in 

the good that is greater than the cost of the good. The high interest of an agent at risk does not 

suffice to cover the cost of the public good. The only case where their argument could hold 

water is if the model-agent is the agent at stake. 

 

3. Public goods option market game 

 

3.1. Static game 

 

Now consider an option market for the public good, where agents exchange option contracts 

on public goods by buying and selling until they agree on a price. The option market price can 

reveal the social probability of species’ survival and of the attainment of the threshold. We 

assume the market-efficiency hypothesis. For that reason, the threshold can only be attained at 

the market equilibrium where all possible exchanges are cleared at the market price. In this 

case, the proportional fair-share equals the expected payoff from salvaging wealth. 

 

In view of the fact that exchanges are based upon predictions of the probability of species’ 

survival, our option market is a prediction market. The prediction market can be considered a 

representative person with a set of expectations (Wolfers and Zitzewitz 2004). Even though 

the equilibrium price does not reveal the mean belief that agents hold, it yields a bound on the 

mean belief (Manski 2006). The equilibrium reveals the position of the model-agent. The 

agent is defined a buyer if she believes that 0.5p  , and a seller otherwise.  
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Yet, there is a difference between the standard prediction market and ours. The latter does not 

produce outcomes tied to events exogenous to the market. Indeed, option exercises depend on 

the number of betting exchanges cleared on the market. If agents conclude an insufficient 

number of option contracts, they fail to sufficiently provide the public good and the species’ 

survival is jeopardized. In turn, buyers fall salvaging their wealth through, and sellers lose 

their premium from bearing the risk of species extinction.  

 

In terms of the expected payoff matrix, we have 

 

 Buyer Seller 

Buyer 
1(1 )( )p w gk   ; 

1(1 )( )p w gk   
1( )p w gk  ; (1 )p w p   

Seller (1 )p w p   ; 
1( )p w gk  (1 )p w  ; (1 )p w  

 

Buyers willing to increase the species’ probability of survival offer to buy option contracts at 

their willingness-to-pay, i.e. their proportional fair-share, whereas sellers unconvinced of the 

survival likelihood propose selling contracts at their willingness-to-accept. If a buyer happens 

to meet a buyer, their contracts are not exchanged and both face the risk of 1 p  of losing 

their wealth. Likewise, if both agents propose asks, they are exposed by 1 p  to the wealth 

disappearance. Otherwise, the buyer salvages her wealth at p by bidding her proportional fair-

share and the seller receives a premium of p  for her asking price, which here corresponds to 

the option price: the survival probability times the offer. 

 

The market of size M is divided between m buyers and M m  sellers. If all the bid-ask 

spreads are zero and buyers’ and sellers’ bids and offers match or / 2m M m m M    , 

the option market is fully efficient and the threshold is attained. If m M m   and / 2m M , 

the payoffs of a buyer and a seller facing an uncertain probability of species’ survival are 

 

1 1(1 )( ) ( )

(1 )

b

s

p w gk p w gk

p w p



 

      


  
. (17) 

 

3.1.1. Null survival 



16 

 

 

When the survival of species is null or 0p  , (17) reduces to 

 

1

b

s

w gk

w





  



. (18) 

 

We have 
1w w gk  . Selling the option contract of the species’ survival provides a higher 

expected payoff so traders are net sellers. 

 

3.1.2. Ambiguous survival 

 

When [0,1]p , the outcome depends on the tradeoff between the proportional fair-share and 

the expected salvage of wealth at the market price. We have two possible outcomes. If 

b s   then 
1 ( )gk p w    , that is, the cost of contributing is greater than the expected 

payoff from salvaging wealth at the market price; the option price is greater than the expected 

payoff from contributing, so agents are net sellers. If
 b s   we have 

1 ( )gk p w    . The 

expected payoff from contributing is less than the expected benefit from salvaging wealth at 

the market price so agents are net buyers. Finally, at 
1p pw gk   , buyers and sellers 

equalize their payoffs or b s   and the market is fully efficient. Therefore, the public good 

will be provided by the option market for 
1 1( )p gk w    . 

 

Simulations in Table 3 show that for levels of k and p close to zero, the unbounded constraint 

against contributing yields negative option prices. The risk premium turns out to be negative. 

Despite appearances, this result is not absurd, and is known to exist in the capital asset pricing 

model. Analyzing premiums for public good losses resumes to studying the agents’ behavior 

in a context where property rights are passed over. In our case, the agent has to consider 

herself the owner of the public good from which she loses her wealth. Asking for 

compensation demanded for the public loss, even in case of private fatalities, makes de facto 

selling agents creditors of the public good. And we know, for example, that risk premium can 

be negative with credit default option swap contracts. As a result, when agents decide to sell 

an option contract on the public good, the option price reveals that they ask the market to 

protect them from their potential loss of wealth in exchange of a premium. Buyers of option  
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Table 3 Simulations of static option prices given p and k for 10w  : 
1p pw gk    

 

 p / k           0.01             0.10            0.20            0.30            0.40            0.50            0.60            0.70            0.80            0.90            0.99            1.00    

0.00  –200.00     –20.00    –10.00     –6.67     –5.00     –4.00     –3.33     –2.86     –2.50     –2.22     –2.02     –2.00    

0.10  –199.00     –19.00      –9.00    –5.67     –4.00     –3.00     –2.33     –1.86     –1.50     –1.22     –1.02     –1.00 

0.20  –198.00     –18.00      –8.00    –4.67     –3.00     –2.00     –1.33     –0.86     –0.50     –0.22     –0.02       0.00    

0.30  –197.00     –17.00      –7.00    –3.67     –2.00     –1.00     –0.33       0.14        0.50       0.78       0.98       1.00    

0.40  –196.00     –16.00      –6.00    –2.67     –1.00       0.00       0.67       1.14        1.50       1.78       1.98       2.00    

0.50  –195.00     –15.00      –5.00    –1.67       0.00        1.00       1.67       2.14        2.50       2.78       2.98       3.00    

0.60  –194.00     –14.00      –4.00    –0.67       1.00       2.00       2.67       3.14        3.50       3.78       3.98       4.00    

0.70  –193.00     –13.00      –3.00      0.33       2.00       3.00       3.67       4.14        4.50       4.78       4.98       5.00    

0.80  –192.00     –12.00      –2.00      1.33       3.00       4.00       4.67       5.14        5.50       5.78       5.98       6.00    

0.90  –191.00     –11.00      –1.00      2.33       4.00       5.00       5.67       6.14        6.50       6.78       6.98       7.00    

0.99  –190.10     –10.10      –0.10      3.23       4.90       5.90       6.57       7.04        7.40       7.68       7.88       7.90    

1.00  –190.00     –10.00        0.00      3.33       5.00       6.00       6.67       7.14        7.50       7.78       7.98       8.00    
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contracts become the sellers of the protection contracts they demand. Since scarcity is highly 

valued on markets, the rarer the disease is, the higher the premium gets. As a result, the cost 

of protecting oneself on an option market, given the smallness of k, is exorbitant. 

 

On the contrary, when k and p tend to 1, option prices are close to the level of wealth: buyers’ 

expected benefit from providing the public good approximates their proportional fair-share. 

Therefore, the option market fails to be surplus-generating. The game is solved with public 

demand and supply which never meet. Given that no buyer will accept to contribute unless 

her benefit from the public good overpasses her cost of funding it, and given that no seller 

will accept to exchange at a negative price unless she asks the market to protect her from the 

risk of wealth loss, only a non-market provision at a fiscal capitation relative to the society’s 

risk aversion seems feasible. Although the option market mechanism can be efficient enough 

to equalize expected benefits and costs and thus to produce the public good, it produces null 

surpluses at the equilibrium and thus fails to fulfill the role it has been assigned.  

 

3.2. Dynamic game 

 

We now consider infinite populations of x buyers and y sellers, where 1x y  . Let /z x y  

denote the ratio of buyers to sellers. The evolution of the system is given by the following 

differential equations 

 

( )

(1 )( )

b

s

x z f f

y z f f

  


  

, (19) 

 

where z and 1 z  establish the market surpluses of the demand bf  
and supply sf  sides, given 

the average surplus in the market (1 )b sf zf z f   . Let us set a mixed population where M 

agents are randomly chosen. The probability that a buyer faces m buyers in the population of 

size M at a particular seller is given by the Binomial distribution 

 

  11
( | 1, ) (1 )m M mM

f m M z z z
m

 
   . (20) 
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In the population, the probability for a model-buyer to be allocated the exchange is 
1( 1)m  . 

Indeed, the model-seller chooses a model-buyer at random when more than one. Following 

the work of Bach et al. (2006) and Julien et al. (2008), the probability for a buyer to be served 

when selecting a seller is given by 

 

1[1 (1 ) ]( )Mz Mz   . (21) 

 

(1 )Mz  is the probability that model-agents do not match, i.e. all the surplus is captured by 

the supply side, so [1 (1 ) ]Mz   is the probability that the model-buyer captures some surplus 

on the market by finding the right model-seller, given the population and the surplus available 

on the market. The average payoffs of a model-buyer and a model-seller, among 1M   other 

agents, are 

 

1 1 1(1 )( ) ( )[1 (1 ) ]( )

(1 )

M

b

s

f p w gk p w gk z Mz

f p w p

         


  
. (22) 

 

The differential equations yield a single formulation in form of 

 

(1 )( )b sz z z f f   , (23) 

 

So the dynamic evolution of ( )z t  amounts to 

 

1 1 1(1 )[ ( )[1 (1 ) ]( ) (1 ) ]Mz z z p w gk z Mz p gk p          . (24) 

 

3.2.1. Null survival 

 

When the survival of species is null or 0p  , we obtain 

 

1(1 )z z z gk   . (25) 
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Solving 0z   gives two fixed points of the replicator dynamics which cancel out (1 )z z : 

0z   and 1z  . The derivative of ( )F z  is 

 

1 1( ) 2F z gk zgk     . (26) 

 

At 0z  , (0) 0F  , that is, a stable equilibrium. At 1z  , (1) 0F  , which implies an 

unstable equilibrium (see Table 5).  Figure 6 points up the dynamics. 

 

 

 

Fig. 6 Dynamics of z  and 1 z  for 0p  .  

 

Proposition 5. In case of null survival of the species, agents exchanging option contracts are 

net sellers and the public good fails to be provided. 

 

3.2.2. Ambiguous survival 

 

When the survival of species is ambiguous or 0 1p  , we have 

 

1 1 1(1 )[ ( )[1 (1 ) ]( ) (1 ) ]Mz z z p w gk z Mz p gk p          .     (27) 

 

Fixing 0z   gives two fixed points: 0z   and 1z  . The derivative of ( )F z  is 

 

1 1 1

1 1 1 2 1

( ) (1 2 )[ ( )[1 (1 ) ]( ) (1 ) ]

(1 )[ ( ) (1 ) ( ) ( ) [1 (1 ) ] ( )]

M

M M

F z z p w gk z Mz p gk p

z z M Mz z p w gk Mz z p w gk

  

    

        

        
.     (28) 

 

At 0z  , (0) 0F  , that is, a stable equilibrium. At 1z  , (1) 0F . If the inequality 

1 1 1 1( )[1 (1 )]gk p wM p M        for 
1( 1)p M M    is verified, we are in presence of a  

z

1 z

1

1

0



21 

 

 

 

 

 

Table 4 Simulations of dynamic option prices given p and k for 10w  : 
1 1 1[1 ( 1) ]p pwM gk p M M        

 

p / k           0.01             0.10            0.20            0.30            0.40            0.50            0.60            0.70            0.80            0.90            0.99            1.00    

0.01  –200.00     –20.00    –10.00     –6.67     –5.00     –4.00     –3.33     –2.86     –2.50     –2.22     –2.02     –2.00    

0.10  –181.90     –18.10      –9.00     –5.97     –4.45     –3.54     –2.93     –2.50     –2.18     –1.92     –1.74     –1.72    

0.20  –163.80     –16.20      –8.00     –5.27     –3.90     –3.08     –2.53     –2.14     –1.85     –1.62     –1.46     –1.44    

0.30  –145.70     –14.30      –7.00     –4.57     –3.35     –2.62     –2.13     –1.79     –1.53     –1.32     –1.17     –1.16    

0.40  –127.60     –12.40      –6.00     –3.87     –2.80     –2.16     –1.73     –1.43     –1.20     –1.02     –0.89     –0.88    

0.50  –109.50     –10.50      –5.00     –3.17     –2.25     –1.70     –1.33     –1.07     –0.88     –0.72     –0.61     –0.60    

0.60    –91.40       –8.60      –4.00     –2.47     –1.70     –1.24     –0.93     –0.71     –0.55     –0.42     –0.33     –0.32    

0.70    –73.30       –6.70      –3.00     –1.77     –1.15     –0.78     –0.53     –0.36     –0.23     –0.12     –0.05     –0.04    

0.80    –55.20       –4.80      –2.00     –1.07     –0.60     –0.32     –0.13       0.00        0.10       0.18       0.23       0.24    

0.90    –37.10       –2.90      –1.00     –0.37     –0.05       0.14       0.27       0.36       0.43       0.48       0.52       0.52    

0.99    –20.81       –1.19      –0.10       0.26       0.45       0.55       0.63       0.68       0.72       0.75       0.77       0.77    

1.00    –19.00       –1.00        0.00         0.33       0.50       0.60       0.67       0.71       0.75       0.78       0.80       0.80    
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steady state (see Table 5). Knowing that [0,1]p , the opposite inequality is impossible. The 

market liquidity equals 
11 ( 1)p M M    and corresponds to exchanges of proportional fair-

shares without significant movements in the market price. 

 

Proposition 6. In case of ambiguous survival of the species, agents exchanging option 

contracts are net sellers (equally divided into buyers and sellers) if the proportional fair-

share is greater than (equals) the expected payoff from salvaging wealth at the market price. 

 

3.2.3. Existence and uniqueness of an interior equilibrium 

 

We reduce ( )z t  to the function ( ) b sS z f f   

 

1 1 1( ) (1 )( ) ( )[1 (1 ) ]( ) (1 )MS z p w gk p w gk z Mz p w p            .      (29) 

 

The interior equilibrium has a root of ( )S z  in [0,1] . We have 0z   or (0) 0S  . In parallel, at

1z  , (1) 0S   if 
1 1 1 1( )[1 (1 )]gk p wM p M        for 

1( 1)p M M   . The derivative 

equals  

 

1 1 1 2 1( ) ( ) (1 ) ( ) ( ) [1 (1 ) ] ( )M MS z M Mz z p w gk Mz z p w gk             .       (30) 

 

For 0z  , we have ( ) 0S z  . By substituting (1 )Mz  with MZ , the root of ( ) 0S Z   in 

[0,1]  amounts to 

 

1/
1 1

1
* 1

M

p gk pgk
Z Mz

pw pgk

  



  
  

 
.        (31) 

 

We have lim * 1z Z  . Furthermore, the equilibrium is stable since ( *) 0S Z   (see Table 5). 

At * 1Z  , 
1p pw gk    or 

1 1( )p gk w    . Since * 1 *Z z   and /z x y  the result 

implies that x y . Figures 7 and 8 illustrate the dynamics depending on the trade-off rule. 
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Proposition 7. There is a unique unstable Nash equilibrium *z  where the trade-off between 

proportional fair-share and expected payoff from salvaging wealth at the market price 

determines whether agents end up as net sellers or equally split between buyers and sellers. 

When the cost equals the expected benefit, the market is fully efficient or x y  and the public 

good is provided. This result holds only for
1 1( )p gk w    . 

 

 

 

Fig. 7 Dynamics of z  and 1 z  
for [0,1]p  and 

1
1

1

( )

1 (1 )

p wM
gk

p M









 
 

 

 

Fig. 8 Dynamics of z  and 1 z  

for [0,1]p  and 
1

1

1

( )

1 (1 )

p wM
gk

p M









 
 

 

Table 5 Stability of equilibria 

 

 0p   0 1p   

  1
1

1

( )

1 (1 )

p wM
gk

p M









 
 

1
1

1

( )

1 (1 )

p wM
gk

p M









 
 

0z   stable [●] stable [●] stable [●] 

*z z    unstable [○] 

1z   unstable [○] impossible [ ] stable [●] 

 

For low levels of k and p, the dynamic simulations in Table 4 reveal that the constraint against 

contributing becomes unbounded, yielding null or high negative option prices. The null option 

price result is consistent with Plummer (1986) who shows that if the project attainment fails 

to change the probability of supply of the public good (and thus remains ambiguous), option 

price is zero. Negative option prices reveal that the proportional fair-share is much greater 

than the expected salvage of wealth at the market price. Sellers are willing to exchange 

protection contracts with buyers for running the loss by 1 p . Like in the static game, the cost 

of protecting oneself for a small k is overpriced. 

1

z

1 z

1

*z

0z

1 z

1

1

0
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High levels of k and p induce quasi-null option prices, implying that the expected payoff from 

salvaging wealth at the market price equals the proportional fair-share. Therefore, buyers will 

exit the option market, because they do not expect a higher benefit from the public good than 

the cost of funding it. The option market will remain inert and therefore collapse. 

 

Proposition 8. Low k and/or low p induce negative option prices, i.e. sellers of the option 

contract demand protection for the probable loss. High k and p induce quasi-null option 

prices, i.e. buyers’ expected payoff at the market price equals their proportional fair-share. 

The results imply the absence of surplus captured on the option market. 

 

4. Conclusion 

 

Our threshold public goods game first reveals that agents free-ride in case of null survival of 

the species, a phenomenon commonly termed as the dead-anyway effect. Then, the game 

shows coexistence of free-riders and contributors in case of ambiguous survival of the 

species. Agents contribute if their proportional fair-share is less than their expected salvage of 

wealth. From the cost-benefit analysis, it simply states that agents are willing to contribute to 

the public good if their expected benefit from the public good exceeds the cost of producing 

it. The results show that agents tend to contribute to the public good in ambiguity, as long as 

they bear the risk of suffering personal losses. The result is conforming with the results by 

Bailey et al. (2005), who find less free-riding in ambiguity in presence of large populations.  

As a final point, we find that in case of rare diseases, social free-riding is unconditionally 

dominant. 

 

As regards the option market for public goods, when the probability of survival of the species 

is zero, agents are net sellers. When the probability is ambiguous, the market is fully efficient, 

i.e. the public good is provided, only if the proportional fair-share is equal to the expected 

payoff from salvaging wealth at the market price. This result holds for a specific market belief 

over the species’ survival. However, sellers face negative option prices, meaning that they are 

in demand for protection for running the probable loss of wealth. On the demand side of the 

market, option market prices are close to zero, signifying that the expected payoff from 

salvaging wealth at the market price equals the proportional fair-share. Provided the absence 

of surplus realized on the market, agents have no incentive to exchange contracts. The option 
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market is doomed to disappear, which condemns the species’ survival. Providing ambiguous 

environmental public goods by option markets is thus socially inefficient. 
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Appendix 

 

Equation (7): we know from the Binomial theorem that  1 1

0

1
(1 ) 1N n N n

n

N
x x

n
  




   , thus  

1Pr ( 1 ) NN n x    . 

 

Equation (8): ( )cx x f f 
 
thus [ ( )]c c fx f xf yf   and [ (1 ) ]c c fx f xf x f   . 

 

Equation (9): we have 
1 1 1 1(1 )[ [ ( ) ( ] )]Nx x x pw gk p w gk p w gk x          . 

 

Proof of Proposition 1. Equation (11): 
1 2 1 1 2 1( ) (1 ) ( )F x x x gk x x gk xgk x gk             

and 
1 1( ) 2F x gk xgk     . At 0x  , 

1(0) 0F gk    . At 1x  , 
1(1) 0F gk   .         

 

Proof of Proposition 2. Equation (12) yields 
1 1 1( ) (1 2 )[ ( ) (1 ) ]NF x x p w gk x p gk         

2 1(1 )[( 1) ( )]Nx x N x p w gk     . We see that at 0x  , 
1(0) (1 ) 0F p gk     . At 1x  , 

1(1) 0F gk pw   .                 

 

Proof of Proposition 3. We have 
1 1(0) 0T gk pgk      and 

1(1) 0T pw gk  . We 

have 
1 2( ) ( 1) ( ) NT x N p w gk x     . If we take the two previous cases, that is 

1gk pw 
 
and 

1gk pw 
 

we have 
1(1)T pw gk  . There is a unique equilibrium of ( ) 0T x  , 

1 1 1(1 )[ ( ) (1 ) ] = 0Nx x p w gk x p gk       
1 1 1(1 ) ( ) = (1 ) (1 )Nx x p w gk x x x gk p       and 

1 1 1/ 1 1 1 1/* [(1 ) ]/[ ( )] [( ) /( )]N Nx p gk p w gk gk pgk pw pgk           in [0,1] . At *x x , 
1 2( *) ( 1) ( ) 0NT x N p w gk x      .                

 

Proof of Proposition 4. When 0k  , 
1gk  . When 1p  , pw w  thus bounded. As a 

result, we have 
1gk pw   and agents end up free-riding.            
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Equation (21). From the Binomial sampling, we have  1 1 1
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z z

mM

  

  
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z z

mzM





 
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  
 and [1 (1 ) ]/Mz zM            

 

Proof of Proposition 5. Equation (25): 
1 2 1 1 2 1( ) (1 ) ( )F z z z gk z z gk zgk z gk             

and 
1 1( ) 2F z gk zgk     . At 0z  , 

1(0) 0F gk    . At 1x  , 
1(1) 0F gk   .         

 

Proof of Proposition 6. Equation (27) yields 
1 1( ) (1 2 )[ ( )[1 (1 ) ]( ) ]MF z z p w gk z Mz      

1 1 1 1 2 1(1 ) ] (1 )[ ( ) (1 ) ( ) ( ) [1 (1 ) ] ( )M Mp gk p z z M Mz z p w gk Mz z p w gk                  

At 0z  , 
1(0) (1 ) 0F p gk p      . At 1z  , 

1 1 1(1) [1 ( 1) ]F pwM gk p M M       

0p . (1) 0F   when 
1 1 1 1( )[1 (1 )]gk p wM p M        for 

1( 1)p M M            

 

Proof of Proposition 7. When 0z  , 
1( )Mz    yielding 0( ) 0   and thus (0)S   

1(1 ) 0p gk p    . Equally, we have 1 1 1(1) ( ) [1 ( 1) ]S pw M gk p M M p       . We 

have (1) 0S   for 
1( 1)p M M    when 

1 1 1 1( )[1 (1 )]gk p wM p M        is verified. The 

derivative is 
1 1 1 2 1( ) ( ) (1 ) ( ) ( ) [1 (1 ) ] ( ) 0M MS z M Mz z p w gk Mz z p w gk               and 

is increasing for 
2 1(1 ) (1 ) 1M MM z z z      or 0z  . As lim * 1z Z  , the unique 

equilibrium for (1 )Mz Z   is 
1 1 1 1/* [[( ) 1]/( )] MZ p gk pgk Mz pw pgk        . At 

*z z , ( *) 0S Z   as 
1 1 2( *) (1 *) ( *) [1 (1 ) ]M MM Mz z Mz z       . Lastly, 

1( )p w gk   . 

Given that * 1 * 1 * 1 ( / ) * /Z z z x y z x y        , at the equilibrium the matching is full 

or x y .                   

 

Proof of Proposition 8. When 0k   and/or 0p  , 
1 1[1 ( 1) ]gk p M M     thus 

1 1 1[1 ( 1) ]pwM gk p M M                     

 


