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1 Introduction

A constant rise in wage and earnings inequality has taken place in many
advanced economies in the last 30 years (Krueger, Perri, Pistaferri, and
Violante 2010). The role for effective policies to, both, insure people against
negative transitory shocks and redistribute to make up for permanent dif-
ferences has increased simultaneously. Education is a primary determinant
of earnings. A vast empirical literature has documented a wage premium
for better educated workers, which has increased substantially around 1980
in the US (Katz and Autor 1999). Income inequality is, hence, linked to ed-
ucational inequality. But not all of the observed rise in the college premium
is necessarily caused by an increased demand for skills acquired in college
– Taber (2001) finds that at least parts of the observed rise in the educational
skill premium should be attributed to unobserved skill heterogeneity real-
ized before college decisions are made. At the same time, individuals face
very different returns to education.1 To the extent that people are aware
about their idiosyncratic expected returns, this implies that people have
different incentives to invest into education. At the same time education
decisions are undertaken under substantial uncertainty. Labor taxation and
capital taxation may hence insure individuals, even if they are ex-ante iden-
tical. To the extent that private markets fail to offer insurance for wage risk,
the government can be the best provider of offering insurance via public
policies.

In this paper, we conduct the normative exercise of investigating how
governments should optimally set education and taxation policies. To this
end we construct a dynamic model, in which ex-ante heterogeneous indi-
viduals are born with different innate abilities and decide on their level of
education early in their life. Later in their life individuals work and their
reward to labor supply is a function of their realized labor skill level. There
is risk and individuals face a distribution of skill levels, which depends
on education acquired and innate abilities. We allow the distribution func-
tion to include different marginal returns to education across agents. Also,
holding education constant, innate abilities affect the conditional distribu-
tion of skills directly. These assumptions are made to capture key stylized
facts found by the empirical literature on education and subsequent labor
market outcomes.

Both innate abilities and labor skills are private information. We char-
acterize constrained Pareto optimal allocations in this economy. In any
constrained Pareto optimum, we show that labor wedges are history de-
pendent; individuals with the same labor skill face, in general, different
distortions, unless they were also identical ex-ante. The extent to which
educational decisions are distorted depends mainly on two forces. First,

1See, for example, Lemieux (2006) or Carniero and Heckman (2003).
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implicit educational subsidies are used to offset any distortionary impact
of the labor tax on educational decisions. This is equivalent to a first-best
rule, if skills would be observable. Second, the planner distorts education
to relax binding incentive constraints. If the desired redistribution of in-
come is downward (rich to poor), we show that this imposes an implicit
tax and downward distortion of education. The key is that this improves
the equity-efficiency trade-off for the planner, in the same spirit as positive
marginal labor tax rates relax incentive constraints in the standard model.
Finally, a positive implicit tax on savings turns out to be optimal. This is a
familiar and well-understood feature of dynamic private information with
endogenous labor supply that also holds up in our setting with education
as an additional choice variable for agents.

In dynamic settings like ours the straightforward mapping from wedges
to taxes known from the static model, in general, breaks down. We propose
a decentralized implementation of Pareto optima with a labor tax code,
that directly conditions on educational decisions. The existence of separate
schedules gives individuals the correct incentives to self-select into edu-
cation. At the same time the different tax schedules insure agents against
labor market risk. Since the risk properties of the different education levels
differ, this naturally leads to different optimal tax schedules. During the ed-
ucation period, individuals receive grants, which are tied to their education
level chosen. In the implementation agents reveal themselves through their
education decisions early in their life and later through their labor supply.
Various labor tax codes in developed countries like the US already feature
a form of dependence on education, with the possibility of deductions for
educational expenditures. However, most of these policies allow only for
deductibles on expenditure in the same time period. The prescription of
our theory goes further by showing that labor tax codes should condition
on education for the whole working life.

Related Literature. Several previous papers have studied problems of
optimal labor taxation with education decisions. A strand of papers has
worked under the assumption of ex-ante homogeneity. Grochulski and
Piskorski (2010) focus on the implications of human capital investment
for capital taxation. Anderberg (2009) concentrates mainly on the ques-
tion whether and how education should be distorted relative to a first-best
allocation, which, under his modeling assumptions, depends on how edu-
cation influences the variance of log wages. Our model explicitly stresses
the importance of heterogeneity, already at the point when education deci-
sions are made.

In a static setting, Bovenberg and Jacobs (2005) analyze how endoge-
nous education alters the result of the Mirrleesian tax problem. Relatedly,
Bohacek and Kapicka (2008) study a model in a dynamic environment, but
operate under certainty. The explicit dependence of the labor tax code on
education arises in our model to give proper incentives for heterogeneous
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agents to obtain education as well as to insure against wage risk, which
depends on education. These aspects are not present in the previous con-
tributions.

In contrast to most predecessors to our paper, we work with a contin-
uum of agents.2 This connects us to recent work, which aims to general-
ize well-understood labor tax formulas (Diamond (1998) and Saez (2001))
from the static Mirrlees model with exogenous skills to a dynamic, stochas-
tic setting (see Golosov, Troshkin, and Tsyvinski (2009) or Findeisen (2011)).
To make the dynamic incentive problem tractable, we employ a first-order
approach, for which we provide necessary and sufficient conditions. Im-
portantly, we rely on the fact that private information evolves sequentially
in our economy, which avoids solving a multidimensional screening prob-
lem. The paper is, hence, related to work studying dynamic mechanisms; in
particular, Pavan, Segal, and Toikka (2009), who study the validity and ro-
bustness of the Mirrleesian first-order approach to mechanisms for a wide
and general class of models, or Courty and Li (2000), who study optimal
dynamic pricing of a monopolist.

This paper is organized as follows. Section 2.1 contains the basics of
the model as well as its empirical justification. After that the Laissez-Faire
allocation is described in Section 2.2 and properties of the First-Best are
discussed in Section 2.3. In Section 3, we discuss dynamic incentive com-
patibility and describe the properties of constrained efficient allocations.
A decentralized implementation of such constrained efficient allocations is
provided in Section 4 before Section 5 concludes.

2 Baseline Model

2.1 Heterogeneity, Education and Labor Market Outcomes

We begin with a brief discussion of recent evidence and stylized facts from
the empirical literature on education and labor market outcomes and state
how these guide our modeling assumptions. These findings underscore
the importance of the effect of initial heterogeneity and risk on the returns
to education. A series of papers have used factor structure models to esti-
mate returns to education (see Cunha and Heckman (2007) for a survey).
Importantly, these methods can identify whole distributions of returns (in-
stead of first and second moments only), do counterfactual analysis, and
distinguish between ex-ante and ex-post returns. First, Cunha and Heck-
man (2006) document considerable residual uncertainty over future returns
at the time of the decision to go to college or enter the labor market directly
after high school, even after controlling for heterogeneity. Second, for both
groups, actual college and high-school graduates, the density of lifetime

2The article by Bovenberg and Jacobs (2005) is the notable exception.
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earnings when going to college, lies to the right of the density when enter-
ing the labor after high school. Note that for high-school graduates the col-
lege density is estimated counterfactually and vice-versa for college gradu-
ates. Third, returns to education differ widely across individuals. Carniero
and Heckman (2003) document that the return can differ by as much 19%
points across individuals for one year of college. In this vein, the litera-
ture has documented a complementarity effect- both cognitive and non-
cognitive ability, either acquired early during childhood or innate, increase
the return of education. For example, Altonji and Dunn (1996) find that
the return is higher for children whose parents are highly educated; these
parents are likely also more able to transmit or instill their offspring with
higher initial human capital. Finally, there is evidence of a direct effect of
these early abilities on earnings. Taber (2001) presents findings suggesting
that much of the rise in the college premium may be attributed to a rise in
the demand for unobserved skills, which are predetermined and indepen-
dent of education.

In view of the above discussion, we model the relationship between
education and subsequent labor market outcomes as a stochastic process.
Let a be an individual’s labor market ability. We assume that the parame-
ter a is drawn from a continuous conditional distribution G(a|z, θ), which
depends on innate ability θ and education z, and has bounded support
[a, a]. Innate ability θ can be interpreted as a one dimensional aggregate
of (non-)cognitive skills and family background and is distributed in the
interval[θ, θ] according to F (θ). The timing is such that agents first learn
their initial type θ and then decide on education z. We place the following
assumptions on G(a|z, θ):

Assumption 1: G(a|z′, θ) �FOSD G(a|z, θ) ⇔ G(a|z′, θ) ≤ G(a|z, θ), for all
z < z′.

Assumption 2: G(a|z, θ′) �FOSD G(a|z, θ) ⇔ G(a|z, θ′) ≤ G(a|z, θ), for all
θ < θ′.

Assumption 3: ∂2G(a|z1,θ)
∂θ∂z

≤ 0.

First, an increase in education induces a first-order stochastic dominance
shift in the conditional distribution of skills. This is consistent with the ev-
idence presented in Cunha and Heckman (2006), if the actual and counter-
factual distributions of high school and college graduates are interpreted as
the information set agents decide on. Second, in line with the evidence of
the effect of innate skills on labor market outcomes holding education con-
stant, we assume a first-order stochastic dominance shift also for higher
initial skill level θ. Third, respecting the compelling evidence of comple-
mentarity between early ability (θ) and education, marginal returns differ
and are higher for higher initial type.
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2.2 Laissez Faire Equilibrium

To lay out the basic properties of the model, we start with the characteri-
zation of the government intervention free laissez-faire equilibrium. In the
second period, after agents have learned their labor market skill a, they
choose labor supply, taking savings or private debt as given. This gives
rise to the indirect utility function:

v2(a, s(θ)) = max
y,c2

u (c2)−Ψ
(y

a

)

s.t. c2 = y +Rs(θ). (1)

Individuals’ utility functions are well-behaved- u(.) is assumed to be in-
creasing, at least twice continuously differentiable and concave, and Ψ(.)
is assumed to be increasing, at least twice continuously differentiable and
convex.3 The parameter a is an individual’s labor market skill, meaning a
higher a needs to provide less labor effort to earn any income y.

In the first period, agents decide how much to invest into education, and
make a consumption/saving decision. Agents have access to a risk-free one
period bond market; we impose no shortsale or enforcement constraints
and an exogenous gross return R. This defines the indirect utility function:

V (θ) = max
s,z,c1

u(c1) + β

∫ a

a

v2(a, s)g(a|z, θ)da s.t. c1 + z = −s. (2)

As already anticipated in the last section, we model the conditional distri-
bution of skills g(a|z, θ) as being determined by an agent’s education level
z and her innate ability θ. Moreover, we focus on educational investment
as a direct monetary cost. This is consistent with the idea that tuition fees
and other monetary expenses are the most important factors on the cost
side driving educational decisions. It is also in line with a foregone earn-
ings interpretation, where more education delays labor market entry. z can
be a sum of both factors.4 Additionally, it is possible to model education as
a direct effort cost without affecting any of the main results.

We now present the main properties of the equilibrium without govern-
ment policies:

Proposition 2.1. Independent of the size and distribution of initial wealth, the
Laissez-Faire allocation has the following properties:
(i) The Euler Equation holds:

u′(c1(θ)) = βR
∫ a

a
u′(c2(θ, a))dG(a|z(θ), θ)

3All of our results can be generalized to the case of non-separable preferences.
4Different people have likely different opportunity costs in terms of foregone wages

in the real world. At the same time, the number of years spent in education are small
compared to the number of years being active in the labor market. So over a lifetime the
differences in forgone earnings become very small, which is why we assume constant cost
across types. This keeps the model tractable.
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(ii) Labor supply is undistorted: Ψ′
(

y(θ,a)
a

)

1
a
= u′(c2(θ)).

(iii) The marginal cost of education is equalized to marginal benefits: u′(c1(θ)) =

βR
∫ a

a
v2(θ, a)

∂g(a|z(θ),θ)
∂z

da
(iv) Educational investment is increasing in innate ability and savings are decreas-
ing, i.e. z′(θ) > 0 and s′(θ) < 0.

Proof. See Appendix.

Parts (i)-(iii) follow directly from first-order conditions. They are un-
surprising properties, stating that private marginal rates of substitution are
equated to technical marginal rates of transformation on the labor, capital,
and education market.

Part (iv) states that without government policies, education and sav-
ings are monotone in innate ability θ. The proof provides instructive in-
tuition for this result. It is sufficient to show that the objective defined
by (2) is supermodular in all choice variables and type θ (see Milgrom
and Shannon (1994)). Plugging in the budget constraint gives the prob-
lem reduced to two choices s and z: maxs,z U(s, z; θ, a, β) = u(−s − z) +

β
∫ a

a
v2(a, s)g(a|z, θ)da. This objective is supermodular in credit taken −s

and education z, if and only if:

∂2U(s, z; θ, .)

∂s∂θ
< 0 (3)

∂2U(s, z; θ, .)

∂s∂z
< 0 (4)

∂2U(s, z; θ, .)

∂z∂θ
> 0. (5)

In Appendix A.1 we show that all inequalities hold. Equations (3) and (4)
imply that the return to savings is lower for higher θ types and with higher
education, since expected labor skills are also higher. Equation (5) holds,
since innate abilities and education are complementary to each other. Taken
together the direct effects of being of higher type on credit and education
are being reinforced by the relationship between the endogenous variables.

So far, we have assumed no limits on the ability of agents to borrow
against future labor income. Imposing an ad-hoc constraint of the form
s ≥ φ, where φ is some negative number, leaves most of the results from
Proposition 2.1 unaffected.5 Notably, constrained agents will not be able to
smooth consumption intertemporally as much as desired. Still education
levels will be increasing in type:

Corollary 2.2. If agents face borrowing constraints s ≥ φ, education is still mono-
tone in type θ, i.e. z′(θ) > 0.

5Surveying the literature, Carniero and Heckman (2003) conclude that short-term bor-
rowing constraints seem to have only a very small effect on educational decisions.

7



Intuitively, above some threshold type, savings will be constant and
equal to φ. Higher types still face higher marginal returns to education
and property (iv) will hold. Moreover, the monotonicity of education of
also carries over, if agents have heterogeneous initial wealth w(θ), as long
as w(θ) is non-decreasing in θ.

Corollary 2.3. If initial wealth is non-decreasing in θ, education is monotone in
type θ, i.e. z′(θ) > 0.

Proof. See Appendix.

Empirically, wealthier families tend to instill their children with more
early human capital captured by θ and also directly with more financial re-
sources (Carniero and Heckman (2003)), which gives the assumption plau-
sibility. The empirical literature has also documented sorting into edu-
cation, based on heterogeneous expected returns (Cunha and Heckman
(2007)). The monotonicity of education in the laissez-faire equilibrium is
consistent with that fact.

For later purposes when we analyze optimal allocations and the respec-
tive tax systems that can implement such allocations, it is useful to define
three wedges. They are equal to implicit marginal tax rates on capital, labor
income, and education, respectively:

Savings wedge:

τs(θ) = 1−
u′(c1(θ))

βR
∫ a

a
u′(c2(θ, a))g(a|zi, θ)da

Importantly, like all wedges the intertemporal wedge is defined for any
given allocation. It is the proportional adjustment needed in the rate of re-
turn to make the Euler equation hold for an agent θ, given the particular
allocation. It follows that in any allocation, there are as many wedges as
agents- one for each innate skill level. τs(θ) > (<)0 implies a downward
(upward) distortion of savings. The same is true for the following wedges.

Labor wedge: The labor wedge is nonzero, if an individual would like
to work more or less at the intervention-free market price (which is her
productivity level a). Formally the labor wedge reads as:

τy(θ, a) = 1−
Ψ′

(

y(θ,a)
a

)

1
a

u′(c1(θ, a))

It again has to be evaluated for a given allocation and there exists exactly
one labor wedge for every type vector (θ, a).

8



Educational wedge: The educational wedge is nonzero, if the individual
would want to obtain more or less education if it could do that at the mar-
ket price z. Formally it reads as

τz(θ) = 1−
β
∫ a

a
v2(θ, a)

∂g(a|z(θ),θ)
∂z(θ) da

u′(c1(θ))
. (6)

In the implementation we later propose for constrained Pareto efficient
allocations, we will show, which of these implicit taxes will equal explicit
marginal tax rates.

2.3 Unconstrained Efficient Allocations

In an unconstrained Pareto optimum no information is private. The plan-
ner is able to observe an individual’s innate ability θ as well as realized
productivity a. We characterize optimal decision rules for the assignment
of bundles of consumption levels, labor supply and education attainment
to everybody. The only restriction the government has to meet is the aggre-
gate present-value resource constraint, making sure the allocation is feasi-
ble.

We let the planner assign Pareto-weights f̃(θ) to individuals, depending
(solely) on their initial skill level. Sometimes, we make use of the ratio
f̃(θ)
f(θ) , which we refer to the as net Pareto-weight. Other times we denote

cumulated Pareto-weights by the function F̃ (θ). Any distribution, which

we normalize to satisfy
∫ θ

θ
f̃(θ)dθ = 1, of these weights corresponds to one

point on the Pareto frontier; i.e. as long as we do not impose any restrictions
on {f̃(θ)}θ∈[θ,θ] the first-order conditions of the social planner characterize
the whole pareto frontier.

We can establish the following properties of a first-best equilibrium:

Proposition 2.4. Any unconstrained Pareto optimal allocation satisfies:
(i) Initial consumption levels are determined by the net Pareto-weights:

u′(c1(θ)) =
f(θ)

f̃(θ)
λR.

(ii) There is full insurance and perfect intertemporal smoothing: u′(c1(θ)) =
Rβu′(c2(θ, a)) = Rβu′(c2(θ))

(iii) Labor supply is undistorted: Ψ′
(

y(θ,a)
a

)

1
a
= u′(c2(θ)).

Proof. See Appendix A.2.

The last two conditions are well-understood attributes of a Pareto opti-
mum. Note that part (ii) states that future consumption is only a function
of initial type, which allows us to write: c2(θ, a) = c2(θ). The first part
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makes clear that net Pareto-weight are inversely related to marginal utili-
ties in all periods. The above conditions also imply zero savings and labor
wedges. In contrast, as can easily be shown from the first-order conditions
spelled out in in the appendix, the educational first-best wedge is positive
and given by:

τFB
z =1−

β
∫ a

a
v2(θ, a)

∂g(a|z(θ),θ)
∂z(θ) da

u′(c1(θ))

=
1

R

∫ a

a

(y(θ, a)− c2(θ))
∂g(a|z(θ), θ)

∂z(θ)
da > 0. (7)

Intuitively, the marginal subsidy to education is just equal to the marginal
expected increase in the lump sum tax (y(θ, a)− c2(θ)) paid by the individ-
ual. This can be viewed as a fiscal externality of education, not taken into
account by an agent in a decentralized allocation. Additionally, the first
line can be integrated by parts:

τFB
z = 1 +

β
∫ a

a

∂v2(θ,a)
∂a

∂G(a|z(θ),θ)
∂z(θ) da

u′(c1(θ))
> 1.

The second term is always positive, since indirect utility in a first best is
decreasing in ability conditional on θ, and the FOSD shift of education.6 The
marginal subsidy to education is, hence, bigger than 100% across all initial
types θ. Not only is there full redistribution of resources in the second
period, conditional on innate ability, but agents actually lose from a good
skill draw, further weakening incentives to invest in education.

It seems worthwhile to refer to the work of da Costa and Maestri (2007)
and Anderberg (2009). In their modeling framework probabilities are ex-
ogenous and wages in the respective states are endogenous (i.e. increasing
in education). Whereas in such a framework Proposition 2.4 holds, there is
no negative educational wedge. In that framework, even if there is full re-
distribution, education pays at the margin since more education increases
wages but does not alter the lump-sum taxes individuals have to pay in
period 2.

3 Constrained Efficient Allocations

In this section we consider constrained Pareto efficient allocations, where
’constrained’ refers to the government being unable to observe agents’ type
θ in period 1 and a in period 2. We show that the problem is tractable us-
ing a first-order approach. In addition we provide necessary and sufficient
condition for this approach to be valid.

6 ∂v2(θ,a)
∂a

< 0 follows from part (iii) of Proposition 2.4; there is full consumption insur-
ance but the more able work more.
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3.1 Incentive Compatibility

We cast the problem as a sequential, dynamic mechanism – agents report
an initial type θ in the first period, and, after uncertainty has materialized,
report their productivity a in the second period. The planner assigns ini-
tial consumption levels c1(θ) and education levels z(θ) to individuals with
innate ability θ. Moreover, with each report there comes a sequence of util-
ity promises for the next period {v2(θ, a)}a∈[a,a]. In the second period the
screening takes place over consumption levels c2(θ, a), and labor supply
y(θ, a) and individuals self-select according to their history (θ, a). All these
quantities define an allocation in the economy. Dynamic incentive compat-
ibility is ensured backwards, so we start analyzing the problem from the
second period.7

3.1.1 Second Period Incentive Compatibility

By the revelation principle, we can restrict attention to direct mechanisms.
Suppose in the first period agents have made truthful reports r(θ) = θ,
although this is not necessary and just simplifies the exposition. Conditions
for this to be true are given in the next section. Conditional on this report,
the second period incentive constraint must be met for any history of types
(θ, a) and reporting strategy r(a):

u (c1 (θ, a))−Ψ

[

y(θ, a)

a

]

≥ u (c1 (θ, r(a)))−Ψ

[

y(θ, r(a))

a

]

∀a, r(a).

Define the associated indirect utility function of the agents as:

v2(θ, a) = max
r(a)

u (c2 (θ, r(a)))−Ψ

[

y(θ, r(a))

a

]

. (8)

Like in a standard Mirrleesian problem preferences satisfy single-crossing
for given first-period reports. For global incentive compatibility it is, hence,
sufficient that all local envelope conditions hold:

∂v2(θ, a)

∂a
= Ψ′

(

y(θ, a)

a

)

y(θ, a)

a2
, (9)

and the usual monotonicity condition, stating that y(θ, a) is non-decreasing
in ability levels a, is satisfied:8

∂y(θ, a)

∂a
≥ 0 (10)

7Our approach can be readily extended to the case of a discrete choice for education; i.e.
the planner deciding which agents to send to college and which not. Incentive compatibility
has then to be characterized using modified envelope theorems in the spirit of Milgrom
and Segal (2002). The full proofs to deal with the arising difficulties because of the non-
continuities are available upon request.

8As usual, we assume that these constraints do not bind, when we solve the Pareto
program. We abstract, hence, from bunching issues.
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3.1.2 First Period Incentive Compatibility

Importantly, in the first period an agent takes into account the effect of
her report about θ on future utility. First period incentive compatibility is
ensured, if and only if the double continuum of weak inequalities holds:

U(θ, θ) = u (c1 (θ)) + β

∫ a

a

v2(θ, a)dG(a|z(θ), θ)

≥u (c1 (r(θ))) + β

∫ a

a

v2(r(θ), a)dG(a|z(r(θ)), θ) = U(θ, r(θ)), ∀θ, r(θ),

(11)

where U(θ, r(θ)) is the expected utility of an individual of type θ reporting
r(θ). The associated value function is:

V (θ) = max
r(θ)

u (c1 (r(θ))) + β

∫ a

a

v2(r(θ), a)dG(a|z(r(θ)), θ). (12)

We proceed by replacing the set of inequality constraints defined by (11) by
local envelope conditions analogous to the ones for the second period (9):

∂V (θ)

∂θ
=

∫ a

a

v2(θ, a)
∂g(a|z(θ), θ)

∂θ
da (13)

Innate ability affects the indirect utility function directly through the serial
correlation in types only. This localization of incentive constraints to make
the problem tractable is clearly only valid, if they imply a maximum from
the point of view of the agents for a truthful report and also imply global
incentive compatibility. We now proceed by first characterizing necessary
and sufficient conditions on primitives and endogenous variables for local
and then global incentive compatibility. The first-order condition for an
optimal report, evaluated at the revelation strategy, must obey:

∂U(θ, θ)

∂r(θ)
= 0 (14)

For a local maximum it is necessary that:

∂2U(θ, θ)

∂r(θ)2
≤ 0 (15)

Differentiating equation (14) yields:

∂2U(θ, θ)

∂r(θ)2
+

∂2U(θ, θ)

∂r(θ)∂θ
= 0. (16)
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In any incentive compatible allocation it must, hence, hold that:

∂2U(θ, θ)

∂r(θ)∂θ
=

∫ a

a

∂v2(θ, a)

∂θ

∂g(a|z(θ), θ)

∂θ
da+

∂z(θ)

∂θ

∫ a

a

v2(θ, a)
∂g(a|z(θ), θ)

∂z∂θ
da ≥ 0

(17)

We summarize these findings in the following lemma9:

Lemma 3.1. An allocation is locally incentive compatible, if and only if:

(i)∂V (θ)
∂θ

=
∫ a

a
v2(θ, a)

∂g(a|z(θ),θ)
∂θ

da

(ii)
∫ a

a

∂2v2(θ,a)
∂θ∂a

∂G(a|z(θ),θ)
∂θ

da+ ∂z(θ)
∂θ

∫ a

a

∂v2(θ,a)
∂a

∂G(a|z(θ),θ)
∂z∂θ

da ≤ 0,

where (ii) follows after integrating (17) by parts. The lemma provides
necessary conditions for any incentive compatible allocation. Its first part
(i) can be conveniently included into any Lagrangian or optimal control
problem we later want to solve. Its second part carries an interesting intu-
ition. The first term in the first integral measures how the skill premium
∂v2(θ,a)

∂a
> 0 is different for the marginally higher θ type. The planner has to

tailor these skill premia to the marginal changes in the distribution of a. If

these shifts are large, i.e. |∂G(a|z(θ),θ)
∂θ

| is large then the effect of ∂2v2(θ,a)
∂θ∂a

.
States which become more likely with higher innate ability must be re-
warded accordingly in the next period, to avoid that an agent claims an
allocation not designed for her. The second term in (ii) is always negative,
if education is increasing in innate ability. Consider the case where the cor-
relation of types across time is very weak- to be incentive compatible an al-
location has then to offer increasing education levels in innate ability. Since
education and innate ability are complements, higher skilled agents need to
be offered a higher z. In the polar case, if ability is very strongly correlated
across time, an allocation can be incentive compatible, even if education
might be decreasing over some interval. We now show that there are less
complicated sufficient conditions than the ones given in (ii) of the last lemma.
In particular these are simple monotonicity conditions like (10), which are
straightforward to check after a candidate allocation for a relaxed problem
has been computed:

Lemma 3.2. If an allocation satisfies:

(i)∂V (θ)
∂θ

=
∫ a

a
v2(θ, a)

∂g(a|z(θ),θ)
∂θ

da

(ii) ∂y(θ,a)
∂θ

≥ 0 and ∂z(θ)
∂θ

≥ 0,
then the allocation is globally incentive compatible.

Proof. See Appendix A.3.

9We again abstract from the issue of bunching in z.
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Note that Lemma 3.2 extends the previous lemma from local to global
incentive compatibility. Condition (ii) states that second period labor in-
come should be non-decreasing in innate ability θ. This might be surpris-
ing, since θ does not affect indirect utility after productivity a is realized.
In a decentralized allocation equation this condition will characterize an
intuitive property of a constrained-efficient equilibrium. Agents with a
higher initial skill will typically save less since expected labor productivity
is also be higher for these agents. For the same realization of productiv-
ity a labor supply and income will, hence, be higher for these individuals,
because of wealth effects. However, note these two "monotonicity condi-
tions" are not directly comparable to the monotonicity condition on gross
incomes in the static Mirrlees case. The latter is necessary for incentive
compatibility, whereas the conditions in Lemma 3.2 are sufficient for in-
centive compatibility and might be violated over some interval of the skill
set. Therefore, it is not valid to add the two monotonicity constraints to the
second-best problem as this would reduce the set of incentive compatible
allocations. As is standard in screening problems, our strategy for solv-
ing the second-best problem is to work with a relaxed problem with only
restriction (13) imposed and then check ex-post whether the monotonicity
constraints hold. In the numerical explorations in Section ? we find that
these condition are always satisfied.10

Our results on dynamic incentive compatibility are related to previous
work in the optimal non-linear pricing literature by Courty and Li (2000).
They study optimal pricing schemes of a monopolist facing consumers
with stochastic tastes. In a recent contribution, Pavan, Segal, and Toikka
(2009) investigate the robustness and validity of the Mirrleesian first-order
approach in very general dynamic environments.

3.2 Characterization

The planner maximizes

∫ θ

θ

u(c1(θ))dF̃ (θ) + β

∫ θ

θ

∫ a

a

v2(θ, a)dG(a|z(θ), θ)dF̃ (θ) (18)

subject to (9), (13) and the resource constraint

∫ θ

θ

[

c1(θ)− z(θ) +

∫ a

a

(c2(θ, a)− y(θ, a)dG(a|z(θ), θ)

]

dF (θ) = R (19)

where R are some exogenous initial resources. In Appendix A.4 the La-
grangian and the first-order conditions of the problem are stated. In the

10See Farhi and Werning (2010) for a similar approach.
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following we will characterize the wedges of the second-best efficient allo-
cations.

3.2.1 Savings Distortions

We now derive a useful necessary condition of a constrained efficient opti-
mum, concerning the agents’ savings decision, from the education period
to working life. It will turn out that the presence of education, which en-
dogenously affects the probability distribution of tomorrow’s skills, does
not change the prescription of a positive intertemporal wedge, stemming
from the optimality of the Inverse Euler equation, familiar from other dy-
namic Mirrleesian models.11 Integrating the first-order condition for a util-
ity promise over a yields12:

(

f̃(θ)− η′(θ)
)

β −
1

R
λREa|θ

[

1

u′(c2(θ, a))

]

f(θ)−

∫ a

a

µ′(θ, a)da

− β

∫ a

a

∂g(a|z (θ) , θ)

∂θ
η(θ)da = 0

by the transversality condition for µ(θ, a) : µ(θ, a) = µ(θ, a) = 0.; further
last term is zero. Rearranging the first-order condition for optimal first
period consumption gives:

λR = u′(c1(θ))
f̃(θ) + η(θ)

f(θ)

Taking together yields:

1

u′(c1(θ))
=

1

βR

∫ a

a

1

u′(c2(θ, a))
g(a|z(θ), θ)da =

1

βR
Ea|θ

[

1

u′(c2(θ, a))

]

,

(20)
and by Jensen’s inequality: βE [u′(c2(θ, a))] > u′(c1(θ))- the optimal allo-
cation dictates a wedge between the intertemporal rate of substitution and
transformation, savings are hence discouraged.

11Diamond and Mirrlees (1978) and Rogerson (1985) were the first to derive it. In an
important paper reviving the interest in the result Golosov, Kocherlakota, and Tsyvinski
(2003) generalized it to a large class of dynamic environments, most importantly allowing
for arbitrary skill processes. Much like the Atkinson and Stiglitz (1976) prescription of
uniform commodity taxes, the robustness of a positive intertemporal wedge relies on the
(weak) separability of consumption and work effort.

12The whole Pareto program and all optimality conditions are spelled out in the ap-
pendix. An alternative way, working equally well, to derive the Inverse Euler equation
also in our context is a pertubation around an optimal allocation as pioneered in Rogerson
(1985) and Golosov, Kocherlakota, and Tsyvinski (2003).
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3.2.2 Labor Distortions

Rearranging the first-order condition for labor supply yields:

Ψ′
(

y(θ,a)
a

)

au′(c2(θ, a))
= 1−

µ(θ, a)
[

Ψ′′
(

y(θ,a)
a

)

y(θ,a)
a3

+ 1
a2
Ψ′

(

y(θ,a)
a

)]

1
R
λRg(a|z(θ), θ)f(θ)

, (21)

implying that labor supply is distorted downwards everywhere in the inte-
rior of the skill set as long as µ(θ, a) > 0. The opposite µ(θ, a) < 0 is unlikely
but can be the case if the Pareto weight f̃(θ) is particularly increasing in θ,
which implies that the state wants to redistribute in favor of the high types.
As will be shown in section 4.1, where the labor wedges are interpreted as
marginal labor income tax rates, the distortion can be decomposed into two
parts

1. An insurance term: Conditional on being of type θ, individuals want
to be insured against wage risk. This can be done by redistributive
taxation in period 2; this effect always works in favor of positive
marginal rates, i.e. downwards distortion of labor supply.

2. A redistribution term: Conditional on the Pareto weights {f̃(θ)}θ∈[θ,θ]
that the planner assigns to the different types, the planner wants to
redistribute between different types.

3.2.3 Education Distortions

In a constrained Pareto optimum education decisions are distorted in the
following way:

τSBz =1−
β
∫ a

a
v2(θ, a)

∂g(a|z(θ),θ)
∂z(θ) da

u′(c1(θ))

=
1

R

∫ a

a

(y(θ, a)− c2(θ, a))
∂g(a|z(θ), θ)

∂z(θ)
da−

βη(θ)

λRf(θ)

∫ a

a

v2(θ, a)
∂2g(a|z(θ), θ)

∂z(θ)∂θ
da.

Let T (θ, a) = y(θ, a) − c2(θ, a); we will later show that the allocation can
be decentralized with T (θ, a) being the total labor tax bill of an agent with
history (θ, a).

To make further progress, integrate by parts to obtain:

τSBz = −
1

R

∫ a

a

∂T (θ, a)

∂a

∂G(a|z(θ), θ)

∂z(θ)
da+

βη(θ)

λRf(θ)

∫ a

a

∂v2(θ, a)

∂a

∂2G(a|z(θ), θ)

∂z(θ)∂θ
da

(22)
The first part of the wedge is the same as in the unconstrained Pareto prob-
lem, see equation (7). A marginal increase in education triggers higher
expected productivity and higher expected gross income next period. This
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will change expected labor tax liabilities. Again the educational wedge en-
sures that this spillover of the labor wedge on the educational margin is
corrected for. As long as desired redistribution is not too strongly going
in the direction from low to high types, which in turn might imply nega-
tive marginal tax rates over some range, this term will be positive. In con-
trast, the second part of the wedge has the opposite sign of η(θ).13 As long
as initial consumption c1(θ) is weakly increasing in the initial type, how-
ever, which is elusive to prove theoretically on this level of generality, but
emerges from all numerical exercises, the expression is negative calling for
an implicit tax on education. By downward distorting education, the planner
relaxes binding incentive constraints and can redistribute more effectively
in line her preferences. This is a consequence of the complementarity as-
sumption, stating that agents endowed with higher innate skills gain more
from education at the margin. The bundle of a lower type, hence, becomes
less attractive from the perspective of an agent, if education is downward
distorted. Such an intuition is familiar from the standard static Mirrlees
model concerning positive marginal income tax rates on the interior of skill
set. Relatedly, by a transversality condition we can show that this second
part of the educational distortion is zero at the top and at the bottom (θ, θ)
of the innate ability distribution.

4 Implementation(s)

4.1 Student Loans and History Dependent Labor Taxes

So far we only considered direct mechanisms. In this section we explore
a decentralized implementation. The benevolent government, taking the
role of the planner, offers a menu of student grants to the agents. These
grants L are conditional on education, which is chosen by the agents and
observable. In the second period, there is a tax schedule in place, which,
importantly, does not only condition on earnings but also on educational
investment. To fix ideas, the budget constraint of an agent in both periods
are given by:

c1(θ) + z(θ) ≤ L(z(θ))

c2(θ, a) ≤ y(θ, a)− T (z(θ), y(θ, a))

What is obvious from this formulation, is that we implicitly have set sav-
ings using the private bond market to zero. Given that all agents in a con-
strained Pareto optimum will be savings constrained (see Section 3.2.1) and
are actually eager to save, there seems to be a contradiction. Still setting

13Note ∂v2(θ,a)
∂a

is positive everywhere by second period incentive compatibility and
∂2G(a|z(θ),θ)

∂z(θ)∂θ
negative by complementarity of innate skills and education.
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savings to zero comes without any loss of generality. In fact, we can always
find infinitely many savings tax schedules, which punish savings so much,
that no agents wishes to deviate from the optimal allocation.Werning (2010)
shows in a recent paper that there are even more degrees of freedom in
the implementation. By a Ricardian equivalence argument, we can adjust
L(z(θ)) and T (z(θ), a) with lump-sum transfers and deductibles to arrive
with a non-linear savings tax schedule, which produces non-zero private
savings for every agent and the same allocation with the same distortion of
consumption across periods. The full argument is found in Werning (2010).

Next, we investigate in more detail the forces behind optimal labor tax
rates during adulthood.14

Proposition 4.1. At any constrained Pareto optimum marginal labor income tax
rates satisfy:

T ′
y(z(θ), y(θ, a))

1− T ′
y(z(θ), y(θ, a))

=
u′(c2(θ, a))

ε∗ag(a|z(θ), θ)
[A(θ, a) + B(θ, a)] ,

where

A(θ, a) = βRG(a|z(θ), θ)

[

1

u′(c1(θ))
−

1

βRG(a|z(θ), θ)

∫ a

a

1

u′(c2(θ, a∗))
dG(a∗|z(θ), θ)

]

B(Y (θ, a)) =−
1

f(θ)λR

Rβ
∂G(a|z(θ), θ)

∂θ
η(θ)

=
1

f(θ)λR

βR

∣

∣

∣

∣

∂G(a|z(θ), θ)

∂θ

∣

∣

∣

∣

η(θ)

and ε∗ =
Ψ′ 1

a

Ψ′′ y

a2
+Ψ′ 1

a

is proportional to the compensated labor supply elasticity.

Proof. See Appendix.

As is well-understood, marginal tax rates are decreasing in the elasticity
of labor supply with respect to the after-tax wage. Moreover, the weighted
mass ag(a|z(θ), θ) of agents whose labor supply is distorted by the tax is
negatively related to the marginal tax. Next, consider the term in brackets
of A(θ, a). 1

u′(c1(θ))
is equal to the marginal cost of raising lifetime utility

of agents with initial type θ. 1
G(a|z(θ),θ)

∫ a

a
1

u′(c2(θ,a∗))
dG(a∗|z(θ), θ) is a trun-

cated mean and the average marginal cost of raising utility for all types
smaller than a. In a first best, the planner would equate these costs and

14See Findeisen (2011) for a more detailed discussion in a T period model with stochas-
tic skills, but without endogenous education. In a recent paper Golosov, Troshkin, and
Tsyvinski (2009) also provide formulas for dynamic optimal labor taxes, connecting them
to empirical observables in the spirit of the contributions of Diamond (1998) and Saez (2001)
for the static Mirrlees model.
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smooth his own expenditures as well as utility levels across states and
time. In constrained efficient allocations, incentive compatibility hinders
full insurance, and the costs of providing utility varies with a. The planner
can close this gap as much as possible by raising marginal labor tax rates,
which hits all people with skill level bigger than a. Notice that A(θ, a) dis-
appears, if agents are risk neutral, and therefore second period insurance
is not a concern. With risk-aversion the labor tax system provides insur-
ance against the innate and the educational risk agents face. Education enters
directly by influencing the need for insurance via the conditional distribu-
tion.

The other term B(Y (θ, a)) shows how labor tax rates are used to op-
timally supply dynamic incentives. In contrast to A(θ, a) it is indepen-
dent of risk-preferences, but vanishes with ex-ante homogeneous agents.
∣

∣

∣

∂G(a|z(θ),θ)
∂θ

∣

∣

∣
captures the informational advantage of the marginal type just

above θ. The bigger the expression the more important a higher tax for type
θ becomes to avoid the higher type claiming the allocation of θ. Note that
education decisions enter by affecting the distribution and the marginal
shifts. Intuitively, the planner offers labor tax systems to individuals, which
give the correct incentives for revelation in the first period. In the appendix
we show that η(θ) is equal to the cumulative mass of Pareto weights of
lesser skilled agents, adjusted for incentive compatibility effects. For redis-
tributive preferences, i.e. net Pareto weights non-increasing in θ, η(θ) will
always be positive. Hence, the higher redistributive motives towards the
low skilled or the lower the efficiency loss of redistributing, the higher are
marginal tax rates.

Next, we discuss the instruments the government uses to implement
the educational wedge, defined in Section 2.2. In contrast to the optimal
labor wedge, which equals the optimal labor tax, there is no single policy
instrument for which the education wedge equals the marginal distortion
of the policy. Instead, the government uses two instruments: i) the non-
linear grant schedule L(z), which depends on education chosen ii) the labor
tax code in the second period. Using the agents’ optimality conditions in
the proposed implementation one can show that the wedge equals:

τz(θ) = L′(z)−

∫ a

a

u′(c2(θ, a))

u′(c1(θ))
g(a|z(θ), θ)Tz(y(a), z)da

An increase in τz(θ) encourages education at level θ. The incentive for
agents to increase their educational attainment comes from: i) An increase
in their grant measured by L′(z) and ii) a deductible, reducing their labor
income tax burden, if Tz(y(a), z) is negative. Note that the gain from the
deductible is an expected value weighted by the normalized shadow value
of resources in each state.
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The labor tax formulas can be generalized to a whole life cycle, if the
realized skill level a remains constant over time. Arguably, the most im-
portant risks in life are the lottery of initial conditions (θ) and educational
risk; for example, Huggett, Ventura, and Yaron (2010) find that differences
across individuals at the age of 23 are more important than subsequent
shocks received afterwards. This motivates the following proposition:

Proposition 4.2. If individuals live for T periods and skills are fixed after period
two and βR = 1, at any constrained Pareto optimum marginal labor income tax
rates satisfy:

T ′
y(z(θ), y(θ, a))

1− T ′
y(z(θ), y(θ, a))

=
u′(cc(θ, a))

ε∗ag(a|z(θ), θ)
[A(θ, a) + B(θ, a)] ,

where

A(θ, a) = G(a|z(θ), θ)

[

1

u′(c1(θ))
−

1

G(a|z(θ), θ)

∫ a

a

1

u′(cc(θ, a∗))
dG(a∗|z(θ), θ)

]

B(Y (θ, a)) =−
1

f(θ)λR

∂G(a|z(θ), θ)

∂θ
η(θ)

=
1

f(θ)λR

∣

∣

∣

∣

∂G(a|z(θ), θ)

∂θ

∣

∣

∣

∣

η(θ)

c = 2, ..., T and ε∗ =
Ψ′ 1

a

Ψ′′ y

a2
+Ψ′ 1

a

is proportional to the compensated labor supply

elasticity.

Proof. See Appendix.

To abstract from intertemporal effects, when patience dominates or the
rate of return are sufficiently high or low, we set βR = 1. Consumption
is constant for agents with a realized history (θ, a) and equal to cc(θ, a)
from period two onwards, and consequently so is labor supply and gross
income yc(θ, a). Individuals then face constant marginal tax rates and pay
constant taxes during the rest of their lifetime. Ways to implement such
an allocation, for example, via income averaging are presented in Werning
(2007).

5 Conclusion

To be written.
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A Appendix

A.1 Properties of the Laissez-Faire Allocation

To show part (iv), we show that:

∂2U(s, z; θ, .)

∂s∂θ
= −β

∫ a

a

∂2v2(a, s)

∂s∂a

∂G(a|z, θ)

∂θ
da (23)

= −β

∫ a

a

∂y(s, a)

∂s

[

Ψ′

(

y(s, a)

a

)

1

a2
+Ψ′′

(

y(s, a)

a

)

y(s, a)

a2

]

∂G(a|z, θ)

∂θ
da < 0

∂2U(s, z; θ, .)

∂s∂z
(24)

= u′′(c1(θ)− β

∫ a

a

∂y(s, a)

∂s

[

Ψ′

(

y(s, a)

a

)

1

a2
+Ψ′′

(

y(s, a)

a

)

y(s, a)

a2

]

∂G(a|z, θ)

∂z
da < 0

∂2U(s, z; θ, .)

∂z∂θ
= −β

∫ a

a

∂v2(a, s)

∂a

∂2G(a|z, θ)

∂z∂θ
da > 0, (25)

applying the envelope theorem and integrating by parts several times, as
well as all three assumptions on the conditional distribution function. Also

note that ∂y(s,a)
∂s

< 0, simply because of income effects.
To prove Corollary 2.3, note that (25) becomes:

∂2U(s, z; θ, .)

∂z∂θ
= −u′′(c1(θ)w

′(θ)− β

∫ a

a

∂v2(a, s)

∂a

∂2G(a|z, θ)

∂z∂θ
da > 0,

under the assumption w′(θ) ≥ 0.

A.2 First Best Policies: Pareto Problem and Proof of Proposition
2.4

The Lagrangian reads as:

max
v0(θ),v2(θ,a),y1(θ,a),c1(θ)

∫ θ

θ

u(c1(θ))dF̃ (θ)

+ β

∫ θ

θ

∫ a

a

v2(θ, a)dG(a|z(θ), θ)dF̃ (θ)

+
1

R
λR

∫ θ

θ

∫ a

a

y(θ, a)dG(a|z(θ), θ)dF (θ)

−
1

R
λR

∫ θ

θ

∫ a

a

u−1 [v2(θ, a) + Ψ (y(θ, a)/a)] dG(a|z(θ), θ)dF (θ)

− λR

∫ θ

θ

(c1(θ) + z(θ)) dF (θ)
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With first-order conditions:

f̃(θ)− λRf(θ)
1

u′(c1(θ))
= 0 (c1FB)

g(a|θ)f̃(θ)β − λRg(a|θ)f(θ)
1

u′(c2(θ, a))
= 0, (v1FB)

1 =
1

u′(c2(θ, a))
Ψ′

(

y(θ, a)

a

)

1

a
(yFB)

f̃(θ)β

∫ a

a

v2(θ, a)
∂g(a|z(θ), θ)

∂z(θ)
da+

1

R
λRf(θ)

∫ a

a

(y(θ, a)−c2(θ, a))
∂g(a|z(θ), θ)

∂z(θ)
da = λRf(θ)

(zFB)
Proposition 2.4 directly follows from these first-order conditions.

A.3 Proof of Lemma 3.2

First, we show that ∂y(θ,a)
∂θ

≥ 0 and ∂z(θ)
∂θ

≥ 0 are sufficient for local incen-

tive compatibility. Part (ii) of Lemma 3.1 clearly holds, if ∂2v2(θ,a)
∂θ∂a

≥ 0 and
∂z(θ)
∂θ

≥ 0. Using (9):

∂2v2(θ, a)

∂θ∂a
=

∂y(θ, a)

∂θ

[

Ψ′′

(

y(θ, a)

a

)

1

a
+

1

a2
Ψ′

(

y(θ, a)

a

)]

, (26)

which is non-negative, if and only if ∂y(θ,a)
∂θ

≥ 0.
Next, we investigate global incentive compatibility. For type θ truth-

telling is a global maximum if:

∂U(θ, r(θ))

∂r(θ)
> (<)0 if r(θ) < (>)θ. (27)

We now show that this always holds if ∂z(θ)
∂θ

≥ 0 and ∂y(θ,a)
∂θ

≥ 0. Note
that for an individual of type r(θ) truth-telling to be optimal requires:

∂U(r(θ), r(θ))

∂r(θ)
= θ.

Thus we can rewrite condition (27) as:

∂U(θ, r(θ))

∂r(θ)
−

∂U(r(θ), r(θ)

∂r(θ)
> (<)0 if r(θ) < (>)θ. (28)

The LHS can be rewritten as:

β

∫ a

a

∂v2(r(θ), a)

∂r(θ)
[g(a|z(r(θ)), θ)− g(a|z(r(θ)), r(θ))] +
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β

∫ a

a

v2(r(θ), a)

[

∂g(a|z(r(θ)), θ)

∂z(r(θ))
−

∂g(a|z(r(θ)), r(θ))

∂z(r(θ))

]

∂z(r(θ))

∂r(θ)
da. (29)

Integrating by parts one can rewrite this as:

−β

∫ a

a

∂2v2(r(θ), a)

∂r(θ)∂a
[G(a|z(r(θ)), θ)−G(a|z(r(θ)), r(θ))]

−β

∫ a

a

∂v2(r(θ), a)

∂a

[

∂G(a|z(r(θ)), θ)

∂z(r(θ))
−

∂G(a|z(r(θ)), r(θ))

∂z(r(θ))

]

∂z(r(θ))

∂r(θ)
da.

(30)

This expression has the sign as (θ−r(θ)), if ∂2v2(r(θ),a)
∂r(θ)∂a , ∂v2(r(θ),a)

∂a
and ∂z(r(θ))

∂r(θ)

are non-negative, using Assumptions ? and ?. The set of admissible strate-
gies r(θ) is the same as the set of possible θ types. So incentive compatibility

is guaranteed, if ∂2v2(θ,a)
∂θ∂a

, ∂v2(θ,a)
∂a

and ∂z(θ)
∂θ

are non-negative. This is true, if
∂z(θ)
∂θ

≥ 0 and ∂y(θ,a)
∂θ

≥ 0, using (26) and (9).

A.4 Second Best Policies: Pareto Problem and Optimality Condi-
tions

max
c1(θ),v2(θ,a),z(θ),y(θ,a)

∫ θ

θ

u(c1(θ))dF̃ (θ)

+ β

∫ θ

θ

∫ a

a

v2(θ, a)dG(a|z(θ), θ)dF̃ (θ)

+
1

R
λR

∫ θ

θ

∫ a

a

y(θ, a)dG(a|z(θ), θ)dF (θ)

−
1

R
λR

∫ θ

θ

∫ a

a

u−1 [v2(θ, a) + Ψ (y(θ, a)/a)] dG(a|z(θ), θ)dF (θ)

− λR

∫ θ

θ

(c1(θ) + z(θ)) dF (θ)

−

∫ θ

θ

∫ a

a

(

µ′(θ, a)v2(θ, a) + µ(θ, a)Ψ′

(

y(θ, a)

a

)

y(θ, a)

a2

)

dadθ

−

∫ θ

θ

η′(θ)

[

u(c1(θ)) + β

∫ a

a

v2(θ, a)dG(a|z(θ))da

]

dθ

− β

∫ θ

θ

η(θ)

∫ a

a

v2(θ, a)
∂g(a|z(θ), θ)

∂θ
dadθ
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With first-order conditions:

u′(c1(θ))(f̃(θ)− η′(θ))− λRf(θ) = 0 (c1SB)

(

f̃(θ)− η′(θ)
)

βg(a|z(θ), θ)− λR
1

R

1

u′(c2(θ, a))
g(a|z(θ), θ)f(θ)− µ′(θ, a)

− β
∂g(a|z (θ) , θ)

∂θ
η(θ) = 0 (v2SB)

1

R
λRg(a|z(θ), θ)f(θ)− µ(θ, a)

[

Ψ′′

(

y(θ, a)

a

)

y(θ, a)

a3
+

1

a2
Ψ′

(

y(θ, a)

a

)]

−
1

R
λRg(a|z(θ), θ)f(θ)

Ψ′
(

y(θ,a)
a

)

au′(c2(θ, a))
= 0, (ySB)

f̃(θ)β

∫ a

a

v2(θ, a)
∂g(a|z(θ), θ)

∂z(θ)
da+

1

R
λRf(θ)

∫ a

a

∂g(a|z(θ), θ)

∂z(θ)
(y(θ, a)− c2(θ, a)) da

−η′(θ)β

∫ a

a

v2(θ, a)
∂g(a|z(θ), θ)

∂z(θ)
da− βη(θ)

∫ a

a

v2(θ, a)
∂2g(a|z(θ), θ)

∂z(θ)∂θ
da− λRf(θ) = 0

(zSB)

A.5 Proof of Proposition 4.1 and Proposition 4.2

A.5.1 Proposition 4.1

Rewriting (ySB):

λRg(a|z(θ), θ)f(θ)



1−
Ψ′

(

y(θ,a)
a

)

au′(c1(θ, a))





−µ(θ, a)

[

Ψ′′

(

y(θ, a)

a

)

y(θ, a)

a3
+

1

a2
Ψ′

(

y(θ, a)

a

)]

= 0.

Dividing by Ψ′

au′ and λRg(a|z, θ)f(θ) and using the FOC conditions of the
individual in the second period, i.e. u′(1− T ′) = Ψ′ 1

a
yields

T ′
θ(Y (θ, a))

1− T ′
θ(Y (θ, a))

=
µ(θ, a)

λRg(a|z(θ), θ)f(θ)a

[

Ψ′′ y
a2

+Ψ′ 1
a

Ψ′

au′

]

,

which can be written as

T ′
θ(Y (θ, a))

1− T ′
θ(Y (θ, a))

= u′ ·
µ(θ, a)

λRg(a|z(θ), θ)f(θ)a

1

ε∗
,
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where ε∗ =
Ψ′ 1

a

Ψ′′ y

a2
+Ψ′ 1

a

is proportional to the compensated labor supply elas-

ticity, see, e.g., Atkinson and Stiglitz (1980, p418).
The multiplier µ(θ, a) can be obtained using (v2SB) and (c1SB):

µ(θ, a) =
λRf(θ)

u′(c1(θ))
βG(a|z(θ), θ)−

λR

R
f(θ)

∫ a

a

1

u′(c2(θ, a))
dG(a|z(θ), θ)

−β
∂G(a|z(θ), θ)

∂θ
η(θ∗),

yielding:

T ′
θ(Y (θ, a))

1− T ′
θ(Y (θ, a))

=
u′(c2(θ, a))

ε∗ag(a|z(θ), θ)
[A(Y (θ, a)) + B(Y (θ, a))]

where

A(Y (θ, a)) =
βG(a|z(θ), θ)

u′(c1(θ))
−

1

R

∫ a

a

1

u′(c2(θ, a))
dG(a|z(θ), θ)

B(Y (θ, a)) = −
1

f(θ)λR

βR
∂G(a|z(θ), θ)

∂θ
η(θ).

From (c1SB), η(θ) is given by:

η(θ) = F̃ (θ)− λR

∫ θ

θ

1

u′(c1(θ))
f(θ)dθ.

The direct benefit of raising utils for agents with skill lower than θ is F̃ (θ).

The monetary cost is
∫ θ

θ
1

u′(c1(θ))
f(θ)dθ, transformed into utils by λR.

A.5.2 Proposition 4.2

The fact that consumption and labor wedges will be constant in a deter-
ministic Mirrleesian economy is proofed in Werning (2007) and generalizes
to our setting with a continuum of skills. It follows that with βR = 1,
flow utility is constant from period 2 onwards. The lifetime utility of an
agent with draws (θ, a) from the second period onwards is hence:V2(θ, a) =

(T − 1)vc(θ, a), with vc(θ, a) = u(cc(θ, a)) − Ψ
(

yc(θ,a)
a

)

. The envelope con-

dition, necessary for incentive compatibility, becomes (analogous to (9)):

∂V2(θ, a)

∂a
=

T
∑

t=2

Ψ′

(

y(θ, a)

a

)

y(θ, a)

a2
. (31)
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Constant consumption cc(θ, a) can be written as:

cc(θ, a) = u−1

[

vc(θ, a) + Ψ

(

yc(θ, a)

a

)]

= cc(θ, a) = u−1

[

V2

T − 1
+ Ψ

(

yc(θ, a)

a

)]

(32)
Writing up a Lagrangian with (31) as the appropriate incentive constraint
and (32) inserted into the present value budget constraint, taking first order
conditions and combining with optimality conditions for the household,
like in the last two appendices, directly delivers the result.
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