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Abstract

This paper analyzes a spatial model of common-value elections. As in Downs�

classic model, citizens vote for candidates who choose policies from a one-dimensional

spectrum. As in Condorcet�s classic model, voters�opinions re�ect attempts to iden-

tify an optimal policy, that is ultimately superior to all others. When two candidates

compete for o¢ ce by making binding policy commitments, their platforms converge in

equilibrium. This resembles standard median voter theorems, but has dramatically

di¤erent welfare implications. When candidates are instead policy-motivated, their

platforms diverge. In that case, the winning candidate�s margin of victory is informa-

tive, and may be interpreted as a �mandate� from voters. If platform commitments

are not binding, the winning candidate alters his policy stance accordingly. Voting

then plays a signaling role, so that every vote is �pivotal�. This includes votes for

candidates who are unlikely to win the election, providing a possible rationale for minor

party candidates. The swing voter�s curse does not apply in that case, but an analo-

gous �signaling voter�s curse�nevertheless leads poorly informed citizens to abstain in

deference to those with better expertise. In addition to existing evidence, a predicted

correlation between ideology and roll-o¤ is con�rmed empirically.
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1 Introduction

One of the earliest and strongest formal arguments in favor of the democratic institution of

majority voting is Condorcet�s (1785) classic �jury theorem�: if one of two policy alternatives

is better for society, in some objective sense, and voters seek independently to identify

that policy, with even minimal success, then majority opinion is likely� in fact, almost

certain, in a large electorate� to correctly identify the superior policy. Since public policies

inevitably e¤ect di¤erent groups of citizens di¤erently, however, existing literature has largely

dismissed this information pooling role of elections as applicable only to a few speci�c voting

environments such as juries and small committees. On the other hand, the broad goals of

many public policies� such as national defense, economic and environmental stability, and

eliminating crime, poverty, and corruption� have essentially unanimous appeal; if voters

base policy evaluations on societal outcomes such as these, their preferences are likely to

be correlated, making the assumption of identical preferences a plausible approximation

even in public elections. In this light, recent literature has reexamined voter incentives in

common-values settings. Most notably, an in�uential paper by Feddersen and Pesendorfer

(1996) points out that when voter di¤erences are predominantly informational, uninformed

citizens have a strategic incentive to abstain from voting, in deference to those with better

expertise. This observation provides a possible explanation for various empirical features

of public elections, such as the common practice of roll-o¤ (i.e. voting in some races on a

ballot, but abstaining in others, even though voting costs have already been paid, and so are

no longer relevant), as well as the correlation between voter participation and information

variables.

Despite this resurgent interest, information models of elections remain quite simple in

certain respects. In particular, they focus exclusively on voter incentives, with no role

for other political actors such as politicians beyond passively representing particular policy

alternatives. Furthermore, the number of such alternatives is typically limited to two.

This is in contrast, for example, to spatial models such as Downs (1957), that emphasize

the incentives of candidates who must compete for votes by choosing policy from among an

entire continuum of alternatives. Thus, the purpose of this paper is to explore the incentives

that candidates face, and the implications of candidate behavior for voter welfare and other

electoral outcomes, in an environment in which voter disagreements arise primarily from

di¤erences of opinion, rather than fundamental di¤erences of preference.

The model analyzed below synthesizes key aspects of the earlier models mentioned above.

As in Condorcet�s (1785) model, one of two policies is optimal for society, depending on an

unobserved state of the world. An electorate can implement either of these policies, or may

implement any convex combination of the two, so that, as in Downs�(1957) model, there is
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an entire continuum of policy possibilities. Citizens share a common utility function over

policy outcomes, and are risk-averse, preferring moderate policies in the face of uncertainty.

Private opinions regarding the state of the world are modeled as independent private signals

that are each correlated with the true state variable. The quality of an individual�s signal

depends on her1 expertise, which varies throughout the electorate, as in McMurray�s (2010)

generalization of Feddersen and Pesendorfer (1996). As in the Downsian (1957) framework,

candidates in this model compete for votes by proposing platform policies, and the candidate

who receiving the most votes takes o¢ ce, and determines policy.

As an example of a political issue that might closely resemble the model described,

consider a society of individuals who all wish to exit an economic recession, but disagree

over the question of whether growth will be helped or hindered by a �stimulus�policy of

increasing �scal spending. If this question were resolved, all would wish to implement either

the maximum or minimum level of stimulus; in the midst of uncertainty, however, voters

may prefer to hedge against the possibility of implementing precisely the wrong policy, by

instead instituting a stimulus of moderate size. As an alternative example, consider two

equally-costly plans for reducing pollution, crime, corruption, or poverty. In this case,

imperfectly-informed citizens may prefer to partially implement both plans, even though

under perfect information they would implement only the more e¤ective of the two.2

Analysis of this model produces a number of insights into candidate and voter incen-

tives. The �rst of these is an immediate consequence of model assumptions: conditional on

private signals, voter preferences are single-peaked over the policy interval. This observa-

tion provides an information rationale for ideological diversity, which has been corroborated

empirically, but is commonly assumed without theoretical foundation. It is also the case

that the most expert decisions have the most con�dence in their own opinions, and so form

the strongest and most extreme views. This provides a possible explanation for Palfrey

and Poole�s (1987) �nding that citizens who adopt extreme ideological positions tend to be

better-informed than those with more moderate ideologies.

The remaining results of this paper depend crucially on candidate motivations. Following

existing literature, this paper considers a number of possibilities. In the �rst version of

the model, candidates are motivated purely by the desire to win o¢ ce, and make binding

commitments to implement platform policies. In this case, there is a unique equilibrium,

in which citizens vote sincerely, or informatively for the candidate whose platform they

prefer, but candidates adopt identical platforms at the center of the policy space. This

result is reminiscent of Black�s (1948) canonical median voter theorem, and arises for the

1Throughout this paper, feminine pronouns refer to voters and masculine pronouns refer to candidates.
2In business committee settings, identical logic could apply to competing plans for advertizing or sales

incentives.
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same reason: moving away from the center merely concedes votes to a candidate�s opponent.

The welfare implication of this result, however, di¤ers starkly from previous models: rather

than representing a Condorcet winner or utilitarian optimum, this equilibrium outcome is

the policy that would be optimal only on the basis of prior information; if any private

information were available, a superior policy could be identi�ed.

A second version of this model assumes that candidates do not value o¢ ce for its own

sake, but instead seek o¢ ce merely as a means of in�uencing public policy; like other citizens,

each desires the policy outcome that is optimal for society. In equilibrium, candidates adopt

distinct platforms, and citizens again vote sincerely. This is again reminiscent of a standard

result by Wittman (1977, 1983), although in this model an equilibrium necessarily exists.

Also, unlike standard models, divergence from the center actually enhances welfare here.

With informative voting, the candidate with the superior platform is more likely to win

the election by a single vote than to lose by a single vote. Accordingly, an additional vote

for that candidate is less likely to be pivotal (i.e. change the election outcome) than a vote

for his opponent. An uninformed citizen therefore su¤ers from a swing voter�s curse, as in

Feddersen and Pesendorfer (1996) and McMurray (2010), and prefers to abstain rather than

vote for either candidate, even if voting is costless. By reproducing this incentive, this model

a¢ rms the information rationale o¤ered in those models for empirical phenomena such as

roll-o¤, and the correlation between relative information variables and turnout.

A third speci�cation of this model Follows the citizen-candidate tradition of Osborne

and Slavinski (1996) and Besley and Coate (1997) in assuming that candidate commitments

prior to an election are not credible: once elected, a candidate may implement the policy of

his choice. For policy-motivated candidates, this introduces an opportunity for the winning

candidate to update his policy choice on the basis of information re�ected in vote totals,

that was unavailable when his platform decision was made. Since equilibrium voting is

informative, the winning candidate�s margin of victory provides information regarding the

location of the optimal policy. Speci�cally, a candidate who wins by a large margin will

implement a policy that is more extreme than his platform, while a candidate who wins by

a small margin will moderate his stance. This provides a theoretical foundation for the

popular notion of an electoral mandate, by which large margins of victory are thought to

communicate permission from voters to implement more extreme policies. Since literally

every vote in�uences the margin of victory, this result also provides a foundation for the

popular mantra that �every vote counts�, contrary to standard models in which a vote has

no in�uence unless it creates or breaks a tie.

The result that every vote in�uences policy outcomes implies that a rational citizen no

longer needs to condition her behavior on the unlikely event in which her vote is pivotal.
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This fact undermines the logic of the swing voter�s curse, which arises when a voter compares

the probabilities of her vote being pivotal in the two states of the world. Even though a pivot

vote is no longer relevant, however, and even though voting is costless, similar logic produces

a signaling voter�s curse in this context, so that a poorly informed citizen again has incentive

to abstain. Her own vote has the potential to push the eventual policy outcome in either

direction; recognizing that the winning candidate will respond optimally to the superior

expertise re�ected by the votes of her peers, however, a poorly informed citizen again prefers

to abstain.3 Thus, this model demonstrates the empirical predictions of Feddersen and

Pesendorfer (1996) and McMurray (2010) to be more general than perhaps thought. As

in those models, strategic abstention here is also welfare-improving: although the private

information of nonvoters is not utilized, the response to informed votes is ampli�ed.

One standard result in spatial voting models is Duverger�s (1954) Law, which essentially

states that plurality rule elections foster two strong parties, and discourage the creation of

smaller parties. This is because, while a vote for either of two major candidates is already

unlikely to be pivotal, voting for a sure loser is less likely still to change the election outcome.

The standard model therefore predicts that citizens should not vote for fringe parties, who

therefore should have no incentive to run for o¢ ce. Even if a minor party candidate did

manage to attract strong support, he would risk splitting votes with the closer of the two

major candidates, thereby inadvertently �spoiling�the election in favor of his least-favored

opponent. That analysis changes in this setting, however, because eventual policy outcomes

depend on each candidate�s vote total. Even if he does not win o¢ ce, then, voting for an

extreme candidate pushes policy in the desired direction. This therefore justi�es the popular

notion of sending a message to a winning candidate by casting a �protest vote�for a likely

loser with a more extreme policy position, in turn providing an incentive for such protest

candidates to run for o¢ ce in the �rst place.

In addition to the references above, this model shares much in common Razin�s (2003)

model of signaling in common-value elections. Most notably, that model demonstrates

the possibility of electoral mandates, inferred by the winning candidate from his margin of

victory. In that model, however, large margins of victory can also make a winning candidate

more moderate, rather than more extreme. Candidates also behave deterministically, rather

than strategically, and voters have homogeneous information quality. The possibility of

multiple candidates is not considered, and voter abstention is not allowed. Shotts (2006)

and Meirowitz and Shotts (2007) consider an alternative role for signaling in elections, which

is to in�uence incumbent politicians�perceptions of re-election prospects.

3Put di¤erently, a poorly informed citizen abstains for fear that the winning candidate will overreact to

her vote, inferring it to be of average quality when in fact its quality is below average.
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The remainder of this paper is organized as follows. Section 2 introduces the model, and

Section 3 characterizes equilibrium, assuming the various combinations of o¢ ce or policy

motivation, and credible commitments or responsive candidates. Section 3.1 analyzes the

case in which candidates commit to observable policy platforms, including o¢ ce- and policy-

motivated candidates in Sections 3.1 and 3.1 and abstention in Section 3.1. Section 3.2

considers the case of responsive candidates, including the possibilities of multiple candidates

in Section 3.2 and abstention in Section 3.2, and examples in Section 3.2. Section 4 analyzes

welfare for the various model speci�cations, and Section 6 concludes. Proofs of most formal

results are presented in the Appendix.

2 The Model

A society consists ofN citizens and two candidates, A andB. For technical convenience, I

adopt Myerson�s (1998, 2000) assumption that the precise number N of citizens is unknown,

but is drawn from a Poisson distribution with mean n.4 Together, this electorate must

choose and implement a policy from the interval [�1; 1] of alternatives, which will provide
a common bene�t to every citizen. Ex ante, it is unknown which policy alternative will be

best for society. Let Z 2 f�1; 1g denote the true state of the world, which identi�es the
optimal policy. If policy x 2 [�1; 1] is implemented in state Z then each citizen receives

utility u (x; Z), which declines with the distance between the implemented policy and the

optimal policy:

u (x; Z) = � (x� Z)2 . (1)

Thus, Z = �1 implies that the best policies lie at the lower end of the policy space, while
Z = 1 implies that higher policies are better. Note, however, that u (x; Z) is strictly concave

in x, implying that citizens are risk-averse, and may therefore prefer policies in the interior

of the policy space. Speci�cally, it is straightforward to show that, conditional on available

information 
, (1) is maximized when x = E (Zj
), as stated in (2):

E (Zj
) = argmax
x

E [u (x; Z) j
] . (2)

Ex ante, prior beliefs are such that either state of the world is equally likely (i.e. Pr (Z = 1) =

Pr (Z = �1) = 1
2
), implying that the ex ante optimal policy is at the center of the policy

interval.
4As Bade (2006) discusses, one important advantage of this assumption is that the numbers NA and NB

of votes for the two candidates are independent random variables. In the numerical examples in Sections

3.2 and 3.2, N is instead �xed and known.
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A citizen�s private opinion regarding the optimal policy is represented by a private signal

Si 2 f�1; 1g which is positively correlated with Z. Because citizens di¤er in expertise,

however, these signals are of heterogeneous quality. Speci�cally, each citizen is endowed

with information quality Qi 2 [0; 1], drawn independently (and independent of Z) from a

common distribution F which, for technical convenience, is assumed to have a di¤erentiable

and strictly positive density f .5 Conditional on Z and Qi, the distribution of Si is given as

follows, for any s; z 2 f�1; 1g and q 2 [0; 1].

Pr (Si = sjZ = z;Qi = q) =
1

2
(1 + zsq) . (3)

With this distribution, the correlation between Si and Z is given simply by Corr (Si; ZjQi) =
Qi. Thus, Qi measures the strength of a citizen�s conviction that her private opinion of the

optimal policy is correct. To a perfectly informed (i.e. Qi = 1) citizen, for instance, Si
reveals Z perfectly; to a perfectly uninformed (i.e. Qi = 0) citizen Si reveals nothing.

The distribution F of expertise within the population is common knowledge, but Qi and

Si are observed only privately. Conditional on private information, the posterior distribution

of Z is given by the same expression as in (3):

Pr (Z = zjSi = s;Qi = q) =
1

2
(1 + zsq) , (4)

for any s; z 2 f�1; 1g and q 2 [0; 1]. A citizen�s expectation of the optimal policy, then,

is simply E (ZjSi; Qi) = SiQi. As noted above, this is the policy that maximizes the ex-

pectation of (1), conditional on private information alone. Thus, conditional on private

information alone, preferences over policies are single-peaked, as in traditional models. The

assumption that F has full support (i.e. that f is strictly positive) implies that the distrib-

ution of citizens�ideal points also has full support on the policy interval.

With individual citizens thus informed, candidates propose policy platforms xA; xB 2
[0; 1].6 Observing these platforms, each citizen then votes (at no cost) for one of the two

candidates. A strategy � : [0; 1] � f�1; 1g � [0; 1]2 ! fA;Bg speci�es a citizen�s behavior
for every possible realization (q; s) 2 [0; 1] � f�1; 1g of her private information and for
every pair (xA; xB) 2 [0; 1]2 of candidate platforms.7 Let � denote the set of all such

5The distribution F of information quality is assumed here to be exogenous. For information acquisition

games that lead in equilibrium to asymmetric information, see Martinelli (2006, 2007) and Oliveros (2007).
6Informally, candidates can be thought of as citizens who hold private opinions, as in the citizen-candidate

framework of Osborne and Slavinski (1996) and Besley and Coate (1997). Formally, however, candidates

are not citizens in that they do not receive private signals of their own. This is largely for simpli�cation;

alternatively, the information structure of this model could be reinterpreted as describing updated beliefs

after both candidates�signals were announced publicly.
7Mixed strategies could be allowed, but would be used with zero probability in equilibrium, as the analysis

below makes clear.
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strategies. For any strategy �, it is also convenient to de�ne the associated sub-strategy

�� : [0; 1] � f�1; 1g �! fA;Bg as the projection of � onto the set [0; 1] � f�1; 1g of types,
for a particular pair (xA; xB) of platform policies, and to let �� denote the set of all such

sub-strategies. �� can then also be interpreted as the set of strategies available to a voter

in the voting subgame associated with a particular pair of candidate platforms.8 In the

analysis below, I restrict attention to equilibria that are symmetric with respect to voter

strategies, meaning that every voter plays the same strategy in equilibrium; accordingly, �

can be reinterpreted as an entire pro�le of strategies, with each citizen responding identically

to private information and candidate platforms.9

Votes are cast simultaneously, and an election winner W 2 fA;Bg is determined by
simple majority rule, breaking a tie if necessary by a fair coin toss. Once elected, candidate

j implements a policy yj 2 [�1; 1]. If candidates are committed, the winner must implement
his pre-election platform policy yj = xj; if candidates are responsive, the winning candidate�s

policy choice may be a function yj : Z2+ �! [�1; 1] of realized vote totals a; b 2 Z+. Let �
denote the set of all such policy functions. The ultimate policy outcome Y 2 [�1; 1] therefore
depends on the strategy choices of both voters and candidates, and on the realizations of

the election winner W and the numbers NA and NB of votes for each candidate, which in

turn depend on the private information (Qi; Si) of each citizen, and therefore on the state Z.

In choosing their strategies, citizens and policy-motivated candidates seek to maximize their

expectations of u (Y; Z), while o¢ ce-motivated candidates maximize the probability of being

elected. The analysis below characterizes symmetric perfect Bayesian equilibrium, which is

de�ned below for each of the various versions of the model.

3 Equilibrium

3.1 Commited Candidates

This section assumes that candidates�campaign platform commitments are binding, so

that the winning candidate must implement his platform policy yj = xj. Section 3.1 begins

8In Sections 3.1 through 3.1 and in Sections 3.2 and 3.2, abstention from voting is not allowed, but

Sections 3.1 and 3.2 introduce voter abstention, and then Section 3.2 considers the possibility of additional

candidates. Representing voter abstention as a vote for candidate 0, therefore, a citizen�s set of actions

expands from fA;Bg to fA;B; 0g to fA;B;C;D; 0g. When using these expanded action sets, denote the

set of strategies as �0 or �00 and the set of sub-strategies as �0xA;xB or �
00
xA;xB .

9In a game of population uncertainty such as this, this is actually without loss of generality. Since the set

of players is random, any asymmetric strategy pro�le would be outcome equivalent to a symmetric pro�le of

mixed strategies, with mixture probabilities re�ecting the fraction of potential players who take each action;

the best response to any such strategy is therefore the same for every individual.
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by analyzing the voting subgame associated with a particular pair (xA; xB) of candidate

strategies. Sections 3.1 and 3.1 then proceed by backward induction to analyze candidates�

incentives for platform selection, under the assumptions that candidates are o¢ ce- or policy-

motivated, respectively.

Voting

For any voting sub-strategy �� 2 ��, the sub-strategy ��i 2 �� is a best response to �� if it
maximizes Eu (Y; ZjQi; Si;�i; ��), where �i denotes a citizen�s own sub-strategy and �� is the
sub-strategy of her peers. �� 2 �� is an equilibrium in the voting subgame if it is its own

best response. Citizens seek to implement the superior policy, but which policy outcome is

superior depends on the state variable: when xA < xB, xA is superior to xB if Z = �1 while
xB is superior if Z = 1. A citizen�s expectation E (ZjQi; Si) = QiSi of the state depends

on her private information; of natural interest, therefore, is a belief threshold strategy �T ,

according to which citizens with high expectations vote B and citizens with low expectations

vote A.

De�nition 1 The voting sub-strategy �� 2 �� is a sincere belief threshold sub-strategy if there
exists some belief threshold T 2 [�1; 1] such that

�� (q; s) =

(
A if qs < T

B if qs > T
;

if the inequalities are reversed then �� is an insincere belief threshold sub-strategy. The voting

strategy � 2 � is a (sincere/insincere) belief threshold strategy if there exists a belief threshold
function T : [�1; 1]2 �! [�1; 1] such that, for every platform pair (xA; xB) 2 [�1; 1]2, the
sub-strategy �� associated with � is a (sincere/insincere) belief threshold sub-strategy, with

belief threshold T (xA; xB).

Lemma 1 states that optimal voter responses to exogenous platforms xA < xB can be

characterized by a belief threshold, and that an equilibrium belief threshold exists.10 If

platforms xA = �xB are symmetric around zero then equilibrium voting is a symmetric belief
threshold strategy, meaning that voting is also sincere (i.e. � (q;�1) = A and � (q; 1) = B).

Lemma 1 If candidates are committed then, for any pair (xA; xB) of platform policies, there
exists a sub-strategy ��� that constitutes an equilibrium in the voting subgame. If xA 6= xB

then ��� is a sincere belief threshold sub-strategy, with belief threshold T such that T = 0 if

and only if policy platforms xA = �xB are symmetric around zero.

Proof. See Appendix.
10If yA = yB then, trivially, any voting strategy constitutes an equilibrium.
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O¢ ce Motivation

An o¢ ce-motivated candidate j receives utility 1 if he wins the election, and 0 otherwise.

Expected utility is therefore given simply by his probability Pr (W = j;xA; xB; �) of winning

the election. A perfect Bayesian equilibrium is therefore a pair (x�A; x
�
B) of candidate platform

strategies and a voting strategy �� such that the voting sub-strategy �� (xA; xB) induced by

�� for any pair (xA; xB) of candidate platforms constitutes an equilibrium in the voting

subgame, and x�j maximizes Pr
�
W = j;xj; x

�
�j; �

��, where x��j is the equilibrium platform

of candidate j�s opponent.

A citizen prefers the policy platform that is nearest to her private expectation of Z;

accordingly, as Lemma 1 states, citizens with high expectations vote for candidate B while

citizens with low expectations vote for candidate A. Which candidate receives the larger

share of votes, therefore, depends (in expectation) on which platform is closest to a larger

fraction of citizens�expectations. Given the symmetry of the model, this is the platform that

is closer to the zero policy (i.e. the ex ante median of citizens�expectations). In choosing his

platform, therefore, an o¢ ce-motivated candidate seeks to adopt a more moderate position

than his opponent. Accordingly, as Theorem 1 now states, the unique symmetric perfect

Bayesian equilibrium is such that both candidates adopt the zero policy.

Theorem 1 (Median Voter Theorem) If candidates are commited and o¢ ce-motivated
then (x�A; x

�
B; �

�) is a symmetric perfect Bayesian equilibrium only if x�A = x�B = 0 and �
�

is almost everywhere equivalent to a sincere belief threshold strategy, with threshold function

T � such that T � (0; 0) = 0. Furthermore, such an equilibrium exists.

Proof. See Appendix.
The candidate behavior predicted by Theorem 1 closely resembles that predicted by

the well-known Median Voter Theorem introduced by Black (1948) and Downs (1952), and

for the same reason: e¤orts to attract large fractions of the electorate push candidates

toward one another, and toward the median voter�s ideal point. The welfare implications in

this model di¤er dramatically, however, from the implications in a model with fundamental

di¤erences in tastes. In that context, the median voter theorem is a positive outcome,

representing a compromise between the competing desires of citizens at opposite ends of the

preference spectrum; if citizens are risk-averse, the median voter�s ideal policy minimizes the

maximum disutility experienced by any citizen, and so may maximize a utilitarian social

welfare function. In this context, by contrast, citizens unanimously prefer (ex post) a more

extreme policy; the zero policy is optimal only when no information is available beyond the

common prior. In this setting, then, the median voter theorem represents a complete failure

to utilize citizens�private information.
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The result that candidate platforms converge in equilibrium has sometimes been viewed

as an empirical failing of rational voting models, both because candidate platforms in real-

world elections appear to di¤er substantially, and because identical platforms would give

citizens no incentive to vote. As in previous literature, however, the prediction here of

platform convergence depends on candidate motivation; in the following section, equilibrium

candidate platforms do not coincide.

Policy Motivation

In this section, candidates are assumed to be ordinary citizens, choosing policy platforms

to maximize the expectation of (1). The optimal policy for such a candidate is his expec-

tation of the state, conditional on available information. Though candidate j must commit

to a policy platform before observing the election outcome, he can condition his expectation

on the eventW = j in which he wins the election, since only then will his platform policy be

implemented. Theorem 2 now states that equilibrium exists, and that equilibrium voting

is informative, implying that candidates anticipate learning di¤erent pieces of information

upon winning the election, and that policy platforms diverge accordingly. In particular, an

equilibrium exists in which voting is also sincere.

Theorem 2 (Policy divergence) If candidates are committed and policy-motivated then
(x�A; x

�
B; �

�) is a symmetric perfect Bayesian equilibrium only if candidate platforms are given

by x�j = E (ZjW = j) � ẑj for j = A;B, with x�A 6= x�B, and the voting strategy �
� is almost

everywhere equivalent to a sincere belief threshold strategy. Furthermore, such an equilibrium

exists, with platforms x�A = �x�B symmetric around zero.

Proof. See Appendix.

Abstention

The analysis of Section 3 assumes that every citizen must vote. In most real-world

election environments, however, voters are allowed to abstain; indeed, in most democracies,

abstention rates tend to be fairly high. The set of voting strategies can now be denoted as

�0 =
�
� : [0; 1]� f�1; 1g � [0; 1]2 ! fA;B; 0g

	
, and the set of voting sub-strategies induced

by �0 can now be denoted as ��0. With this modi�cation, Lemma 2 repeats the voting

subgame analysis of Section 3.1 for a given pair xA < xB of policy platforms. As before,

citizens who strongly believe the state to be high or low will have strong preferences for

yB or yA, respectively. Now, however, a belief threshold strategy �T1;T2 , must be rede�ned

using two thresholds instead of one, to allow for the possibility that some citizens abstain

altogether from voting.
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De�nition 2 The subgame voting strategy �� 2 �0 is a sincere belief threshold sub-strategy
if there exist belief thresholds T1; T2 2 [�1; 1] such that

�� (q; s) =

8><>:
A if qs � T1

0 if T1 < qs < T2

B if qs � T2

;

if the inequalities are reversed then �� is an insincere belief threshold sub-strategy. The voting

strategy � 2 �0 is a (sincere/insincere) belief threshold strategy if there exists a belief threshold
function T : [�1; 1]2 �! [�1; 1]2 such that, for every platform pair (xA; xB) 2 [�1; 1]2, the
sub-strategy �� associated with � is a (sincere/insincere) belief threshold sub-strategy, with

belief thresholds T1 (xA; xB) and T2 (xA; xB).

Since voting is costless, and since each citizen�s private signal induces a strict preference

ordering over the two policy outcomes, it may seem unlikely that allowing abstention will

alter equilibrium behavior. However, as Lemma 1 states, T1 < T2 in equilibrium, implying

positive abstention. The logic behind this result is the swing voter�s curse (Feddersen and

Pesendorfer, 1996): because citizens�opinions are correlated with the truth, and voting is

informative, the candidate with the superior policy is more likely to win the election by one

vote than to lose by one vote. A vote for the inferior candidate is therefore more likely

to be pivotal than is a vote for the superior candidate, so a citizen who is indi¤erent� or,

by continuity, almost indi¤erent� between voting for the two candidates strictly prefers to

abstain.

Lemma 2 (Swing voter�s curse) If candidates are committed and abstention is allowed
then, for any pair (xA; xB) of platform policies, there exists a sub-strategy ��� 2 �0 that

constitutes an equilibrium in the voting subgame. If xA 6= xB then ��� is a sincere belief

threshold sub-strategy, with belief threshold functions such that T1 < T2. Also, T1 = �TB if
and only if xA = �xB.

Proof. See Appendix.
The last part of Lemma 2 points out that if policy outcomes are symmetric around the

zero policy then equilibrium voting behavior may exhibit the same symmetry. In that case,

whether a citizen votes or not depends only on her whether her information qualityQi exceeds

the threshold T �. Like Lemma 1, Lemma 2 characterizes equilibrium responses to exogenous

policy outcomes. Proposition 1 now treats the case in which policy outcomes are determined

by campaign platforms, which are chosen by policy-motivated (i.e. citizen) candidates before

the election. Like Theorem 2, Proposition 1 predicts that campaign platforms will diverge

in equilibrium. Partial equilibrium voting behavior is given by Lemma 2, implying positive
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abstention in equilibrium. As in Lemma 2, equilibrium voting behavior and candidate

platforms may be symmetric around the zero policy.

Proposition 1 [Restate as (1) characterization, (2) existence, with additional character-
ization.]If policy platform commitments are binding, candidates are policy-motivated, and

abstention is allowed then there exists a symmetric perfect Bayesian equilibrium (x�A; x
�
B; �

�)

that satis�es the following conditions:

1. Candidate platforms are given by x�j = E (ZjW = j) � ẑj for j = A;B, and are

symmetric around zero (i.e. x�A = �x�B).
2. �� is a sincere belief threshold strategy, with belief threshold functions T �1 < T �2 that

are symmetric around zero in equilibrium (i.e. T �1 (x
�
A; x

�
B) = �T �2 (x�A; x�B)).

Proof. See Appendix.
Like Theorem 2, Proposition 1 predicts that candidate platforms will diverge in equilib-

rium. The reason for this is that the two candidates learn di¤erent information from voters:

candidate A is more likely to be elected in state �1 and candidate B is more likely to be

elected in state 1. Conditional on being elected, therefore, A�s expectation of Z is lower

than B�s. It may be, however, that the identity of the election winner is not a su¢ cient

statistic for the information conveyed through voting. For example, with informative voting,

if candidate B wins the election in state �1 it will likely be by only a few votes, whereas in
state 1 he may win by a landslide. Put di¤erently, the election winner is determined by the

sign of the di¤erence NB �NA in vote totals for the two candidates; it may be the case that
the magnitude jNB �NAj of this di¤erence carries informational content as well. If this

is the case, a candidate who observes vote totals may wish to deviate from the campaign

policy platform that he committed to before the election. In this section, such deviations

are prohibited. In real-world elections, however, pre-election commitments may be quite

di¢ cult or even impossible to enforce. Accordingly, Section 3.2 relaxes the assumption that

campaign commitments are binding.

3.2 Responsive Candidates

Voting

In this section, as in Section 3.1, candidates are policy-motivated, seeking to maximize

the expectation of (1), just like ordinary citizens.11 Unlike Section 3.1, however, a win-

11Since voting behavior can no longer be conditioned a candidate�s policy choice, an o¢ ce-motivated can-

didate has no basis for choosing policy, conditional on winning the election. Since policy-motivated behavior

is optimal from voters�perspective, as Section 4 shows, an o¢ ce-motivated candidate would presumably wish

simply to mimic a policy-motivated candidate.
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ning candidate is no longer required to implement the platform policy that he adopted

before the election. Thus, a perfect Bayesian equilibrium
h�
x�j ; y

�
j

�
j=A;B

; ��
i
includes a

pair (x�A; x
�
B) 2 [�1; 1]

2 of platform policies, a pair (y�A; y
�
B) 2 �2 of policy functions, and a

voting strategy �� such that
�
x�j ; y

�
j

�
maximizes Eu

�
X;Z;xj; yj; x

�
�j; y

�
�j; �

��, where xj and
yj are the platform and policy function adopted by candidate j and x�j and y�j are the

platform and policy function adopted by j�s opponent, and the sub-strategy ��� induced by

�� maximizes Eu
h
X;Z;

�
x�j ; y

�
j

�
j=A;B

; ��
i
for any pair (xA; xB) of platform policies.

In equilibrium, as Lemma 3 now states, a candidate merely implements his expectation

of Z. Because policy is implemented after vote totals are observed, he conditions his

expectation on this information. Voters�equilibrium behavior is again characterized by a

belief threshold strategy. For such a strategy, each candidates�beliefs regarding the true

state increase in the number of B votes and decrease in the number of A votes. By voting

A, therefore, a voter essentially pushes the eventual policy outcome slightly to the left; by

voting B, she pushes it to the right.

Lemma 3 If candidates are responsive and policy-motivated then
h�
x�j ; y

�
j

�
j=A;B

; ��
i
is a

symmetric perfect Bayesian equilibrium only if the following are true:

1. �� is a belief threshold strategy.

2. For all a; b 2 Z+ and for j = A;B, policy functions are given by y�j (a; b) = ẑa;b and

either ẑa+1;b < ẑa;b < ẑa;b+1 or ẑa;b+1 < ẑa;b < ẑa+1;b.

Proof. See Appendix.
If her fellow-citizens vote according to a particular belief threshold strategy, and the

winning candidate responds as Lemma 3 predicts, a citizen who is su¢ ciently con�dent that

Z = �1 prefers to vote for candidate A, thereby pushing the ultimate policy outcome to the
left. Similarly, a citizen who is su¢ ciently con�dent that Z = 1 prefers to vote for candidate

B. Thus, the best response to a belief threshold strategy is another belief threshold strategy.

Accordingly, Theorem 3 identi�es a symmetric perfect Bayesian equilibrium, in which citizens

vote according to a sincere belief threshold strategy ��, sincerely reporting their private

signals, and candidates respond by implementing their expectations of Z, given vote totals,

as in Lemma 3. Since platform commitments are not binding, they lack credibility, and

are ignored by voters in equilibrium. Thus any pair of platforms can be consistent with

equilibrium. In particular, Part 1 of Theorem 3 assumes that candidates platforms re�ect

candidates�ex ante expectations of the true state, as would be the case if platforms were

binding. Indeed, these platforms would be optimal if, for example, platorm commitments

were binding with some positive probability.
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Theorem 3 (Signaling Equilibrium) If candidates are responsive and policy-motivated
then a symmetric perfect Bayesian equilibrium

h�
x�j ; y

�
j

�
j=A;B

; ��
i
exists, which exhibits the

following properties:

1. Candidate platforms are given by x�j = ẑj for j = A;B, and are symmetric around

zero (i.e. x�A = �x�B).
2. �� is a sincere belief threshold strategy, and every sub-strategy ��� associated with ��

is characterized by the belief threshold T � = 0.

3. For all a; b 2 Z+ and for j = A;B, policy functions are given by y�j (a; b) = ẑa;b and

are both monotonic (i.e. ẑa+1;b < ẑa;b < ẑa;b+1) and symmetric around zero (i.e. ẑa;b = �ẑb;a).

Proof. See Appendix.
In Sections 3.1 through 3.1, as in standard voting models, an individual vote has in�uence

only in the extremely unlikely event that it is �pivotal�, either making or breaking a tie. In

the equilibrium of Theorem 3, this is no longer the case; instead, every vote is pivotal, in the

sense that every vote in�uences the ultimate policy outcome, by pushing the policy-maker�s

expectations one way or the other. In this setting, then, the popular mantra that �every

vote counts�in public elections can be taken quite literally.

The candidate platforms ẑj speci�ed for the equilibrium of Theorem 3 can be viewed

as weighted averages of the policy outcomes ẑa;b associated with particular pairs (a; b) of

vote totals. Accordingly, policy outcomes will sometimes be higher, and sometimes lower,

than candidates� policy platforms. Speci�cally, a policy outcome turns out to be more

extreme than the winning candidate�s policy platform (i.e. ẑa;b < ẑA or ẑa;b > ẑB) when

that candidate wins by a higher margin of victory than expected, and is less extreme (i.e.

ẑA < ẑa;b < ẑB) when the margin of victory was more narrow than expected. This fact

illustrates the popular notion of electoral �mandates�, by which candidates who win by

large margins are expected to implement more extreme policies. The larger the margin of

victory, the larger the mandate, in the sense that policy outcomes become more extreme as

the margin of victory increases.

Multiple Candidates

In this section, the set fA;B;C;Dg of candidates is expanded from two to four. Thus,

the set of voting strategies is given by �00 =
�
� : [0; 1]� f�1; 1g � [0; 1]2 ! fA;B;C;D; 0g

	
and the set of induced sub-strategies denoted as ��00. As in Section 3.2, candidates are

responsive; as in Section 3.2, abstention is allowed. De�nition 3 rede�nes the concept of a

belief threshold strategy for this setting, using four belief thresholds instead of two. Under

such a strategy, citizens with strong private opinions vote for candidates A or D, citizens
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with moderate opinions vote for candidates B or C, and citizens with only weak opinions

abstain.

De�nition 3 The symmetric sub-strategy �� 2 ��00 is a sincere belief threshold sub-strategy if
there exist belief thresholds T1; T2; T3 2 [�1; 1] such that

�� (q; s) =

8>>><>>>:
A if qs 2 (�1; T1)
B if qs 2 (T1; T2)
C if qs 2 (T2; T3)
D if qs 2 (T3; 1)

;

if the inequalities are reversed then �� is an insincere belief threshold sub-strategy. The

voting strategy � 2 �00 is a (sincere /insincere) belief threshold strategy if there exists a

belief threshold function T : [�1; 1]4 �! [�1; 1]3 such that, for every platform quadruple

(xA; xB; xC ; xD) 2 [�1; 1]4, the sub-strategy �� associated with � is a (sincere/insincere) be-
lief threshold sub-strategy, with belief thresholds T1 (xA; xB; xC ; xD), T2 (xA; xB; xC ; xD), and

T3 (xA; xB; xC ; xD).

Theorem 4 now states the existence of a perfect Bayesian equilibrium, characterized by

belief threshold voting. As prescribed by Lemma 3, the winning candidate implements his

expectation of the state, conditional on vote totals; as in Lemma 3, the e¤ect of a single vote

is to push the policy outcome in one direction or another. Because more extreme citizen

types vote for candidates A and D than B and C, votes for these two candidates have a

greater impact on the winning candidate�s beliefs. Thus, voting for an extreme candidate

pushes policy by more than voting for a moderate candidate.

Theorem 4 If candidates A, B, C, and D are responsive and abstention is allowed then

there exists a symmetric perfect Bayesian equilibrium
h�
x�j ; y

�
j

�
j=A;B;C;D

; ��
i
, which exhibits

the following properties:

1. Candidate platforms are given by x�j = ẑj for j = A;B;C;D, and are symmetric

around zero (i.e. x�A = �x�D, x�B = �x�C).
2. �� is a sincere belief threshold strategy, and every sub-strategy ��� associated with ��

is characterized by the same symmetric quadruple (�T �; 0; T �) of belief thresholds, where
0 < T � < 1.

3. For all a; b; c; d 2 Z+, policy functions are given by y�j (a; b; c; d) = ẑa;b;c;d for j =

A;B;C;D and ẑa+1;b;c;d < ẑa;b+1;c;d < ẑa;b;c;d < ẑa;b;c+1;d < ẑa;b;c;d+1.

Proof. See Appendix.
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One noteworthy comparative static result from this section is that the intensity of a

citizen�s political preference is positively related to her information quality. That is, citizens

with poor information quality tend not to support extreme candidates. This is despite the

modeling assumption that the ideal policy is commonly known to lie at one of the extremes

of the policy spectrum: if information were perfect, every citizen would be an extremist.

In essence, the same �signaling voter�s curse� that in Section 3.2 caused citizens with the

poorest information to abstain altogether from voting causes moderately informed citizens

to vote for a moderate rather than an extreme candidate.

Abstention

By allowing the winning candidate to implement any policy of his choice, Theorem 5

resembles Theorem 3. Like that theorem, Theorem 5 predicts that candidates respond

identically to vote totals. This implies, however, that a citizen do not actually care who

wins the election, and therefore no longer restricts her attention to the rare case in which

her vote changes the identity of the election winner. The logic of the swing voter�s curse,

therefore, no longer applies.

Since voting is costless and pivotal votes are no longer of concern, it may seem unlikely

that citizens will abstain from voting in equilibrium� even a minimally informed citizen�s

signal, after all, is more likely to be Z than �Z. To the contrary, however, Theorem 5

states that equilibrium belief thresholds diverge, implying positive abstention. The logic

of this result is as follows: in equilibrium, the winning candidate interprets vote totals as

indicative of voters�private information. Each A vote, therefore, lowers his expectation of

Z, while each B vote raises his expectation of Z. Since individual signals are correlated

with the truth and voting is informative, the winning candidate�s policy expectations will

likely be pushed in the true direction of Z. An additional vote in the proper direction,

therefore, has less marginal impact than an additional vote in the wrong direction. This

makes a perfectly uninformed citizen� and, by continuity, a poorly informed citizen� prefer

to abstain. Perhaps more intuitively, a perfectly uninformed citizen prefers, given her fellow-

citizens�vote totals a and b, to implement the policy E (Zja; b;��) � ẑa;b. Since (by Lemma

3) this is precisely the choice made by the winning candidate, the uninformed citizen achieves

her optimum by abstaining.12

Theorem 5 (Signaling voter�s curse) If candidates are responsive and policy-motivated
and voter abstention is allowed then there exists a symmetric perfect Bayesian equilibriumh�
x�j ; y

�
j

�
j=A;B

; ��
i
, which exhibits the following properties:

12By voting, a citizen shifts the policy response to either ẑa+1;b or ẑa;b+1.
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1. Candidate platforms are given by x�j = ẑj for j = A;B, and are symmetric around

zero (i.e. x�A = �x�B).
2. �� is a sincere belief threshold strategy, and every sub-strategy ��� associated with �� is

characterized by the same symmetric pair (�T �; T �) of belief thresholds, where 0 < T � < 1.

Proof. See Appendix.
The results of this section exhibit the same behavioral prediction: whether policy out-

comes are exogenous (as in Lemma 2), determined by binding platform commitments (as

in Proposition 1), or chosen ex post by the winning candidate (as in Theorem 5) informed

citizens vote in equilibrium and uninformed citizens abstain. This prediction is consistent

with the empirical evidence, reviewed in McMurray (2010), that voter turnout is correlated

with information variables such as education, and age. As Feddersen and Pesendorfer (1996)

point out, it also provides an explanation for voter abstention when voting is costless, such

as roll-o¤. Turnout is also highest among those with extreme policy preferences, consistent

with evidence from Palfrey and Poole (1987).

Examples

Signaling Equilibrium Propositions 2 and 3 illustrate the equilibrium identi�ed in The-

orem 3 with simple examples, assuming N to be �xed and known, and F to be uniform.

Since voting behavior is based on expectations of policy outcomes, and because the number

of policy outcomes is equal to the number of electoral outcomes, which grows with the num-

ber of citizens, these examples limit attention to very small electorates. Nevertheless, the

examples here are typical of the types of behavior that apply more generally.

The electorate in Proposition 2 consists of only two citizens. In equilibrium, candidates

�rst propose platform policies x�A = �0:5 and x�B = 0:5. If both citizens vote for A or for

B, the winning candidate then implements �0:8 or 0:8, respectively, instead of the platform
policy; if the election is tied, the winning candidate implements 0 instead.

Proposition 2 Let F be a uniform distribution and let N = 2. If candidates are responsive

then there exists an equilibrium (x�A; x
�
B; �

�; y�A; y
�
B) such that candidate platforms are x

�
B =

�x�A = 0:5, voting �� = �0 is sincere, and policy outcomes are as follows: y�A (1; 1) =

y�B (1; 1) = 0 and y
�
B (0; 2) = �y�A (2; 0) = 0:8.

Proof. With sincere voting, a citizen votes B if Si = 1 and votes A otherwise, so vote prob-
abilities reduce from (5) to ��1 (B) =

R 1
0
1
2
(1� q) dq = 1

4
and �1 (B) =

R 1
0
1
2
(1 + q) dq = 3

4
,

and expectations are given by ẑ0;2 =
� 1
2
(1=4)2+ 1

2
(3=4)2

1
2
(1=4)2+ 1

2
(3=4)2

= 0:8 and ẑ1;1 =
� 1
2
[2(1=4)(3=4)]+ 1

2
[2(1=4)(3=4)]

1
2
[2(1=4)(3=4)]+ 1

2
[2(1=4)(3=4)]

=

0. Candidate B can win the election either by receiving both citizens�votes or by receiving
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one vote and winning the tie-breaking coin toss. Conditional only on winning the election,

therefore, his expectation of Z is given by ẑB =
� 1
2 [(1=4)

2+:5�2(1=4)(3=4)]+ 1
2 [(3=4)

2+:5�2(1=4)(3=4)]
1
2 [(1=4)

2+:5�2(1=4)(3=4)]+ 1
2 [(3=4)

2+:5�2(1=4)(3=4)]
=

0:5. Probabilities and expectations for candidate A are determined symmetrically. That

�� = �0, x�j = ẑj, and y�j (a; b) = ẑa;b together constitute an equilibrium follows from Theorem

3.

Proposition 3 illustrates the same basic behavior, but with three citizens instead of two

(therefore avoiding the possibility of a tie). In equilibrium, candidates propose platform

policies �0:57 but then implement either �0:5 or �0:93.

Proposition 3 Let F be a uniform distribution and let N = 3. If candidates are responsive

then there exists an equilibrium (x�A; x
�
B; �

�; y�A; y
�
B) such that candidate platforms are x

�
B =

�x�A � 0:5652, voting �� = �0 is sincere, and policy outcomes are as follows: y�B (1; 2) =

�y�A (2; 1) = 0:5 and y�B (0; 3) = �y�A (3; 0) � :9286.

Proof. As in Proposition 2, sincere voting produces vote probabilities ��1 (A) = �1 (B) =
3
4

and �1 (A) = ��1 (B) =
1
4
. Upon winning, therefore, candidate B�s expectation of Z is

either

ẑ1;2 =
� 1
2 [3(3=4)(1=4)

2]+ 1
2 [3(1=4)(3=4)

2]
1
2 [3(3=4)(1=4)

2]+ 1
2 [3(1=4)(3=4)

2]
= 0:5 or ẑ0;3 =

� 1
2
(1=4)3+ 1

2
(3=4)3

1
2
(1=4)3+ 1

2
(3=4)3

= 26
28
� :9286. Condi-

tional only on candidate B winning the election, the expectation of Z is given by ẑB =
� 1
2 [3(3=4)(1=4)

2+(1=4)3]+ 1
2 [3(1=4)(3=4)

2+(3=4)3]
1
2 [3(3=4)(1=4)

2+(1=4)3]+ 1
2 [3(1=4)(3=4)

2+(3=4)3]
= 26

46
� 0:5652. Probabilities and expectations for

candidate A are determined symmetrically. That �� = �0, x�j = ẑj, and y�j (a; b) = ẑa;b

together constitute an equilibrium follows from Theorem 3.

Propositions 2 and 3 illustrate basic equilibrium behavior for an electorate with responsive

candidates. They also demonstrate how the announcement of an election outcome might

alter a candidate�s beliefs about the true state of the world. This behavior is consistent

with popular assessment of actual candidate behavior in real-world elections. Observers have

long noted an empirical tendency for winning candidates to moderate their political stances

(relative to campaign platforms) after close-shave elections, and to move toward extreme

policy options after landslide victories, interpreting such as �mandates�from voters. In this

setting, the notion of a mandate can be interpreted quite literally: large margins of victory

communicate strong evidence in favor of extreme policy moves.

Abstention Proposition 4 retains the assumption of N = 2 from Proposition 2 but now

allows for the possibility of voter abstention. As Theorem 5 predicts, poorly informed

citizens abstain. In fact, equilibrium voter turnout is quite low: only 42%. If campaign

platforms re�ect candidates� expectations of the state conditional only on winning, as in

Section 3.1, then they will diverge (to �0:5242), as in Theorem 2. Once election results
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are known, policy will then adjust, as in Theorem 3. A tie will cause either candidate to

moderate his policy choice (to 0), while a slight majority will push his policy choice in the

opposite direction (to �0:7907), and a large majority will make the policy even more extreme
(�0:9730). More often than not (i.e. with probability 0:63), then, the ultimate policy

outcome that is implemented is more extreme than either candidate�s campaign platform

policy.

Proposition 4 Let N = 2 be known and let F be uniform on [0; 1]. If candidates are re-

sponsive then (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B) is a perfect Bayesian equilibrium, where x

�
B = �x�A �

0:5242, y�B (0; 0) = y�A (0; 0) = 0, y
�
B (0; 1) = �y�A (1; 0) � 0:7907, and y�B (0; 2) = �y�A (2; 0) �

0:9730, and where ��T �;T � is a symmetric belief threshold strategy with T � � 0:5814. In this
equilibrium, expected turnout is approximately 42%.

Proof. See Appendix.
Proposition 5 next demonstrates that the logic of voter abstention applies even to an

�electorate�comprised of only a single citizen (i.e. N = 1). As the sole voter, this citizen

has complete control over the voting outcome. Nevertheless, she abstains in equilibrium with

0:33 probability. Before the election, candidates adopt platforms at �0:44; if she abstains,
they implement the 0 policy instead; if she votes, they respond by implementing �0:67.

Proposition 5 Let N = 1 be known and let F be uniform on [0; 1]. If candidates are respon-

sive then there is a unique belief threshold strategy ��T �;T � such that (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B)

is a symmetric perfect Bayesian equilibrium. In this equilibrium, T � = 1
3
, x�B = �x�A � 0:44,

y�j (0; 0) = 0, and y
�
j (0; 1) = �y�j (1; 0) � 0:67, and expected turnout is approximately 67%.

Proof. See Appendix.
This exaggerated example elucidates the logic behind the signaling voter�s curse: because

the winning candidate does not know the citizen�s type, he interprets her vote as though

her information quality is average. When it is below average, therefore, the candidate will

overreact to her vote, implementing a policy more extreme than her information merits; by

abstaining, she achieves a more moderate policy outcome.

Multiple candidates Like Proposition 5, Proposition 6 focuses on an electorate comprised

on only a single citizen. Now, however, there are four candidates, instead of two, thereby

illustrating the equilibrium identi�ed in Theorem 4. In that equilibrium, all candidates

expect a positive vote share, and the citizen also abstains with positive probability (expected

turnout is 80%).
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Proposition 6 Let N = 1 be known, and let F be uniform on [0; 1]. If candidates A, B,

C, and D are responsive then (x�; ��; y�) is a perfect Bayesian equilibrium for the symmetric

belief threshold voting strategy �� = ��:6;�:2;:2;:6, the vector y� =
�
y�j
�
j2fA;B;C;Dg of policy

responses de�ned by y�j (0; 0; 0; 1) = �y�j (1; 0; 0; 0) = 0:8, y�j (0; 0; 1; 0) = �y�j (0; 1; 0; 0) =
0:4, y�j (0; 0; 0; 0) = 0, and any vector x

� =
�
x�j
�
j2fA;B;C;Dg of candidate platforms. In this

equilibrium, expected voter turnout is 80%.

Proof. See Appendix.
Voting behavior in Proposition 6 is similar to that in Proposition 5, in that the type

space is divided in equilibrium into equal segments� this time �ve instead of three. Applied

here, the logic of Theorem 6 suggests that this addition of candidates improves welfare.

4 Welfare

The Condorcet (1785) jury theorem states that, as an electorate grows large, the majority

decision identi�es the better of two alternatives with probability approaching one. As

originally stated, this result assumed sincere voting with no abstention; in this model, voting

is instead strategic. Nevertheless, the same result is obtained in Theorem 6, for each of the

above speci�cations of the model.

Theorem 6 (Jury theorem) 1. If candidates are committed and, for a population size
parameter n, Eu (Y; Z) is maximized by the symmetric voting sub-strategy (���)n 2 ��, then
(a) (���)n constitutes an equilibrium in the voting subgame, and (b) the associated sequence of

equilibrium policy outcomes
�
�Y ��

n
approaches p limk!1

��
�Y ��

n
jZ
�
=

(
min (xA; xB) if Z = �1
max (xA; xB) if Z = 1

.

2. If candidates are committed and policy-motivated and, for a population size parameter

n, Eu (Y; Z) is maximized by the strategy combination
h�
x�j
�
j=A;B

; ��
i
n
2 [�1; 1]2 � �,

then (a)
h�
x�j
�
j=A;B

; ��
i
n
constitutes a perfect Bayesian equilibrium and (b) the associated

sequence of equilibrium policy outcomes Y �
n approaches p limn!1 (Y

�
n jZ) = Z.

3. If candidates are responsive and policy-motivated and, for a population size parameter

n, Eu (Y; Z) is maximized by the strategy combination
h�
x�j ; y

�
j

�
j=A;B

; ��
i
nk
2 ([�1; 1]��)2�

� , then (a)
h�
x�j ; y

�
j

�
j=A;B

; ��
i
n
constitutes a perfect Bayesian equilibrium and (b) the as-

sociated sequence of equilibrium policy outcomes Y �
n approaches p limn!1 (Y

�
n jZ) = Z.

4. Claim 3 remains true if the number of candidates is increased.

5. Claims 1 through 4 remain true if abstention is allowed.

Proof. See Appendix.
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Theorem 6 has a number of implications for institutional design. For example, the lack

of credibility underlying campaign promises is often bemoaned for introducing uncertainty

about candidates�future behavior. Part 3 of Theorem 6 implies, however, that responsive

candidates will utilize information gleaned from electoral results to implement the socially

optimal policy; policies that bind candidates to campaign platform policies will therefore

only inhibit welfare.

A related implication of Theorem 6 is that, when campaign platform commitments are

binding, welfare is higher when candidates are policy-motivated than when they are o¢ ce-

motivated. Speci�cally, Lemma 1 implies identical voter behavior regardless of candidate

motivation; given this behavior, Part 2 of Theorem 6 implies that the policy platforms

adopted by policy-motivated candidates (which di¤er in equilibrium from those adopted by

o¢ ce-motivated candidates, by Theorems 1 and 2) are socially optimal. This result may

have relevance for determining optimal �nancial rewards for o¢ ce holders.

The result that large electorates do well at selecting good policies might motivate popu-

lar �get out the vote�e¤orts to encourage voter participation. Some nations have gone as

far as to make voting mandatory, levying �nes on non-voters. Similar policies have been

recommended for the United States (e.g. Lijphart, 1997). In an environment such as this,

such policies might seem particularly useful, since every citizen possesses valuable private

information; by allowing abstention, a voluntary election fails to utilize this information.

On the other hand, it is also sometimes argued that voters who lack information should be

somehow excluded from voting. An implication of Theorem 6, however, is that equilibrium

voter abstention is socially optimal. Speci�cally, Part 4 of Theorem 6 states that, allow-

ing voter abstention in each version of the model, the optimal combination of voter and

candidate behavior constitutes a Bayesian equilibrium. As discussed in Section 3.2, any

such equilibrium involves voter abstention. One way to understand this result is that, as

McMurray (2010) points out, an optimal election mechanism would place greater weight on

the votes of citizens with high-quality information than on those of poorly informed citizens;

allowing abstention is a crude way of accomplishing this. With responsive candidates, an

alternative intuition comes from viewing voters and candidates as senders and receivers in

a �cheap talk� game (a la Crawford and Sobel, 1982). Within that framework, allowing

abstention amounts to expanding the size of the message space from two messages to three.

This interpretation is immediately evident in Proposition 5, where the single citizen divides

her type space into three equal segments, voting according to �� 1
3
; 1
3
in equilibrium.
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5 Evidence

In the model analyzed above, information leads a citizen both to favor extreme policies,

and to vote. Thus, information, ideological extremeness, and voter participation should

be jointly correlated. This is precisely the �nding of Palfrey and Poole (1987). Informa-

tion aside, however, the connection between ideology and voter participation has long been

recognized. Traditionally, this correlation has been attributed to voting costs: in a standard

spatial model, a citizen whose ideal point lies between the two candidates�policy platforms

perceives only a small di¤erence between the two candidates, while a citizen whose ideal

point is more extreme than either platform strongly prefers the closer candidate of the two

(e.g. Davis, Hinich, and Ordeshook, 1970); if voting is costly, therefore, then only citizens

with extreme ideology should be willing to vote. As Feddersen and Pesendorfer (1996)

emphasize, however, the logic of strategic abstention applies in costless voting environments,

such as the decision of whether or not to continue voting in state and local elections, after

having already voted for president, in addition to the original decision of whether to pay

voting costs or not. In addition to predicting a correlation between ideology and turnout,

therefore, the present model predicts a correlation between ideology and roll-o¤. That is, a

strong ideology should make an individual not only more likely to vote, but also more likely

to continue voting, once begun.

To test this prediction, this section analyzes data from the American National Election

Studies (years 1952-2000), in states that held elections for senator or governor in the same

year as a presidential election. In addition to reporting their voting behavior, survey respon-

dents were asked to locate their own political views on a seven-point ideological spectrum

with labels �extremely liberal�, �liberal�, �slightly liberal�, �moderate�, �slightly conserva-

tive�, �conservative�, and �extremely conservative�, or report that they do not know where

their views fall. Excluding this last group, the strength of an individual�s ideology can be

taken to be her distance from the center, producing four categories of ideological strength:

�moderate�, �slightly liberal or conservative�, �liberal or conservative�, and �extremely lib-

eral or conservative�.

Column 1 of Table 1 reports the results of a probit regression, in which the dependent

variable is an indicator of whether a citizen voted or not, and the independent variables

consist of the measure of ideological strength described above, as well as �xed election

e¤ects for every state-year pair. According to this analysis, an increase by one category

of ideological strength increases an individual�s propensity to vote by nearly four percent.

Column 3 reports an analogous result for the case in which the dependent variable is an

indicator of whether or not a citizen continued voting for senator or governor, after having

voted for president.
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Table 1: Relationship between ideology, voting, and roll-o¤

6 Conclusion

Downs� spatial model and Condorcet�s information model represent two of the most

fundamental paradigms through which voting and elections can be understood. This paper

takes a �rst step toward synthesizing the two, by extending the Condorcet environment to

allow a continuum of policy alternatives and a substantive role for political candidates. In

some respects, behavior that arises in this model strongly resembles that of its predecessors.

Policy choices diverge to the extent that candidates are policy-motivated, while competition

between o¢ ce-motivated candidates drives both to the political center; poorly informed

citizens abstain from voting, in deference to those with better expertise; and the candidate

with the superior policy platform is likely to win the election.

In addition to its standard results, however, this model predicts additional political in-

centives that are useful for understanding empirical observations. Despite the model�s sym-

metry, elections need not end in expected ties. The winning candidate infers a �mandate�

from voters from his margin of victory, and responds with a more extreme policy position.

This creates a signaling incentive for voters, who no longer perform the strategic calculus

that generates the swing voter�s curse, but may nevertheless abstain to avoid the �signaling

voter�s curse�of pushing policy in the wrong direction. The signaling role of votes provides

a possible explanation for the persistence of minor candidates, who are unlikely to win o¢ ce,
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and the voters who support them.

The private beliefs that arise naturally from heterogeneous expertise provide a theoret-

ical justi�cation for the one-dimensional ideological spectrum that is commonly assumed.

This perspective, however, reverses the conventional welfare analysis. In standard models,

competitive pressure that drives candidates to the center of the political spectrum bene�ts

voters, by compromising between extremes to maximize total welfare, in a utilitarian sense.

Evidence that candidates do not fully converge is bemoaned as a political failing, perhaps

blamed on the passivity of centrist voters, who allow major parties to be controlled by more

extreme interests. Here, the reverse is true: centrist voters remain deliberately passive, for

lack of expertise; policy-motivated candidates pursue policies that are ultimately optimal for

society; and pressure to converge to the center in pursuit of votes distracts candidates from

this task. In terms of the examples cited in the introduction, political competition may lead

to moderate attempts at �scal stimulus, even when it is commonly known that either small

or large stimulus is optimal, or to partial support for a variety of programs, one of which is

ultimately superior.

This model is biased against moderate policies, of course, by its assumption that the

optimal policy lies at one of the two extreme ends of the policy space. In many applications,

a more reasonable extension may be to allow the optimal possibility to lie anywhere in the

policy space. In that case, voting behavior is likely to be similar to this model, but abstention

in that case may re�ect an opinion that the optimal policy is indeed moderate, rather than

re�ecting a lack of information. Another useful extension of this work would be to consider

multiple policy dimensions. In that case, competition between two candidates would be

insu¢ cient to identify the optimal policy perfectly; multiple candidates may therefore play

an important role in eliciting additional dimensions of voter information. It may also be

possible for candidates to learn from other political races, allowing voters to send messages

to a sitting president, for example, by how they vote in midterm elections.

A Appendix: Proofs

Lemma 1 If candidates are committed then, for any pair (xA; xB) of platform policies, there
exists a sub-strategy ��� that constitutes an equilibrium in the voting subgame. If xA 6= xB

then ��� is a sincere belief threshold sub-strategy, with belief threshold T such that T = 0 if

and only if policy platforms xA = �xB are symmetric around zero.

Proof. Given candidate platforms xA 6= xB and a subgame voting strategy �� 2 ��, let

�z (j) � Pr [� (Qi; Si; xA; xB) = jjZ = z] denote the expected fraction of citizens who vote
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for candidate j 2 fA;Bg in state z 2 f�1; 1g:

�z (j) =
X
s=1;�1

Z
q:��(q;s)=j

1

2
(1 + zsq) dF (q) . (5)

By the decomposition property of Poisson random variables (see Myerson, 1998), the numbers

NA and NB of A and B votes in state z are independent Poisson random variables with

means n�z (A) and n�z (B). Accordingly, let  z (a; b) � Pr (NA = a;NB = bjZ = z) denote

the probability in state z of a particular pair (a; b) of vote totals.

 z (a; b) =
e�n�z(A)

a!
[n�z (A)]

a e
�n�z(B)

b!
[n�z (B)]

b . (6)

These probabilities determine the probability �jz (m) � Pr (Nj = N�j +mjZ = z) with which

candidate j 2 fA;Bg wins the election by a margin of exactly m 2 Z votes (where m < 0

denotes losing by jmj votes).

�Az (m) =
P1

k=min(0;�m)  z (k +m; k)

�Bz (m) =
P1

k=min(0;�m)  z (k; k +m) .
(7)

By de�nition, of course, �Az (m) = �Bz (�m).
With this notation, candidate j wins the election in state z with probability Prz (W = j) �

Pr (W = jjZ = z):

Prz (W = j) =
1X
m=1

�jz (m) +
1

2
�jz (0) . (8)

Of particular interest are events in which a single additional vote for one candidate would

be pivotal, reversing the election outcome. Speci�cally, a vote for candidate j 2 fA;Bg is
pivotal when either the candidates tie and j loses the tie-breaking coin toss, or j wins the

coin toss but loses the election by exactly one vote. In terms of �jz (m), the probability of

one of these events occurring is simply Pz;j, de�ned as follows.

Pz;j �
1

2
�jz (0) +

1

2
�jz (�1) . (9)

By the environmental equivalence property of Poisson games (see Myerson, 1998), an

individual citizen from within the game reinterprets NA and NB as the numbers of A and

B votes cast by her peers; by voting herself, she can add one to either total. By vot-

ing for candidate j, she increases that candidate�s probability Pr (W = j) of winning fromP1
m=1 �

j
z (m)+

1
2
�jz (0) to

P1
m=0 �

j
z (m)+

1
2
�jz (�1), a di¤erence of 12�

j
z (0)+

1
2
�jz (�1) = Pz;j.

The bene�t of her vote depends on the utility di¤erence between the two policies, which can

be written as follows,

u (xB; z)� u (xA; z) = � (xB � z)2 + (xA � z)2

= 2 (xB � xA) (z � �x) ,
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where �x � xA+xB
2

is the midpoint between the two policies. Given platforms xA and xB,

therefore, a citizen with information quality q 2 [0; 1] and signal s 2 f�1; 1g expects the
(possibly negative) di¤erence in utility �AB (q; s) from voting for B instead of A to be as

follows,

�AB (q; s) =
X
z=1;�1

f[u (xB; z)� u (xA; z)]Pz;B � [u (xA; z)� u (xB; z)]Pz;Ag
1

2
(1 + zqs)

=
X
z=1;�1

f[u (xB; z)� u (xA; z)] [Pz;B + Pz;A]g
1

2
(1 + zqs)

= 2 (xB � xA) (1� �x) (P1;B + P1;A)
1

2
(1 + qs)

+2 (xB � xA) (�1� �x) (P�1;B + P�1;A)
1

2
(1� qs)

= (xB � xA)

8>>>><>>>>:
qs

"
�x (�P1;B � P1;A + P�1;B + P�1;A)

+ (P1;B + P1;A + P�1;B + P�1;A)

#

�
"

�x (P1;B + P1;A + P�1;B + P�1;A)

+ (�P1;B � P1;A + P�1;B + P�1;A)

#
9>>>>=>>>>; . (10)

�AB (q; s) is positive if and only if qs exceeds TAB, de�ned by (11) below.

TAB =
�x (P1;B + P1;A + P�1;B + P�1;A) + (�P1;B � P1;A + P�1;B + P�1;A)

�x (�P1;B � P1;A + P�1;B + P�1;A) + (P1;B + P1;A + P�1;B + P�1;A)
. (11)

Therefore, ��� is a best response to �� in the voting subgame only if ��� is a sincere belief

threshold strategy.

The best-response belief threshold TAB is a function of Pz and ~Pz, which in turn are

functions of �jz (m),  z (a; b), and �z (j), which ultimately depends on the subgame voting

strategy �� used by other voters. If �� is itself a belief threshold strategy, say with threshold

T , then TAB (T ) can be viewed as a continuous mapping from the compact set [�1; 1] of
possible belief thresholds into itself. Brouwer�s theorem therefore guarantees the existence

of a �xed point T � = TAB (T
�), which can be interpreted as characterizing a belief threshold

sub-strategy ��� that is its own best response� an equilibrium strategy in the voting subgame.

The above logic only applies when xA 6= xB but, of course, if xA = xB then voters of all types

are indi¤erent between election outcomes, so any sub-strategy constitutes an equilibrium in

the subgame. T = 0 is special in that a threshold at zero implies symmetric voting behavior

with respect to signals and candidates, which implies symmetric behavior with respect to

the state variable Z. Thus, �z (A) = ��z (B),  z (a; b) =  �z (b; a), �
j
z (m) = �j�z (�m),

Pz = P�z, and ~Pz = ~P�z, implying that (11) reduces to TAB = �x. T � = 0 is therefore a

�xed point of TAB (T ) if and only if �x = 0 or, equivalently, if policy outcomes xA = �xB are
symmetric around zero.
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Theorem 1 (Median Voter Theorem) If candidates are commited and o¢ ce-motivated
then (x�A; x

�
B; �

�) is a symmetric perfect Bayesian equilibrium only if x�A = x�B = 0 and �
�

is almost everywhere equivalent to a sincere belief threshold strategy, with threshold function

T � such that T � (0; 0) = 0. Furthermore, such an equilibrium exists.

Proof. As the proof of Lemma 1 shows, the best response to any symmetric voting strategy
(given candidate platform strategies xA 6= xB), is a belief threshold strategy, characterized

by the belief threshold TAB de�ned in (11). In terms of the probabilities Pz � 1
2
Pz;A+

1
2
Pz;B

of being pivotal in state z and the midpoint �x = xA+xB
2

between candidate platforms, this

can be rewritten as

TAB =
�x (P1 + P�1) + (�P1 + P�1)

�x (�P1 + P�1) + (P1 + P�1)
. (12)

The proof of Lemma 1 emphasizes that, since in particular the best response to a belief

threshold strategy is another belief threshold strategy, TAB (T ) can be reinterpreted as a

function from an arbitrary belief threshold to a best-response belief threshold, holding can-

didate platforms �xed. With this formulation, Lemma 1 also points out that TAB (0) = 0 if

and only if �x = 0, which occurs when candidate platforms are symmetric around zero.

The �rst step of this proof is to show for the case of symmetric platform strategies (i.e.

�x = 0) that zero lies between T and TAB (T ). That is, one of the following must be true:

either T < 0 < TAB (T ), T = 0 = TAB (T ), or T > 0 > TAB (T ). To see this, consider the

case of T > 0. (The case of T < 0 follows symmetric reasoning.) In that case, citizens with

information quality Qi < T all vote for candidate A, and citizens with quality Qi > T vote

for the candidate who seems superior (i.e. for Si), reducing expected vote shares �z from (5)

to the following:

��1 (A) = F (T ) +
R 1
T
1+q
2
dF (q) ��1 (B) =

R 1
T
1�q
2
dF (q)

�1 (A) = F (T ) +
R 1
T
1�q
2
dF (q) �1 (B) =

R 1
T
1+q
2
dF (q) .

(13)

From these, it is straightforward to verify that ��1 (A)��1 (B) < �1 (A)�1 (B) , which im-

plies that a k-vote tie is more likely in state 1 than state �1,

 1 (k; k)�  �1 (k; k) =
e��1(A)n��1(B)n [�1 (A)]

k [�1 (B)]
k

k!k!
�
e���1(A)n���1(B)n

�
��1 (A)

�k �
��1 (B)

�k
k!k!

=
e�n

k!k!

n
[�1 (A)�1 (B)]

k �
�
��1 (A)��1 (B)

�ko
> 0,
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implying in turn that a vote is more likely to be pivotal in state 1 than state �1:

P1 � P�1 � 1

2
P1;B +

1

2
P1;A �

1

2
P�1;A �

1

2
P�1;B

=

�
1

2

�
1

2
�A1 (0) +

1

2
�A1 (1)

�
+
1

2

�
1

2
�B1 (0) +

1

2
�B1 (1)

��
�
�
1

2

�
1

2
�A�1 (0) +

1

2
�A�1 (1)

�
+
1

2

�
1

2
�B�1 (0) +

1

2
�B�1 (1)

��
=

1

4

1X
k=0

(
[ 1 (k; k) +  1 (k + 1; k) +  1 (k; k) +  1 (k; k + 1)]

�
�
 �1 (k; k) +  �1 (k + 1; k) +  �1 (k; k) +  �1 (k; k + 1)

� )

=
1

4

1X
k=0

8<:  1 (k; k)
h
1 + p1(A)

k+1
+ 1 + p1(B)

k+1

i
� �1 (k; k)

h
1 + p�1(A)

k+1
+ 1 + p�1(B)

k+1

i 9=;
=

1

4

1X
k=0

�
 1 (k; k)

�
2 +

1

k + 1

�
�  �1 (k; k)

�
2 +

1

k + 1

��
=

1

4

1X
k=0

�
 1 (k; k)�  �1 (k; k)

��
2 +

1

k + 1

�
> 0.

From (12), then, it is easy to see that �x = 0 and T > 0 implies TAB (T ) < 0.

The second step of this proof is to show that, for any voting strategy �, the best-response

belief threshold function TAB (T ) increases with �x (for any value of T ). This can be seen

most easily by di¤erentiating (12) with respect to �x:

@TAB
@�x

=
(P1 + P�1) [�x (�P1 + P�1) + (P1 + P�1)]� [�x (P1 + P�1) + (�P1 + P�1)] (�P1 + P�1)

[�x (�P1 + P�1) + (P1 + P�1)]
2

=
(P1 + P�1)

2 � (�P1 + P�1)
2

[�x (�P1 + P�1) + (P1 + P�1)]
2

=
2P1P�1 + 2P1P�1

[�x (�P1 + P�1) + (P1 + P�1)]
2 > 0.

The result that 0 lies between T and TAB (T ) whenever �x = 0, together with the result that

TAB (T ) increases with �x, implies that T < 0 < TAB (T ) whenever T < 0 < �x, and that

T > 0 > TAB (T ) whenever �x < 0 < T . A �xed point T � = TAB (T
�), therefore, cannot be

negative when �x > 0 or positive when �x < 0; in other words, T � and �x must have the same

sign.

If T � > 0 then it is straightforward to con�rm from (13) that ��1 (A) > �1 (B) and

�1 (A) > ��1 (B) (and  1 (k; k) >  �1 (k; k), as shown above), which implies that Candidate

A�s expected vote share 1
2
��1 (A)+

1
2
�1 (A) exceeds B�s expected vote share (and exceeds

1
2
).

This implies that A is more likely to win by a margin of m votes than to lose by a margin
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of m votes, �
1

2
�A�1 (m) +

1

2
�A1 (m)

�
�
�
1

2
�A�1 (�m) +

1

2
�A1 (�m)

�
=

1

2

1X
k=0

�
 �1 (k +m; k) +  1 (k +m; k)�  �1 (k; k +m)�  1 (k; k +m)

�
=

1

2

1X
k=0

e�n

k! (k +m)!

"
�k+m�1 (A)�k�1 (B) + �k+m1 (A)�k1 (B)

��k�1 (A)�k+m�1 (B)� �k1 (k +m)�k+m1 (B)

#

>
1

2

1X
k=0

e�n

k! (k +m)!

"
�k+m1 (B)�k�1 (B) + �k+m1 (A)�k1 (B)

��k�1 (A)�k+m�1 (B)� �k�1 (B)�
k+m
1 (B)

#

=
1

2

1X
k=0

e�n

k! (k +m)!

�
 1 (k; k)�

m
1 (A)�  �1 (k; k)�

m
�1 (B)

�
> 0,

and is therefore more likely than candidate B to win the election:

Pr (W = A)� Pr (W = B)

=
1

2

" 1X
m=0

�A�1 (m) +
1

2
�A�1 (0)

#
+
1

2

" 1X
m=0

�A1 (m) +
1

2
�A1 (0)

#

�1
2

" 1X
m=0

�B�1 (m) +
1

2
�B�1 (0)

#
+
1

2

" 1X
m=0

�B1 (m) +
1

2
�B1 (0)

#

=
1

2

1X
m=0

�
�A�1 (m)� �B�1 (m)

�
+
1

2

1X
m=0

�
�A1 (m)� �B1 (m)

�
=

1X
m=0

�
1

2
�A�1 (m) +

1

2
�A1 (m)�

1

2
�B�1 (m) +

1

2
�B1 (m)

�
=

1X
m=0

��
1

2
�A�1 (m) +

1

2
�A1 (m)

�
�
�
1

2
�A�1 (�m) +

1

2
�A1 (�m)

��
> 0.

Since Pr (W = A)+Pr (W = B) = 1, Pr (W = A) > Pr (W = B) implies that Pr (W = A) >
1
2
. Similarly, Pr (W = B) > 1

2
if xA and xB are such that T � < 0.

Together, the above results imply that Pr (W = A) > 1
2
if xA = 0 < xB (since �x > 0,

implying that T � > 0) and Pr (W = B) > 1
2
if xA < 0 = xB (since �x < 0, implying

that T � < 0). Thus, either candidate is penalized for deviating from (0; 0), which results

in a tie, so (0; 0; ��) is a symmetric perfect Bayesian equilibrium as long as �� is a belief

threshold strategy (which can be constructed by choosing an equilibrium belief threshold

sub-strategy ��� for each pair of candidate strategies, which is shown to exist by Lemma

1), and candidates win with equal probability in equilibrium (i.e. T � (0; 0) = 0). That no
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equilibrium (xA; xB; �) exists with xA 6= 0 and xB 6= 0 follows because a candidate who loses
with at least 1

2
probability can deviate to 0, and win with greater than 1

2
probability instead.

Theorem 2 (Policy Divergence) If candidates are committed and policy-motivated then
(x�A; x

�
B; �

�) is a symmetric perfect Bayesian equilibrium only if candidate platforms are given

by x�j = E (ZjW = j) � ẑj for j = A;B, with x�A 6= x�B, and the voting strategy �
� is almost

everywhere equivalent to a sincere belief threshold strategy. Furthermore, such an equilibrium

exists, with platforms x�A = �x�B symmetric around zero.

Proof. A candidate�s expected utilityEu (xj; ZjW = j) =
P

z=�1;1
�
� (xj � z)2 Pr (Z = zjW = j)

�
conditional on winning is uniquely maximized at x�j = E (ZjW = j) � ẑj, implying that

(x�A; x
�
B; �

�) is a symmetric perfect Bayesian equilibrium only if x�j = ẑj for j = A;B. If

(x�A; x
�
B; �

�) is a symmetric perfect Bayesian equilibrium and x�A < x�B then, by Lemma 1, the

sub-strategy ��� associated with �� on the equilibrium path is a belief threshold sub-strategy.

This implies that ẑA < ẑB. To see this, �rst note that for a belief threshold strategy, (5)

reduces such that ��1 (A) > �1 (A) and, symmetrically, �1 (B) > ��1 (B):

��1 (A)� �1 (A) =

( h
F (T ) +

R 1
T
qdF (q)

i
�
h
F (T ) +

R 1
T
(1� q)

i
dF (q) > 0 if T � 0R 1

jT j qdF (q)�
R 1
jT j (1� q) dF (q) > 0 if T < 0

.

This implies that �A�1 (m) > �A1 (m) and, symmetrically, �
B
1 (m) > �B�1 (m) for any m � 0,

�A�1 (m)� �A1 (m) =
e�n

(k +m)!k!

�
�k+m�1 (A)�k�1 (B)� �k+m1 (A)�k1 (B)

�
>

e�n

(k +m)!k!

�
�k+m�1 (A)�k1 (B)� �k+m�1 (A)�k1 (B)

�
= 0,

which in turn implies that Pr�1 (W = A) > Pr1 (W = A) and, symmetrically, Prz (W = B) >

Pr�1 (W = B):

Pr�1 (W = A)� Pr1 (W = A) =

" 1X
m=1

�A�1 (m) +
1

2
�A�1 (0)

#
�
" 1X
m=1

�A1 (m) +
1

2
�A1 (0)

#

=
1X
m=1

�
�A�1 (m)� �A1 (m)

�
+
1

2

�
�A�1 (0)� �A1 (0)

�
> 0.
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These results imply, �nally, that ẑA < ẑB:

ẑB � ẑA = E (ZjW = B)� E (ZjW = A)

=
1
2
Pr1 (W = B)� 1

2
Pr�1 (W = B)

1
2
Pr1 (W = B) + 1

2
Pr�1 (W = B)

�
1
2
Pr1 (W = A)� 1

2
Pr�1 (W = A)

1
2
Pr1 (W = A) + 1

2
Pr�1 (W = A)

> 0� 0 = 0.

If candidate platforms xA = �xB are symmetric around zero then, as Lemma 1 states,
T � (xA; xB) = 0 in equilibrium. This implies that (5) simpli�es such that ��1 (A) = �1 (B) =R 1
0
qdF (q) = E (Qi) and �1 (A) = ��1 (B) =

R 1
0
(1� q) dF (q) = 1 � E (Qi), (6) simpli�es

such that  �1 (a; b) =  1 (b; a), (7) simpli�es such that �
A
z (m) = �B�z (m), and (8) simpli�es

such that Prz (W = A) = Pr�z (W = B), so that TAB (xA; xB) = 0 and ẑA = �ẑB:

ẑA =
1
2
Pr1 (W = A)� 1

2
Pr�1 (W = A)

1
2
Pr1 (W = A) + 1

2
Pr�1 (W = A)

=
1
2
Pr�1 (W = B)� 1

2
Pr1 (W = B)

1
2
Pr�1 (W = B) + 1

2
Pr1 (W = B)

= �ẑB.

Thus, if xA = �xB are symmetric around zero then voting is symmetric, leading to symmetric
best response platforms ẑA = �ẑB. Therefore, ẑB can be interpreted as mapping platform
pairs (�xB; xB) that are symmetric around zero into best-response pairs (�ẑB; ẑB) that
are also symmetric around zero. Since such pairs can be completely characterized by the

platform of candidate B, this interpretation makes ẑB a continuous function from [0; 1] into

itself. By Brouwer�s theorem, a �xed point x�B exists; the platform pair (�x�B; x�B), together
with the voting strategy identi�ed in Lemma 1, constitute a symmetric perfect Bayesian

equilibrium.

To see that xA = xB is inconsistent with perfect Bayesian equilibrium, suppose that

xA = xB > 0. (Symmetric reasoning applies to the case of xA = xB < 0 .) Candidate A

can then deviate to xA = �xB, symmetric from his opponent. This increases A�s utility by

the following amount,

1

2
[u (�xB;�1)� u (xB;�1)] Pr�1 (W = A) +

1

2
[u (�xB; 1)� u (xB; 1)] Pr

1
(W = A)

=
1

2
[u (�xB;�1)� u (xB;�1)]

�
Pr
�1
(W = A)� Pr

�1
(W = B)

�
> 0,

because u (�xB;�1) > u (xB;�1) and because (by Lemma 1) the equilibrium sub-strategy

�� associated with xA 6= xB is a belief threshold sub-strategy, implying that Pr�1 (W = A) >

Pr1 (W = B).
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Lemma 2 (Swing Voter�s Curse) If candidates are committed and abstention is allowed
then, for any pair (xA; xB) of platform policies, there exists a sub-strategy ��� 2 �0 that

constitutes an equilibrium in the voting subgame. If xA 6= xB then ��� is a sincere belief

threshold sub-strategy, with belief threshold functions such that T1 < T2. [did I prove this

part?:] Also, T1 = �TB if and only if xA = �xB.

Proof. Given a symmetric voting sub-strategy �� in the subgame associated with candidate
platforms xA < xB, the di¤erence �0B (q; s) in expected utility for a citizen of information

quality q 2 [0; 1] and signal s 2 f�1; 1g between voting for candidate B and abstaining

is given by the following, where �x = xA+xB
2

denotes the midpoint between the two policy

outcomes, as before:

�0B (q; s) =
X
z=1;�1

[u (xB; z)� u (xA; z)]Pz;B
1

2
(1 + zqs)

= 2 (xB � xA) (1� �x)P1;B
1

2
(1 + qs)

+2 (xB � xA) (�1� �x)P�1;B
1

2
(1� qs)

= (xB � xA)

(
qs [�x (�P1;B + P�1;B) + (P1;B + P�1;B)]

� [�x (P�1;B + P1;B) + (�P1;B + P�1;B)]

)
.

A citizen prefers voting B to abstaining if and only if �0B (q; s) is positive; when xA 6= xB,

this occurs if and only if qs exceeds the belief threshold T0B, de�ned by (16) below. Similarly,

a citizen prefers abstaining to voting A if and only if qs is above the threshold TA0, as de�ned

in (14), and prefers voting B to voting A if and only if qs exceeds TAB, de�ned above in (11)

of Lemma 1 and rewritten here as (15).

TA0 =
�x (P1;A + P�1;A)� (P1;A � P�1;A)

��x (P1;A � P�1;A) + (P1;A + P�1;A)
(14)

TAB =
�x (P1;A + P1;B + P�1;B + P�1;A) + (P1;A + P1;B � P�1;B � P�1;A)

�x (P1;A + P1;B � P�1;B � P�1;A) + (P1;A + P1;B + P�1;B + P�1;A)
(15)

T0B =
�x (P�1;B + P1;B) + (�P1;B + P�1;B)

�x (�P1;B + P�1;B) + (P1;B + P�1;B)
. (16)

Setting T �1 = min fTA0; TABg and T �2 � max fT0B; TABg therefore de�nes a sincere belief
threshold sub-strategy ��� that is a best response to ��.

The above reasoning implies that ��� constitutes an equilibrium in the voting subgame

only if it is a sincere belief threshold sub-strategy. Also, the best-response belief thresholds

T �1 and T
�
2 are functions of Pz;j, and therefore implicitly depends on �

j
z (m),  z (a; b), and

�z (j), which ultimately depend on the subgame voting strategy �� used by other voters. If
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�� is itself a sincere belief threshold strategy, say with thresholds T1 � T2, then T �1 (T1; T2)

and T �2 (T1; T2) can be viewed together as a single continuous function from the compact

set f(T1; T2) : 0 � T1 � T2 � 1g of possible belief threshold pairs into itself. With this

interpretation, Brouwer�s theorem guarantees the existence of a �xed point, which is a pair

(T �1 ; T
�
2 ) of belief thresholds such that the associated sincere belief threshold sub-strategy is

its own best response, and thus an equilibrium in the voting subgame.

To see that T �1 < T �2 in equilibrium, consider a sincere belief threshold sub-strategy with

belief thresholds T1 = T2 � T � 0. (A symmetric argument applies if T1 = T2 � 0.)

Following such a sub-strategy, a citizen votes for B (i.e. qs � T ) only if she receives a

high-quality positive signal; citizens with low-quality or negative signals all vote for A (i.e.

qs < T ). Voting probabilities therefore reduce from (5) to the following,

�z (A) = F (T ) +
1

2

Z 1

T

(1� zq) f (q) dq

�z (B) =
1

2

Z 1

T

(1 + zq) f (q) dq,

yielding the following inequalities:

��1 (A)�1 (B) > �1 (A)��1 (B) (17)

��1 (A) > F (T ) + ��1 (B) (18)

F (T ) + �1 (B) > �1 (A) (19)

�1 (A)�1 (B) > ��1 (A)��1 (B) . (20)

These imply that P1;AP�1;B > P1;BP�1;A, which is algebraically equivalent to TA0 < T0B,
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implying that T �1 (T; T ) < T �2 (T; T ). This can be seen as follows:

P�1;BP1;A � P�1;AP1;B

=
1

2

�
�B�1 (0) + �B�1 (1)

� 1
2

�
�A1 (0) + �A1 (1)

�
�1
2

�
�A�1 (0) + �A�1 (1)

� 1
2

�
�B1 (0) + �B1 (1)

�
=

1

4

1X
j=0

1X
k=0

 �1 (j; j)

�
1 +

n��1 (A)

j + 1

�
 1 (k; k)

�
1 +

n�1 (B)

k + 1

�

�1
4

1X
j=0

1X
k=0

 �1 (j; j)

�
1 +

n��1 (B)

j + 1

�
 1 (k; k)

�
1 +

n�1 (A)

k + 1

�

>
1

4

1X
j=0

1X
k=0

 �1 (j; j) 1 (k; k)

�
nF (T )

j + 1
� nF (T )

k + 1

�

=
1X
j=0

1X
k=0

F (T ) e�nn2j+2k+1

4j! (j + 1)!k! (k + 1)!
�j�1 (A)�

j
�1 (B)�

k
1 (A)�

k
1 (B) (k � j)

=
1X
j=0

1X
k=j+1

F (T ) e�nn2j+2k+1

4j! (j + 1)!k! (k + 1)!
�j�1 (A)�

j
�1 (B)�

k
1 (A)�

k
1 (B) (k � j)

�
1X
k=0

1X
j=k+1

F (T ) e�nn2j+2k+1

4j! (j + 1)!k! (k + 1)!
�j�1 (A)�

j
�1 (B)�

k
1 (A)�

k
1 (B) (j � k)

=
1X
j=0

1X
k=j+1

F (T ) e�nn2j+2k+1

4j! (j + 1)!k! (k + 1)!
�j�1 (A)�

j
�1 (B)�

j
1 (A)�

j
1 (B)�h

�k�j1 (A)�k�j1 (B)� �k�j�1 (A)�
k�j
�1 (B)

i
(k � j)

> 0,

where the �rst inequality follows from (17) through (19) and the �nal inequality follows

from (20). Thus, the belief thresholds T1 = T2 = T � 0 do not characterize their own best
response.

Proposition 1 If policy platform commitments are binding, candidates are policy-motivated,
and abstention is allowed then there exists a symmetric perfect Bayesian equilibrium (x�A; x

�
B; �

�)

that satis�es the following conditions:

1. Candidate platforms are given by x�j = E (ZjW = j) � ẑj for j = A;B, and are

symmetric around zero (i.e. x�A = �x�B).
2. �� is a sincere belief threshold strategy, with belief threshold functions T �1 < T �2 that

are symmetric around zero in equilibrium (i.e. T �1 (x
�
A; x

�
B) = �T �2 (x�A; x�B)).
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Proof. The optimality of x�j = ẑj follows from the fact that ẑj � E (ZjW = j) uniquely

maximizes E
�
� (xj � Z)2 jW = j

�
. For any threshold T 2 [0; 1], the sincere belief threshold

sub-strategy characterized by symmetric thresholds (�T; T ) induces symmetry in (5) through
(9) and (14) through (16) so that �z (A) = ��z (B),  z (a; b) =  �z (b; a), �

A
z (m) = �B�z (m),

Prz (W = A) = Pr�z (W = B), Pz;j = P�z;�j, TAB = 0, and TA0 = �T0B. This implies

symmetric expectations ẑA = �ẑB for candidates (as in condition 1) and symmetric best-
response belief thresholds T �1 = �T �2 , as well. In other words, the best response to the

sincere belief threshold sub-strategy characterized by (�T; T ) is the sincere belief threshold
sub-strategy characterized by (�T �2 ; T �2 ). Through its dependence on Pz;j, �jz (m),  z (a; b),
and �z (j), then, T

�
2 can be interpreted as an implicit function of T . Since T �2 (T ) is a

continuous function from the compact set [0; 1] of thresholds into itself, Brouwer�s theo-

rem guarantees the existence of a �xed point T � = T �2 (T
�). The sincere belief threshold

sub-strategy characterized by (�T �; T �) therefore constitutes an equilibrium in the voting

subgame associated with the candidate platforms formulated based on equilibrium expecta-

tions x�A = ẑA = �ẑB = x�B. Lemma 2 guarantees the existence of voting sub-strategies that

constitute equilibria in other voting subgames (o¤ the perfect Bayesian equilibrium path);

the equilibrium voting strategy �� can be constructed by selecting one such equilibrium for

every pair (xA; xB) of candidate platforms; the result in Lemma 2 that all such equilibria are

sincere belief threshold sub-strategies implies that �� is a sincere belief threshold strategy.

Lemma 3 If candidates are responsive and policy-motivated then
h�
x�j ; y

�
j

�
j=A;B

; ��
i
is a

symmetric perfect Bayesian equilibrium only if the following are true:

1. �� is a belief threshold strategy.

2. For all a; b 2 Z+ and for j = A;B, policy functions are given by y�j (a; b) = ẑa;b and

either ẑa+1;b < ẑa;b < ẑa;b+1 or ẑa;b+1 < ẑa;b < ẑa+1;b.

Proof. Condition 2 follows because a candidate�s expected utilityEu (yj; ZjNA = a;NB = b) =P
z=�1;1

�
� (yj � z)2 Pr (Z = zjNA = a;NB = b)

�
conditional on a particular electoral out-

come (NA; NB) = (a; b) is uniquely maximized at y�j = E (ZjNA = a;NB = b) � ẑa;b, imply-

ing that
h�
x�j ; y

�
j

�
j=A;B

; ��
i
is a symmetric perfect Bayesian equilibrium only if y�j (a; b) = ẑa;b

for j = A;B and for all a; b 2 Z+, where ẑa;b is given as follows.

ẑa;b =
(�1) �1 (a; b) + (1) 1 (a; b)

 �1 (a; b) +  1 (a; b)
. (21)

If y�j (a; b) = ẑa;b then, given any symmetric voting strategy � 2 � and its associated sub-
strategy �� 2 �� in the voting subgame associated with any particular pair (xA; xB) of platform
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policies, an individual voter�s best response ��� to (y�A; y
�
B; ��) is given by a belief threshold

sub-strategy. In particular, ��� is a sincere belief threshold sub-strategy if �� is such that

��1 (A) > �1 (A) and �1 (B) > ��1 (B) (as shown below) and is an insincere belief threshold

sub-strategy otherwise (by similar reasoning). This implies that (y�A; y
�
B; ��

�) is a perfect

Bayesian equilibrium in the voting subgame only if ��� is a belief threshold sub-strategy,

implying in turn that
h�
x�j ; y

�
j

�
j=A;B

; ��
i
is a symmetric perfect Bayesian equilibrium only

if �� is a belief threshold strategy.

To see that ��� is a sincere belief threshold sub-strategy when �� is such that ��1 (A) >

�1 (A) and �1 (B) > ��1 (B), �rst note from (6) that  z (a; b+ 1) =
n�z(B)
b+1

 z (a; b) and

 z (a+ 1; b) =
n�z(A)
b+1

 z (a; b), which implies that the expectation ẑa;b of Z given NA = a and

NB = b increases from (21) with an additional B vote,

ẑa;b+1 =
(�1) �1 (a; b+ 1) + (1) 1 (a; b+ 1)

 �1 (a; b+ 1) +  1 (a; b+ 1)

=
(�1)��1 (B) �1 (a; b) + (1)�1 (B) 1 (a; b)

��1 (B) �1 (a; b) + �1 (B) 1 (a; b)

>
(�1)�1 (B) �1 (a; b) + (1)�1 (B) 1 (a; b)

�1 (B) �1 (a; b) + �1 (B) 1 (a; b)

= ẑa;b,

and (by similar reasoning) decreases with each additional A vote (i.e. ẑa+1;b < ẑa;b). Given

that y�j (a; b) = ẑa;b and ẑa+1;b < ẑa;b < ẑa;b+1, the bene�t �AB (q; s) to a citizen of type

(Qi; Si) = (q; s) of voting B instead of A is given simply by the following, instead of (10):

�AB (q; s) =
X
z=1;�1

1X
a=0

1X
b=0

�
� (ẑa;b+1 � z)2 + (ẑa+1;b � z)2

�
 z (a; b)

1

2
(1 + zqs)

=
X
z=1;�1

1X
a=0

1X
b=0

(ẑa;b+1 � ẑa+1;b)��
z � ẑa+1;b + ẑa;b+1

2

�
 z (a; b) (1 + zqs) . (22)

Since �1 � ẑa+1;b < ẑa;b+1 � 1, this is strictly increasing in qs:

d�AB (q; s)

d (qs)
=

X
z=1;�1

1X
a=0

1X
b=0

(ẑa;b+1 � ẑa+1;b)

�
z � ẑa+1;b + ẑa;b+1

2

�
 z (a; b) z

=

1X
a=0

1X
b=0

(ẑa;b+1 � ẑa+1;b)

�
1� ẑa+1;b + ẑa;b+1

2

�
 1 (a; b)

�
1X
a=0

1X
b=0

(ẑa;b+1 � ẑa+1;b)

�
�1� ẑa+1;b + ẑa;b+1

2

�
 �1 (a; b)

> 0.
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Thus, the bene�t �AB (q; s) to voting B instead of A is positive if and only if qs exceeds

some belief threshold T 2 [�1; 1], implying that ��� is a best response to (y�A; y�B; ��) in the
voting subgame associated with (xA; xB) only if it is a sincere belief threshold sub-strategy.

Theorem 3 (Signaling Equilibrium) If candidates are responsive and policy-motivated
then a symmetric perfect Bayesian equilibrium

h�
x�j ; y

�
j

�
j=A;B

; ��
i
exists, which exhibits the

following properties:

1. Candidate platforms are given by x�j = ẑj for j = A;B, and are symmetric around

zero (i.e. x�A = �x�B).
2. �� is a sincere belief threshold strategy, and every sub-strategy ��� associated with ��

is characterized by the belief threshold T � = 0.

3. For all a; b 2 Z+ and for j = A;B, policy functions are given by y�j (a; b) = ẑa;b and

are both monotonic (i.e. ẑa+1;b < ẑa;b < ẑa;b+1) and symmetric around zero (i.e. ẑa;b = �ẑb;a).

Proof. That y�j (a; b) = ẑa;b is optimal for candidate j, given platform and voting strate-

gies, is demonstrated in Lemma 3. If �� is the sincere belief threshold strategy for which

T (xA; xB) = 0 for all platform pairs (xA; xB) 2 [�1; 1]2 then, in the voting subgame associ-
ated with any platform pair, (5) reduces such that ��1 (A) = �1 (B) =

R 1
0
qdF (q) = E (Q)

and �1 (A) = ��1 (B) =
R 1
0
(1� q) dF (q) = 1 � E (Q). It is clear that ��1 (A) > �1 (A)

and �1 (B) > ��1 (B); as Lemma 3 shows, this implies both that ẑa+1;b < ẑa;b < ẑa;b+1

and that the best response to �� in a particular subgame is a sincere belief threshold sub-

strategy. In fact, the symmetry of �� further implies that (6) and (21) reduce such that

 z (a; b) =  �z (b; a) and ẑa;b = �ẑb;a. This implies that a citizen for whom qs = 0 is exactly
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indi¤erent between voting A and voting B in response to
h�
xj; y

�
j

�
j=A;B

; ��
i
:

�AB (0; s) =
X
z=1;�1

1X
a=0

1X
b=a+1

(ẑa;b+1 � ẑa+1;b)

�
z � ẑa+1;b + ẑa;b+1

2

�
 z (a; b)

+
X
z=1;�1

1X
b=0

1X
a=b+1

(ẑa;b+1 � ẑa+1;b)

�
z � ẑa+1;b + ẑa;b+1

2

�
 z (a; b)

=
X
z=1;�1

1X
a=0

1X
b=a+1

(ẑa;b+1 � ẑa+1;b)

�
z � ẑa+1;b + ẑa;b+1

2

�
 z (a; b)

+
X
z=1;�1

1X
b=0

1X
a=b+1

(�ẑb+1;a + ẑb;a+1)

�
z � �ẑb;a+1 � ẑb+1;a

2

�
 �z (b; a)

=
X
z=1;�1

1X
a=0

1X
b=a+1

(ẑa;b+1 � ẑa+1;b)

�
z � ẑa+1;b + ẑa;b+1

2

�
 z (a; b)

�
X
~z=�1;1

1X
c=0

1X
d=c+1

(�ẑc+1;d + ẑc;d+1)

�
~z � ẑc;d+1ẑc+1;d

2

�
 ~z (c; d)

= 0.

Thus, in any voting subgame, the belief threshold characterizing the best response to ��

is simply T (xA; xB) = 0. In other words, �� induces an equilibrium in every voting sub-

game. Since the equilibrium conditions for voting and policy subgames do not vary with

the campaign platform pair adopted by candidates at the beginning of the game, any choice

of platform policies can be consistent with equilibrium, including the platforms described in

condition 1. It is straightforward to con�rm that  z (a; b) =  �z (b; a) implies ẑA = �ẑB,
as claimed.

Theorem 4 If candidates A, B, C, and D are responsive and abstention is allowed then

there exists a symmetric perfect Bayesian equilibrium
h�
x�j ; y

�
j

�
j=A;B;C;D

; ��
i
, which exhibits

the following properties:

1. Candidate platforms are given by x�j = ẑj for j = A;B;C;D, and are symmetric

around zero (i.e. x�A = �x�D, x�B = �x�C).
2. �� is a sincere belief threshold strategy, and every sub-strategy ��� associated with ��

is characterized by the same symmetric quadruple (�T �; 0; T �) of belief thresholds, where
0 < T � < 1.

3. For all a; b; c; d 2 Z+, policy functions are given by y�j (a; b; c; d) = ẑa;b;c;d for j =

A;B;C;D and ẑa+1;b;c;d < ẑa;b+1;c;d < ẑa;b;c;d < ẑa;b;c+1;d < ẑa;b;c;d+1.

Proof. That y�j (a; b; c; d) = ẑa;b;c;d is optimal for a winning candidate follows from (2),

letting 
 = \j2fA;B;C;Dg (Nj = j) re�ect the vote totals for each of the four candidates.
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When voting follows a sincere belief threshold sub-strategy �� 2 ��00, logic identical to that of
Lemma 3 shows that policy outcomes satisfy ẑa+1;b;c;d < ẑa;b+1;c;d < ẑa;b;c+1;d < ẑa;b;c;d+1. In

responding to ��, let �jj0 (q; s) denote the expected bene�t to an individual of type (q; s) of

voting for candidate j0 instead of candidate j, where j; j0 2 fA;B;C;Dg. For example, the
bene�t �CD (q; s) of voting for candidate D instead of candidate C is given by

�CD (q; s) =
X
z=1;�1

X
(a;b;c;d)2Z4+

2 (ẑa;b;c;d+1 � ẑa;b;c+1;d)�

�
z � ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 z (a; b; c; d)

1

2
(1 + zqs) .

Since ẑa;b;c;d is bounded between �1 and 1 and ẑa;b;c+1;d < ẑa;b;c;d+1, �CD (q; s) is increasing

in qs:

d�CD

d (qs)
=

X
(a;b;c;d)2Z4+

(ẑa;b;c;d+1 � ẑa;b;c+1;d)�

[

�
1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 1 (a; b; c; d)

�
�
�1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 �1 (a; b; c; d)] > 0.

By a similar derivation, �jj0 (q; s) is increasing in qs whenever j precedes j0 in the ordering

fA;B;C;Dg. This implies the existence of thresholds TAB � TBC � TCD characterizing a

sincere belief threshold sub-strategy ��� 2 ��00 that is a best response to ��.
If the belief thresholds that characterize �� are symmetric around zero (i.e. if T1 = �T3

and T2 = 0) then (5) and (6) reduce such that �z (A) = ��z (D), �z (B) = ��z (C), and

 z (a; b; c; d) =  �z (d; c; b; a), so that expectations ẑa;b;c;d = �ẑd;c;b;a are symmetric as well.
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The symmetry of ẑa;b;c;d implies that voting bene�ts are symmetric as well. For example,

�CD (q; s) =
X

(a;b;c;d)2Z4+

(ẑa;b;c;d+1 � ẑa;b;c+1;d)�

24 �
1� ẑa;b;c+1;d+ẑa;b;c;d+1

2

�
 1 (a; b; c; d)

1
2
(1 + qs)

+
�
�1� ẑa;b;c+1;d+ẑa;b;c;d+1

2

�
 �1 (a; b; c; d)

1
2
(1� qs)

35
=

X
(a;b;c;d)2Z4+

(�ẑd+1;c;b;a + ẑd;c+1;b;a)�

24 �
1� �ẑd+1;c;b;a�ẑd;c+1;b;a

2

�
 �1 (d; c; b; a)

1
2
(1 + qs)

+
�
�1� �ẑd;c+1;b;a�ẑd+1;c;b;a

2

�
 1 (d; c; b; a)

1
2
(1� qs)

35
=

X
(d;c;b;a)2Z4+

(ẑa;b+1;c;d � ẑa+1;b;c;d)�

24 �
1 +

ẑa+1;b;c;d+ẑa;b+1;c;d
2

�
 �1 (a; b; c; d)

1
2
(1 + qs)

+
�
�1 + ẑa+1;b;c;d+ẑa;b+1;c;d

2

�
 1 (a; b; c; d)

1
2
(1� qs)

35
= ��AB (q;�s) .

Similarly, �BC (q; s) = ��BC (q;�s). This symmetry implies that belief thresholds TAB =
�TCD and TBC = 0 are symmetric around zero. In other words, the sincere belief threshold
strategy characterized by (�T3; 0; T3) is the sincere belief threshold strategy characterized
by (�TCD; 0; TCD). Therefore, TCD can be viewed continuous function from the compact

interval [0; 1] of possible thresholds into itself. Interpreted this way, Brouwer�s theorem

guarantees the existence of a �xed point T �, such that the sincere belief threshold sub-

strategy characterized by (�T �; 0; T �) is its own best response, and therefore an equilibrium
in the voting subgame.

To see that T � < 1, observe that a perfectly informed citizen strictly prefers to vote for

the most extreme candidate available,

�CD (1; 1) =
X
z=1;�1

X
(a;b;c;d)2Z4+

2 (ẑa;b;c;d+1 � ẑa;b;c+1;d)�

�
z � ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 z (a; b; c; d)

1

2
(1 + z)

=
X

(a;b;c;d)2Z4+

(ẑa;b;c;d+1 � ẑa;b;c+1;d)�

�
1� ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 1 (a; b; c; d) (1 + 1) > 0;

by continuity, so do su¢ ciently informed citizens. To see that T � > 0, observe that a
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perfectly uninformed citizen strictly prefers to vote for the least extreme candidate available,

�CD (0; s) =
X
z=1;�1

X
(a;b;c;d)2Z4+

2 (ẑa;b;c;d+1 � ẑa;b;c+1;d)�

�
z � ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 z (a; b; c; d)

1

2

= �
X

(a;b;c;d)2Z4+

(ẑa;b;c;d+1 � ẑa;b;c+1;d)

�
ẑa;b;c+1;d + ẑa;b;c;d+1

2

�
 1 (a; b; c; d) < 0;

by continuity, so do su¢ ciently uninformed citizens.

Since the best response thresholds do not depend on the platform pair (xA; xB), there

also exists a sincere belief threshold strategy �� that induces the same equilibrium belief

threshold sub-strategy in every subgame.
h�
x�j ; y

�
j

�
j=A;B

; ��
i
is thus a perfect Bayesian

equilibrium for any pair (x�A; x
�
B) of candidate platforms, and in particular for the platforms

x�j = ẑj speci�ed in condition 1. The symmetry of  z (a; b; c; d) =  �z (d; c; b; a) implies that

ẑA = �ẑB, as claimed.

Theorem 5 (Signaling Voter�s Curse) If candidates are responsive and policy-motivated
and voter abstention is allowed then there exists a symmetric perfect Bayesian equilibriumh�
x�j ; y

�
j

�
j=A;B

; ��
i
, which exhibits the following properties:

1. Candidate platforms are given by x�j = ẑj for j = A;B, and are symmetric around

zero (i.e. x�A = �x�B).
2. �� is a sincere belief threshold strategy, and every sub-strategy ��� associated with �� is

characterized by the same symmetric pair (�T �; T �) of belief thresholds, where 0 < T � < 1.

3. For all a; b 2 Z+, policy functions are given by y�j (a; b) = ẑa;b for j = A;B, and

ẑa+1;b < ẑa;b < ẑa;b+1.

Proof. That y�j (a; b) = ẑa;b is optimal for a winning candidate follows from the fact

Eu
�
� (yj � Z)2 jNA = a;NB = b

�
is uniquely maximized at y�j = E (ZjNA = a;NB = b) �

ẑa;b. Lemma 3 shows that policy outcomes ẑa+1;b < ẑa;b < ẑa;b+1 are decreasing in the

number of A votes and increasing in the number of B votes, in the subgame associated with

candidate platforms (xA; xB) for which voting follows a sincere belief threshold sub-strategy

��. In such a subgame, the expected bene�t �0B (q; s) to an individual of type (q; s) of

voting B instead of abstaining is given by the following:

�0B (q; s) =
X
z=1;�1

1X
a=0

1X
b=0

�
� (ẑa;b+1 � z)2 + (ẑa;b � z)2

�
 z (a; b)

1

2
(1 + zqs)

=
X
z=1;�1

1X
a=0

1X
b=0

(ẑa;b+1 � ẑa;b)

�
z � ẑa;b + ẑa;b+1

2

�
 z (a; b) (1 + zqs) .
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Since ẑa+1;b < ẑa;b < ẑa;b+1 and ẑa;b+1 and ẑa;b are bounded between �1 and 1, �0B (q; s) is

strictly increasing in qs,

d�0B (q; s)

d (qs)
=

X
z=1;�1

1X
a=0

1X
b=0

(ẑa;b+1 � ẑa;b)

�
z � ẑa;b + ẑa;b+1

2

�
 z (a; b) z

=
1X
a=0

1X
b=0

(ẑa;b+1 � ẑa;b)

�
1� ẑa;b + ẑa;b+1

2

�
 1 (a; b)

�
1X
a=0

1X
b=0

(ẑa;b+1 � ẑa;b)

�
�1� ẑa;b + ẑa;b+1

2

�
 �1 (a; b) > 0,

implying the existence of a belief threshold T0B such that a citizen prefers voting for B to

abstaining if and only if qs � T0B. By similar reasoning, there exist thresholds TA0 and TAB
such that the bene�ts �A0 (q; s) or �AB (q; s) of abstaining or voting B instead of voting A

are positive if and only if qs � TA0 or qs � TAB, respectively. Setting T �1 = min fTAB; TA0g
and T �2 = max fTAB; T0Bg then de�nes a sincere belief threshold sub-strategy that is a best
response to ��.

If the belief thresholds that characterize �� are symmetric around zero (i.e. if T1 =

�T2) then (5) and (6) reduce such that �z (A) = ��z (B) and  z (a; b) =  �z (b; a), so

that expectations ẑa;b = �ẑb;a are symmetric as well. This implies symmetric di¤erences

�AB (q;�s) = ��AB (q; s) and �0B (q;�s) = �A0 (q; s) in expected utility and therefore

thresholds TAB = 0 and TA0 = �T0B,

�0B (q;�s) =
X
z=1;�1

1X
a=0

1X
b=0

�
� (ẑa;b+1 � z)2 + (ẑa;b � z)2

�
 � (a; bjz)

1

2
(1� zsq)

=
X
~z=�1;1

1X
a=0

1X
b=0

h
�
�
�y�b+1;a + ~z

�2
+
�
�y�b;a + ~z

�2i�
 � (b; aj~z)

1

2
(1 + ~zsq)

=
X
~z=�1;1

1X
b=0

1X
a=0

�
� (ẑa+1;b � ~z)2 + (ẑa;b � ~z)2

�
 � (a; bj~z)

1

2
(1 + ~zsq)

= �A0 (q; s) ,

so that the belief thresholds T �1 = �T �2 characterizing the best response to �� are symmetric
around zero as well. In other words, the best response to the sincere belief threshold sub-

strategy characterized by (�T; T ) is the sincere belief threshold sub-strategy characterized
by (�T �2 ; T �2 ). Therefore, T �2 (T ) can be viewed as a continuous function from the compact

set T 2 [0; 1] of possible thresholds into itself. Interpreted this way, Brouwer�s theorem

guarantees the existence of a �xed point T � = T �2 (T
�) such that the sincere belief threshold
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sub-strategy characterized by (�T �; T �) is its own best response, and therefore an equilibrium
in the voting subgame. Since the best response thresholds do not depend on the platform

pair (xA; xB), there also exists a sincere belief threshold strategy �� that induces the same

equilibrium belief threshold sub-strategy in every subgame.
h�
x�j ; y

�
j

�
j=A;B

; ��
i
is thus a

perfect Bayesian equilibrium for any pair (x�A; x
�
B) of candidate platforms, and in particular

for the platforms x�j = ẑj speci�ed in condition 1. The symmetry of  z implies that

ẑA = �ẑB, as claimed.
That T � < 1 follows because a perfectly-informed citizen strictly prefers to vote:

�0B (1; 1) =
X
z=1;�1

1X
a=0

1X
b=0

(ẑa;b+1 � ẑa;b)

�
z � ẑa;b + ẑa;b+1

2

�
 � (a; bjz)

1

2
(1 + z)

=
1X
a=0

1X
b=0

(ẑa;b+1 � ẑa;b)

�
1� ẑa;b + ẑa;b+1

2

�
 � (a; bjz) > 0.

It remains to show that T � > 0, which implies that a positive fraction of the electorate

abstain in equilibrium. To see this, note �rst that an individuals�utility u (Y; Z) depends

on both the unknown state of the world Z as well as the unknown policy outcome Y .

Given the equilibrium policy functions speci�ed in condition 3, however, the policy outcome

Y = y (NA; NB) is a deterministic function of the numbers NA and NB of votes for either

candidate. By the environmental equivalence property of Poisson games (see Myerson,

1998), an individual citizen from within the game reinterprets NA and NB as the numbers

of A and B votes cast by her peers; by voting herself, she can add one to either total. By

voting A, abstaining, or voting B, therefore, a citizen e¤ectively chooses whether the policy

function y should be ẑa+1;b, ẑa;b, or ẑa;b+1, respectively. Of these, a perfectly uninformed

citizen (i.e. Qi = 0) prefers ẑa;b because her posterior beliefs about Z are the same as her

prior, so that expected utility reduces as follows:

EZ (ENA;NB fu [y (NA; NB) ; Z] jZg jq; s) = EZ (ENA;NB fu [y (NA; NB) ; Z] jZg)
= ENA;NB (EZ fu [y (NA; NB) ; Z] jNA; NBg) .

The inner component EZ fu [y (NA; NB) ; Z] jNA; NBg of this expression is identical to can-
didates�objective function, and is therefore maximized at y� (NA = a;NB = b) = ẑa;b. Since

ẑa;b maximizes expected utility for every pair (NA; NB) of vote totals, it also maximizes

the expectation ENA;NB (EZ fu [y (NA; NB) ; Z] jNA; NBg). Thus, an uninformed citizen�

and, by continuity, citizens who are su¢ ciently uninformed� prefers to abstain from voting,

implying that T � > 0 in equilibrium, as claimed.

Proposition 4 Let N = 2 be known and let F be uniform on [0; 1]. If candidates are re-

sponsive then (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B) is a perfect Bayesian equilibrium, where x

�
B = �x�A �
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0:5242, y�B (0; 0) = y�A (0; 0) = 0, y
�
B (0; 1) = �y�A (1; 0) � 0:7907, and y�B (0; 2) = �y�A (2; 0) �

0:9730, and where ��T �;T � is a symmetric belief threshold strategy with T � � 0:5814. In this
equilibrium, expected turnout is approximately 42%.

Proof. Given a symmetric belief threshold ��T;T and conditional on the state, an individual
votes with the following probabilities,

���T;T (Aj � 1) = ���T;T (Bj1) =
Z 1

T

1

2
(1 + q) dq

=
1

2

�
1� T +

1� T 2

2

�
=
1

4
(1� T ) (T + 3)

and

���T;T (Aj1) = ���T;T (Bj � 1) =
Z 1

T

1

2
(1� q) dq

=
1

2

�
1� T � 1� T 2

2

�
=
1

4
(1� T )2 ,

and abstains with probability ���T;T (0jz) =
R T
0
dq = T . Given any voting outcome (a; b),

these probabilities determine the winning candidate�s expectation ẑa;b of Z. As Lemma 3

states, ẑa;b is the winning candidate�s optimal policy response to (a; b).

If no one votes, or if the two citizens vote for opposite candidates, then the election

winner is determined by a coin toss, and implements the zero policy:

ẑ00 =
��2��T;T (0j � 1) + �

2
��T;T

(0j1)
�2��T;T (0j � 1) + �

2
��T;T

(0j1)
= 0

ẑ11 =
�2���T;T (Aj � 1)���T;T (Bj � 1) + 2���T;T (Aj1)���T;T (Bj1)
2���T;T (Aj � 1)���T;T (Bj � 1) + 2���T;T (Aj1)���T;T (Bj1)

= 0.

If both citizens vote B then candidate B wins the election and implements

ẑ02 =
��2��T;T (Bj � 1) + �

2
��T;T

(Bj1)
�2��T;T (Bj � 1) + �

2
��T;T

(Bj1)

=
� 1
16
(1� T )4 + 1

16
(1� T )2 (T + 3)2

1
16
(1� T )4 + 1

16
(1� T )2 (T + 3)2

=
4T + 4

T 2 + 2T + 5
;

if one citizen votes B while the other abstains then candidate B wins and implements

ẑ01 =
�2���T;T (0j � 1)���T;T (Bj � 1) + 2���T;T (0j1)���T;T (Bj1)
2���T;T (0j � 1)���T;T (Bj � 1) + 2���T;T (0j1)���T;T (Bj1)

=
����T;T (Bj � 1) + ���T;T (Bj1)
���T;T (Bj � 1) + ���T;T (Bj1)

=
� (1� T )2 + (1� T ) (T + 3)

(1� T )2 + (1� T ) (T + 3)
=
T + 1

2
.
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Symmetrically, ẑ20 = �ẑ02 and ẑ10 = �ẑ01.
Given these values, the bene�t �0B for an individual of type (q; s) is given by the follow-

ing,

�0B (q;��T;T ) = (ẑ11 � ẑ10)

" �
1� ẑ11+ẑ10

2

�
(1 + qs)���T;T (Aj1)

+
�
�1� ẑ11+ẑ10

2

�
(1� qs)���T;T (Aj � 1)

#

+(ẑ01 � ẑ00)

" �
1� ẑ01+ẑ00

2

�
(1 + qs)���T;T (0j1)

+
�
�1� ẑ01+ẑ00

2

�
(1� qs)���T;T (0j � 1)

#

+(ẑ02 � ẑ01)

" �
1� ẑ02+ẑ01

2

�
(1 + qs)���T;T (Bj1)

+
�
�1� ẑ02+ẑ01

2

�
(1� qs)���T;T (Bj1)

#
.

Solving �0B (T ;��T;T ) = 0 numerically yields T � � 0:58, implying that ��0:58;0:58 (together
with candidate platforms and y�j (a; b) = ẑa;b) is a perfect Bayesian equilibrium. Evaluating

the formulas above for T � � 0:58 yields ẑ01 = �ẑ10 � 0:7907, and ẑ02 = �ẑ20 � 0:9730.

Expected turnout is 1� T � � 0:42.
In this equilibrium, candidate B wins with probability

Pr (W = Bj � 1) =
h
�2��T�;T� (Bj � 1) + 2���T�;T� (0j � 1)���T�;T� (Bj � 1)

i
+
1

2

h
�2��T�;T� (0j � 1) + 2���T�;T� (Aj � 1)���T�;T� (Bj � 1)

i
=

1

16
(1� T �)4 + 2T �

1

4
(1� T �)2

+
1

2

�
T �2 + 2

1

4
(1� T �) (T � + 3)

1

4
(1� T �)2

�
� 0:2379

in state �1 and probability

Pr (W = Bj1) =
h
�2��T�;T� (Bj1) + 2���T�;T� (0j1)���T�;T� (Bj1)

i
+
1

2

h
�2��T�;T� (0j1) + 2���T�;T� (Aj1)���T�;T� (Bj1)

i
=

1

16
(1� T �)2 (T � + 3)2 + 2T �

1

4
(1� T �) (T � + 3)

+
1

2

�
T �2 + 2

1

4
(1� T �)2

1

4
(1� T �) (T � + 3)

�
� 0:7621

in state 1. Conditional only on winning, therefore, candidate B�s expectation of Z is given

by

ẑB =
�Pr (W = Bj � 1) + Pr (W = Bj1)
Pr (W = Bj � 1) + Pr (W = Bj1)

� 0:5242
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and candidate A�s expectation is symmetric ẑA = �ẑB.
In equilibrium, four out of �ve policy outcomes (i.e. �0:7907 and �0:9730, but not 0)

are more extreme than the campaign platforms x�j = ẑj � �0:5242. The probability of a tie
occurring in equilibrium is

1

2

h
�2��T;T (0j � 1) + 2���T;T (Aj � 1)���T;T (Bj � 1)

i
+
1

2

h
�2��T;T (0j1) + 2���T;T (Aj1)���T;T (Bj1)

i
=

1

2

�
T 2 + 2

1

4
(1� T ) (T + 3)

1

4
(1� T )2

�
+
1

2

�
T 2 + 2

1

4
(1� T )2

1

4
(1� T ) (T + 3)

�
= T 2 +

1

8
(T + 3) (1� T )3 � 0:3696.

Proposition 5 Let N = 1 be known and let F be uniform on [0; 1]. If candidates are respon-

sive then there is a unique belief threshold strategy ��T �;T � such that (x�A; x
�
B; ��T �;T � ; y

�
A; y

�
B)

is a symmetric perfect Bayesian equilibrium. In this equilibrium, T � = 1
3
, x�B = �x�A � 0:44,

y�j (0; 0) = 0, and y
�
j (0; 1) = �y�j (1; 0) � 0:67, and expected turnout is approximately 67%.

Proof. With only a single citizen, there are only three possible voting outcomes: (1; 0), (0; 0),
and (0; 1). As in Proposition 4, a symmetric belief threshold voting strategy ��T;T leads

the citizen to vote with probabilities ���T;T (Aj � 1) = ���T;T (Bj1) =
1
4
(1� T ) (T + 3) and

���T;T (Aj1) = ���T;T (Bj � 1) =
1
4
(1� T )2, and to abstain with probability ���T;T (0j1) =

���T;T (0j � 1) = F (T ) = T . The winning candidate�s expectation ẑa;b of Z is therefore

given by the following:

ẑ0;0 =
�T + T

T + T
= 0

ẑ0;1 = �ẑ1;0 =
�1
4
(1� T )2 + 1

4
(1� T ) (T + 3)

1
4
(1� T )2 + 1

4
(1� T ) (T + 3)

=
T + 1

2
.

Conditional only on winning, his expectation ẑj is given by

ẑB = �ẑA =
�
�
1
4
(1� T )2 + 1

2
T
�
+
�
1
4
(1� T ) (T + 3) + 1

2
T
��

1
4
(1� T )2 + 1

2
T
�
+
�
1
4
(1� T ) (T + 3) + 1

2
T
�

=
� (1� T )2 + (1� T ) (T + 3)

(1� T )2 + (1� T ) (T + 3) + 4T
=
1� T 2

2
.
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As Lemma 3 states, the winning candidate prefers to implement his expectation ẑa;b of

the state. Anticipating such a policy response, the citizen perceives the bene�t �0B (q; s)

of voting B rather than abstaining, given her type (q; s):

�0B (q; s) = (y0;1 � y0;0)

" �
1� y0;0+y0;1

2

�
(1 + qs)

+
�
�1� y0;0+y0;1

2

�
(1� qs)

#
= 2y0;1

�
qs� y0;1

2

�
,

which is positive if and only if qs � y0;1
2
. Thus, the optimal voting response to (y1;0; y0;0; y0;1)

is a quality threshold strategy with T = y0;1
2
. Solving T = y0;1

2
and y0;1 = T+1

2
simultaneously

yields a unique solution at T � = 1
3
, y�0;1 =

2
3
� 0:67 (and, by symmetry, y�1;0 = �2

3
), implying

that the citizen votes with probability 1�F (T �) = 1�T � = 2
3
� 0:67. If candidate platforms

re�ect ex ante expectations of the state, as in Lemma 2, then x�B = �x�A = 4
9
� 0:44.

In equilibrium, two out of three policy outcomes (i.e. �0:67, but not 0) are more extreme
than the campaign platforms (i.e. x�j = ẑj � �0:5242). The probability of a tie occurring

in equilibrium is 1
2
���T;T (0j1) +

1
2
���T;T (0j � 1) = T = 1

3
.

Proposition 5 Let N = 1 be known, and let F be uniform on [0; 1]. If candidates A, B,

C, and D are responsive then (x�; ��; y�) is a perfect Bayesian equilibrium for the symmetric

belief threshold voting strategy �� = ��:6;�:2;:2;:6, the vector y� =
�
y�j
�
j2fA;B;C;Dg of policy

responses de�ned by y�j (0; 0; 0; 1) = �y�j (1; 0; 0; 0) = 0:8, y�j (0; 0; 1; 0) = �y�j (0; 1; 0; 0) =
0:4, y�j (0; 0; 0; 0) = 0, and any vector x

� =
�
x�j
�
j2fA;B;C;Dg of candidate platforms. In this

equilibrium, expected voter turnout is 80%.

Proof. According to Lemma 3, a responsive candidate�s optimal response to vote totals
(a; b; c; d) is to implement his expectation ẑa;b;c;d of Z. If the citizen votes according to the

symmetric belief threshold strategy ��T2;�T1;T1;T2 then the winning candidate�s expectations

are as follows:

ẑ1;0;0;0 = E (Zjqs 2 [�1;�T2]) = �
T1 + T2
2

ẑ0;1;0;0 = E (Zjqs 2 [�T2;�T1]) = �
T2 + 1

2
ẑ0;0;0;0 = E (Zjqs 2 [�T1; T1]) = 0

ẑ0;0;1;0 = E (Zjqs 2 [T1; T2]) =
T1 + T2
2

ẑ0;0;0;1 = E (Zjqs 2 [T2; 1]) =
T2 + 1

2
.

The bene�t �0C (q; s) to a citizen of type (q; s) of voting for C instead of abstaining is
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therefore given by

�0C (q; s) =
X
z=1;�1

2 (ẑ0;0;1;0 � 0)
�
z � 0 + ẑ0;0;1;0

2

�
1

2
(1 + zqs)

= 2ẑ0;0;1;0

�
qs� ẑ0;0;1;0

2

�
,

which is positive if and only if qs � ẑ0;0;1;0
2

� T1 (��T2;�T1;T1;T2). Similarly, the bene�t

�CD (q; s) of voting D instead of C is given by

�CD (q; s) =
X
z=1;�1

2 (ẑ0;0;0;1 � ẑ0;0;1;0)

�
z � ẑ0;0;1;0 + ẑ0;0;0;1

2

�
1

2
(1 + zqs)

= (ẑ0;0;0;1 � ẑ0;0;1;0)

�
qs� ẑ0;0;1;0 + ẑ0;0;0;1

2

�
,

which is positive if and only if q � ẑ0;0;1;0+ẑ0;0;0;1
2

� T2 (��T2;�T1;T1;T2). Solving T1 =
ẑ0;0;1;0
2
,

T2 =
ẑ0;0;1;0+ẑ0;0;0;1

2
, ẑ0;0;1;0 = T1+T2

2
, and ẑ0;0;0;1 =

T2+1
2

simultaneously yields T �1 = 0:2,

T �2 = 0:6, ẑ0;0;1;0 = 0:4, ẑ0;0;0;1 = 0:8. Abstention is given by 1 � F (T �1 ) = T �1 = 0:2, so

turnout is 80%.

Theorem 6 (Jury Theorem) 1. If candidates are committed and, for a population size
parameter n, Eu (Y; Z) is maximized by the symmetric voting sub-strategy (���)n 2 ��, then
(a) (���)n constitutes an equilibrium in the voting subgame, and (b) the associated sequence of

equilibrium policy outcomes
�
�Y ��

n
approaches p limk!1

��
�Y ��

n
jZ
�
=

(
min (xA; xB) if Z = �1
max (xA; xB) if Z = 1

.

2. If candidates are committed and policy-motivated and, for a population size parameter

n, Eu (Y; Z) is maximized by the strategy combination
h�
x�j
�
j=A;B

; ��
i
n
2 [�1; 1]2 � �,

then (a)
h�
x�j
�
j=A;B

; ��
i
n
constitutes a perfect Bayesian equilibrium and (b) the associated

sequence of equilibrium policy outcomes Y �
n approaches p limn!1 (Y

�
n jZ) = Z.

3. If candidates are responsive and policy-motivated and, for a population size parameter

n, Eu (Y; Z) is maximized by the strategy combination
h�
x�j ; y

�
j

�
j=A;B

; ��
i
nk
2 ([�1; 1]��)2�

� , then (a)
h�
x�j ; y

�
j

�
j=A;B

; ��
i
n
constitutes a perfect Bayesian equilibrium and (b) the as-

sociated sequence of equilibrium policy outcomes Y �
n approaches p limn!1 (Y

�
n jZ) = Z.

4. Claim 3 remains true if the number of candidates is increased.

5. Claims 1 through 4 remain true if abstention is allowed.

Proof. If candidates are committed then the voting subgame associated with a particular
pair (xA; xB) of platform policies is a symmetric common interest game, meaning that citizens

have identical preferences and face identical strategy options. In settings such as this,
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McLennan (1998) demonstrates that the strategy pro�le that maximizes the common utility

function constitutes an equilibrium strategy pro�le, as does the symmetric strategy that

maximizes utility. The latter of these results establishes claim 1(a), since (���)n is de�ned

to be optimal in the set �� of symmetric sub-strategies (which are strategies in the voting

subgame).

If candidates are policy-motivated then they share the same utility function that voters

seek to maximize. Claims 2(a) and 3(a) therefore follow from an extension of McLennan�s

logic: the strategy combination that jointly maximizes Eu (Y; Z) constitutes an equilibrium,

whether in the case of committed or responsive candidates, because deviations by candidates

(holding voting behavior �xed) cannot increase Eu (Y; Z) above its maximum, and the sym-

metric voting strategy that responds optimally to candidate behavior constitutes equilibrium

in the voting subgame. This logic remains valid if the number of candidates is increased, as

in claim 4, or abstention is allowed, as in claim 5.

To see part (b) of claims 1 through 3, consider �rst the (not necessarily optimal) strat-

egy �sv of sincere voting, with no abstention (i.e. �sv (q;�1) = A and �sv (q; 1) = B

for all q). Following this strategy, citizens are likely to vote A in state �1 and to vote
B in state 1 (i.e. ��1 (A) = �1 (B) = EQ > �1 (A) = ��1 (B) = E (1�Q)). As

the number of voters grows large, actual vote shares approach expected vote shares (i.e.

p limn!1 [Nj � n�z (j) jZ = z] = 0). This implies that candidate A is almost sure to win

the election in state �1 and candidate B is almost sure to win the election in state 1

(e.g. limn!1 Pr (W = AjZ = �1) = limn!1 Pr (NA > NBjZ = �1) = 1). It also implies

that candidate A�s and candidate B�s beliefs regarding the optimal policy, conditional on

any election outcome in which they win the election, approach �1 and 1, respectively (i.e.

limn!1 ẑa;b =

(
�1 if a > b

1 if a < b
, implying that limn!1 ẑA = �1, limn!1 ẑB = 1). If candi-

dates are committed, these results together imply that xA is implemented in state �1 and
xB is implemented in state 1, as in claim 1(b), and also that equilibrium policy platforms

converge to �1 and 1, as in claim 2(b). If candidates are responsive, these results instead

imply that voting and policy reactions are such that the ultimate policy outcome converges

to the optimal policy, as in claim 3(b). None of this changes if the number of candidates is

increased or abstention is allowed, as in claims 4 and 5.

So far, these results are for the possibly sub-optimal strategy �sv of sincere voting. The

jump to the actual claims of the theorem can be made, however, using McLennan�s insight

again: if �sv induces a policy outcome that converges in probability to Z, it delivers utility

approaching p limn!1

h
u
�
~Yn; Z

�i
= 0. The optimal strategy �� can do no worse, and so

p limn!1 [u (Y
�
n ; Z)] = 0 as well, implying that p limn!1 (Y

�
n jZ) = Z, as claimed in 2(b) and

3(b). Claim 1(b) follows from similar reasoning: the sincere sub-strategy (��sv)n delivers util-
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ity approaching p limn!1

n
�
��
�Ysv
�
n
� Z

�2 jZo = (
� [xA � (�1)]2 if Z = �1
� [xB � (�1)]2 if Z = 1

and the

optimal sub-strategy (���)n can do no worse, implying that p limn!1

n
�
��
�Y ��

n
� Z

�2 jZo =(
� [xA � (�1)]2 if Z = �1
� [xB � (�1)]2 if Z = 1

, and therefore p limk!1
��
�Y ��

n
jZ
�
=

(
min (xA; xB) if Z = �1
max (xA; xB) if Z = 1

.

Once again, this logic remains intact if the number of candidates is increased or abstention

is allowed, as in claims 4 and 5.
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