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Abstract 

 

Despite the importance of negative campaigning in elections, few formal models have 
been developed to help understand its use. We develop a model in which candidates 
must decide what fraction of their campaigns will be negative. The candidates’  initial 
reputations are then altered by the type of campaign each runs. Negative campaigning 
increases a candidate's probability of winning by lowering the opponent ’s reputation, 
but also decreases the candidate’s own reputation. The winner is the candidate who 
ends the campaign with the higher reputation. Candidates care both about winning and 
about their reputations. Typically, no pure strategy equilibrium exists. Mixed 
strategies are over a continuous space of pure strategies, the degree of campaign 
negativity. One necessary condition in a mixed strategy equilibrium is that the only 
possible discontinuities in either candidate ’s distribution is at completely positive 
campaigns. Another is that the continuous part must be a connected interval over 
which the cdf is strictly increasing. Only sometimes are these conditions compatible; 
otherwise, the game has no equilibrium in pure or mixed strategies. When an 
equilibrium does exist, we present some comparative statics. When there is no 
equilibrium, we consider what happens in a discrete game which approximates the 
continuous strategic variable, fraction negative. In the finite game, an additional atom 
can exist at a point of significantly negative campaigning.  
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Despite the importance of negative campaigning in elections, few formal models have been 
developed to help understand when and to what extent it will be utilized. In this paper, we 
develop a model in which candidates must decide what fraction of their campaigns will be 
negative. The candidates start with initial reputations which are then altered by the type of 
campaign each runs. Negative campaigning is effective in increasing a candidate's probability of 
winning the election by lowering the reputation of the opponent.  However, a candidate who does 
more negative advertising also suffers a loss in reputation. This may be because of the 
opportunity cost of not enhancing his or her own reputation through positive advertising or 
because of a boomerang effect in which voters dislike candidates whose advertising is heavily 
negative.  The winner of the election is the candidate who ends the campaign having the higher 
reputation.   Candidates care both about winning and about their reputations.  
  
Under reasonable parameter restrictions, no pure strategy equilibrium exists in this model.  In the 
absence of pure strategy equilibria, the mixed strategies that candidates may utilize are specified 
over a continuous space of pure strategies, the degree to which each runs a negative campaign. 
These mixed strategies can be described by the cumulative distribution function over this 
variable.  The cdfs may have a continuous part and points of discontinuities, which are equivalent 
to atoms in the pdf. We derive necessary conditions on these cdfs that must be satisfied in any 
equilibrium. These include that the only possible discontinuities in either candidate’s distribution 
is at completely positive campaigns, and that the continuous part must be a connected interval 
over which the cdf is strictly increasing. In some circumstances, these conditions are compatible 
and an equilibrium does exist.  In other cases, however, they are inconsistent and the game has no 
equilibrium, either in pure or mixed strategies.   
 
When an equilibrium does exist, we derive some comparative statics of how the equilibrium 
varies with relevant parameters. First, if one candidate cares more about winning, the other runs a 
more positive campaign, and second, if voters are made very angry by negative campaigns, 
candidates will engage in more negative campaigning.  Third, as the difference in the candidates’ 
initial reputations becomes larger, both candidates will tend to run more positive campaigns.  
Finally, an increase in a candidate’s initial reputation can reduce the candidate’s expected 
equilibrium utility. 
 
When there is no equilibrium, we consider what happens in a discrete game which approximates 
the continuous strategic variable by having a discrete set of the fraction of campaign negativity.  
In this finite game there is always an equilibrium, and we use Gambit to numerically solve for 
these equilibria. In the finite game, an additional atom can exist at a point of significantly 
negative campaigning.  Finally, we use data on political advertising in the 2002 elections for U.S. 
congress to compare the equilibrium predictions from either the continuous model or the discrete 
approximation to actual campaigns. 
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1.  Introduction 

Negative campaigning is widely perceived to be an important aspect of political 

contests and to be growing in significance.  Despite this, only a small number of models 

have been developed that analyze the decision by candidates to run positive or negative 

campaigns. These include Skaperdas and Grofman (1995), Harrington and Hess (1996), 

and Fletcher and Slutsky (2010), each of which focuses on a different aspect of negative 

campaigning. 

Skaperdas and Grofman (1995) assume that there are three types of voters: 

undecideds and those initially favoring each of the two candidates.   Undecided 

individuals shift to supporting one or the other of the two candidates with the division 

based upon how much positive campaigning each candidate does.    Negative 

campaigning has no direct effect on undecideds but is undertaken to shift some of the 

opponent’s supporters into being undecided. Due to a boomerang effect, it also loses 

some of the candidate’s own supporters to the undecided status.  They assume that these 

effects vary continuously with the actions taken, that there are diminishing returns to 

positive campaigning, and that candidates seek to maximize their net votes.  They show 

that there is a pure strategy Nash equilibrium under these assumptions and derive 

properties of that equilibrium.  Among these properties are that the front-runner (the 

candidate who initially has more supporters) does more positive and less negative 

campaigning than the opponent and that a candidate does more negative campaigning if 

the opponent has more initial supporters.   

While Skaperdas and Grofman do not specify what campaigning (positive or 

negative) relates to, Harrington and Hess (1996) impose more structure on individual 



preferences and are more specific on what campaigning seeks to do.  They assume that 

voters have preferences over both the issue positions of the candidates and over candidate 

attributes.  The voters differ in their ideal points in issue space but have common 

perceptions of where each of the candidates is located in that issue space.  Candidate 

attributes are valence issues such as character or competence which all voters value 

identically.  The purpose of campaigning is to shift voters’ perceptions of where 

candidates are in the issue space.  Positive campaigning seeks to move the perceptions of 

the candidate’s own position whereas negative campaigning seeks to move perceptions of 

the opponent’s issue position.   Campaigning of either type moves the issue positions 

continuously and with non-increasing returns. The candidates choose their mix of 

campaigning to maximize their vote share.  They provide conditions for the existence of a 

pure strategy Nash equilibrium and show that the candidate who is stronger with respect 

to valence issues runs a more positive campaign than the opponent. 

While candidates do campaign about policy issues as in Harrington and Hess, 

they also campaign about valence traits, for example, in a negative campaign, attacking 

an opponent’s honesty or competence.  Fletcher and Slutsky (2010) consider positive and 

negative campaigns in a context with only valence issues.  They assume that candidates 

have reputations entering the campaign and that positive campaigns raise the candidates 

own reputation while negative campaigns lower the opponent’s reputation.  Unlike both 

Skaperdas and Grofman and Harrington and Hess, they assume that the decision of 

whether to run a positive or negative campaign is discrete and not continuous.  That is, a 

campaign is either entirely positive or entirely negative with nothing in between.  In 

addition, they assume that the winner is the candidate with the higher post-campaign 



reputation. Thus, again in contrast to the previous studies, they assume that campaign 

activities have a discontinuous effect on outcomes given that the candidates maximize the 

sum of their post-campaign reputations and a reputation bonus from winning.  The 

combination of the discreteness and the discontinuous effects yields Nash equilibria in 

mixed strategies for a range of parameter values.  They show that the candidates’ 

expected payoffs are not monotonically increasing in pre-campaign reputations.  When 

the campaign game is embedded as the second stage in a two stage model where pre-

campaign reputations are chosen in the first stage, this non-monotonicity means that will 

often not choose the maximum possible reputation in the first stage. 

This paper considers a model essentially the same as Fletcher and Slutsky (2010) 

but assumes that the decisions of how negative a campaign to run are continuous instead 

of being discrete.  In some ways, this is clearly more realistic.  Candidate ads are 

typically not all positive or all negative.  Even with a continuous choice variable, the 

discontinuity in the election outcome as a function of their relative reputations implies 

that pure strategy Nash equilibria will still not exist for a wide range of parameters.  This 

arises for similar reasons to the non-existence of pure strategy equilibria in a Bertrand 

pricing game where firms benefit by just undercutting their competitor’s price.  Here, a 

candidate wants to be just negative enough so that there is not a tie in post-campaign 

reputations.  A characterization of the mixed strategy equilibrium in terms of properties 

of the candidates’ cumulative distribution functions over degrees is derived.  For a 

specific example, the mixed strategy equilibrium cdf’s are explicitly derived.   

DISCUSS NATURE OF RESULTS 



The model is specified in Section 2.  Pure strategy equilibria are considered in 

Section 3. The characterization of mixed strategy equilibria is presented in Section 4.  An 

explicit example is derived in Section 5.  The consistency of the results with campaign 

data from congressional and gubernatorial elections in the United States in 2002 is 

discussed in Section 6.  Conclusions are given in Section 7. 

  

2.  The model 

Consider an election between candidates F and T who enter the campaign with 

initial reputations XF and XT, which are based upon exogenous traits or pre-campaign 

actions.  The candidates are labeled so that XF ≥ XT, with F the initial frontrunner and T 

the initially trailing candidate.  The candidates affect these reputations by the campaigns 

they run, which can vary in the degree to which they are positive or negative in 

orientation.  Positive campaigning raises the reputation of the candidate running the 

campaign, while negative campaigning lowers the reputation of the opponent.  Let f and t 

be the fractions of the campaigns of F and T, respectively, that are negative.  The effects 

of the campaigns on the candidates’ reputations are given by functions θI(i, j) where i, j = 

f, t, i ≠ j,  so that the post-campaign reputations are XF + θF(f, t) for the frontrunner and 

XT + θT(t, f) for the trailing candidate. 

             Assume that these functions are continuously differentiable in i and j and that: 

   

       ∂θJ/∂i < ∂θI/∂i < 0            (1) 

 



Running a more negative campaign lowers the candidate’s own reputation --- that is, 

∂θI/∂i < 0 holds --- either because of the opportunity cost of reducing the positive 

campaigning that would have raised the candidate’s own reputation, or because there is a 

“boomerang” effect where voters feel less positive about candidates who attack their 

opponents.  That this effect is smaller in magnitude than the reduction in the opponent’s 

reputation --- that is, ∂θJ/∂I --- means that negative campaigning is effective on the 

margin in raising the relative reputation of the candidate doing it.  

        In addition, we make the following boundary assumptions about θI(i, j):   

 

     θI(0, 0) > 0,  θI(1, 1) < θI(0, 1) < 0,  θI(0, 0) > θI(1, 0)  > θI(0, 1)                      (2) 

 

When both candidates run entirely positive campaigns, each candidate’s reputation is 

greater than its pre-campaign level (θI(0, 0) > 0). A candidate who runs an entirely 

negative campaign is successful in lowering the opponent’s reputation whether the 

opponent’s campaign is entirely positive or entirely negative (θI(0, 1) < 0 and θI(1, 1) < 

0).  The effect on a candidate’s own reputation of running an entirely negative campaign 

against the opponent’s entirely positive is ambiguous; θI(1, 0) could be positive or 

negative.   The presence of a strong boomerang effect would tend to make this term 

negative.    

The outcome of the election depends on the relative post-campaign reputations of 

the candidates ∆(f, t) = XF + θF(f, t)  - XT - θT(t, f) where candidate F wins if ∆ > 0, T 

wins if ∆ < 0, and the candidates have an equal chance of winning if ∆ = 0.  This is 



summarized by a function h(∆) giving the probability that F wins, where h(∆) = 1 if ∆ > 

0, h(∆) = 0 if ∆ < 0, and h(0) = ½.  The candidate who wins the election receives a bonus 

to reputation, BF or BT; these are assumed to be strictly positive.  Their goals are to 

maximize their expected post-election reputations UF(f, t) = XF + θF(f, t) + h(∆)BF and 

UT(t, f) = XT + θT(t, f) + (1 - h(∆))BT.   

We assume that there exist levels of f and t such that ∆(f, t) = 0, as shown in 

Figure 1.  Sufficient conditions for this are that any difference between XF and XT is 

sufficiently small and that θF and θT are sufficiently responsive to f and t and are 

sufficiently similar in their values.  Given monotonicity of θI in f and t, the values of f 

and t for which ∆(f, t) = 0 form a thin curve between points (0, t*) and (f*, 0).  Denote the 

locus of such points as i = mI(j).  That is, ∆(mF(t), t) = 0 for t* ≤ t ≤ 1 or, equivalently,  

∆(f, mT(f)) = 0 for 0 ≤ f ≤ f*. 

To analyze the game, it is useful to convert it to the mixed extension in terms of 

the cumulative distribution functions of the players’ mixed strategies.  Let ΓI(i) be the 

cumulative distribution function for each player’s mixed strategy.  As a cdf, ΓI is right-

hand continuous with at most a countable number of discontinuities or atoms.  At any 

point at which there is an atom, denote its probability magnitude as γI(i).  The expected 

payoff to candidate I against candidate J’s mixed strategy would be: 

 

EUI(i, ΓJ) = XI + Ej[θI(i, j)] + BI[ΓJ(mJ(i)) - γJ(mJ(i)/2]       (3) 

 



A Nash equilibrium is a pair of cdfs such that neither candidate, given the other’s 

cdf, can increase his own expected utility by changing his own cdf.  In the next two 

sections, we derive some necessary conditions for such a Nash equilibrium. 

 

3.  Pure strategy equilibria 

 

             Lemma 1 shows that the set of possible pure strategy equilibria is limited. 

 

Lemma 1:  The only possible pure strategy equilibria are (a) f = t = 0 when ∆(0, 0) ≠ 0 

and (b) f = t = 1 when ∆(1, 1) = 0. 

 

Proof: Under assumptions (1) and (2), a pair (f, t) is not a pure strategy equilibrium either 

if (i)  ∆(f, t) ≠ 0 and either f > 0 or t > 0 or (ii)  ∆(f, t) = 0 and either f < 1 or t < 1.  If (i) 

holds and f > 0, then f could be reduced slightly, increasing θF but not changing h(∆), 

thereby  raising F’s post-election reputation.  A similar argument holds if t > 0.  If (ii) 

holds and f < 1, an arbitrarily small increase in f would cause an infinitesimal drop in θF 

but would raise h(∆) from ½ to 1, causing a discrete increase in F’s post-election 

reputation.  A similar argument holds in this case when t < 1.  Conditions (a) and (b) are 

the only remaining possibilities.  Q.E.D.  

 

          Additional parameter restrictions rule out the only two possible pure strategy   

equilibria.  First, assume that the winning bonus for T is sufficiently large relative to the 

direct reputation effect of running a negative campaign: 



 

BT > θT(0, 0) - θT(0, 1)              (4) 

 

Starting from (0, 0), candidate T loses the election but would instead win it by running a 

sufficiently negative campaign (at least t*).  The gain from doing this would be the extra 

winning bonus BT, while the reputation loss from running a more negative campaign 

would be θT(0, 0) - θT(0, t*) < θT(0, 0) - θT(0, 1).  Hence, under condition (4), regardless 

of the exact value of t*, candidate T would gain by raising t from 0 to above t*, ruling out 

the possible equilibrium in Lemma 1(a).   

           The second possible pure strategy equilibrium is ruled out if the candidates are not 

tied in reputation when they both run entirely negative campaigns or if the winning 

bonuses are not too big: 

 

∆(1, 1) ≠ 0 or θI(0, 1) – θI(1, 1) > ½BI,  for I either F or T          (5) 

 

Clearly, ∆(1, 1) ≠ 0 rules out the equilibrium in Lemma 1(b).  This holds unless XF = XT 

and θF(1, 1) = θT(1, 1) or XF > XT and asymmetries between θF(1, 1) and θT(1, 1) exactly 

balance out the difference in initial reputations.  If ∆(1, 1) = 0 does hold, then each 

candidate’s post-election reputation would be XI + θI(1, 1) + ½BI.  Either candidate could 

concede the election but gain in reputation by running a completely positive campaign.  

The post-election reputation of that candidate would then be XI + θI(0, 1).  When θI(0, 1) 

– θI(1, 1) > ½BI, the equilibrium in Lemma 1(b) is ruled out. 



             Note that conditions (4) and (5) are consistent with each other even though one 

imposes a lower bound on BT while the other, in some circumstances, imposes an upper 

bound on that bonus.  These bounds are consistent if, in response to an entirely negative 

campaign by F, there would be a large difference between the reputation T would achieve 

from an entirely negative campaign and an entirely positive one.  Assuming both (4) and 

(5) rules out all pure strategy equilibria, leaving only mixed strategy equilibria possible.  

  

4.  Properties of equilibrium mixed strategies 

The following seven lemmas specify some important properties that characterize 

any mixed strategy equilibrium.  First, in Lemma 2, we show that the frontrunner puts no 

probability weight on very negative campaigns.  The trailing candidate puts no 

probability weight on very positive campaigns, except for possibly having a mass of 

weight on being entirely positive.  

  

Lemma 2:  ΓF(1) = ΓF(f*) = 1 and ΓT(t* - ε) = ΓT(0) for any 0 < ε < t* 

 

Proof:   For any t with 0 ≤ t < t* and any f, F wins the election so that ∆(f, t) = 1 and UT(t, 

f) = XT + θT(t, f).  Then, for any ΓF(f), EUT(t, ΓF) = XT+ Ef[θT(t, f)] which is strictly 

decreasing in t.  Hence, EUT(0, ΓF) > EUT(t, ΓF), any t, 0 < t < t*.  This means that 

candidate T will not put any probability weight in the interval (0, t*) making ΓT(t* - ε) = 

ΓT(0), for any ε > 0 as asserted in the Lemma.   Similarly, for any f with f* < f ≤ 1 and 

any t, F wins so that ∆(f, t) = 1 and UF(f, t) = XF + θF(f, t) + BF.  For any ΓT(t), EUF(f, ΓT) 

= XF + BF + Et[θF(f, t)] which is strictly decreasing in f. Hence, EUF(f*, ΓT) > EUF(f, ΓT) 



so that F will put no probability weight on the interval (f*, 1] with ΓF(1) = ΓF(f*) = 1 as 

asserted.   Q.E.D.  

 

               Second, as shown in Lemma 3, at any point on the ∆ = 0 locus, at least one 

candidate does not have an atom.   

 

Lemma 3:  γT(t) γF(mF(t)) = 0, any t* ≤ t ≤ 1. 

 

Proof:  Assume that there exist a t' and an f' with t' = mT(f') and γT(t') > 0.  Then ∆(f', t) = 

1 if t < t', ∆(f', t') = ½, and ∆(f', t) = 0 if t > t*.  Hence, the expected payoff to F when 

playing f' is: 

EUF(f', ΓT) = XF + Et[θF(f', t)] + BF(ΓT(t') - γT(t')/2).   

Consider F playing a strategy slightly more negative, f' + ε.  Let δ = mT(f' + ε) - t'.  

Because a cdf has only a countable number of atoms, a sequence of ε going to 0 can 

always be chosen such that γT(t' + δ) = 0 for every δ in the sequence.  Then, F’s expected 

utility at f' + ε is:  

EUF(f'+ ε, ΓT) = XF + Et[θF(f' + ε, t)] + BFΓT(t' + δ).   

Since ΓT is right hand continuous and θF is continuous, lim𝜀→0[Γ�T(t′ + δ) −

 Γ�T(t′)] =  0 and lim𝜀→0[𝐸𝑡[θ�F(f ′ + ε, t)] −  𝐸𝑡[θ�F(f ′, t)]] =  0.  Hence, 

lim
𝜀→0

[EUF(f'+ ε, ΓT) - EUF(f', ΓT)] = BFγT(t')/2 > 0.  Thus, F’s expected payoff at f' is 

strictly less than at nearby f so that gF(f') = 0 must hold, yielding γT(t')γF(f') = 0 as 

asserted.  Q.E.D. 



 

              Third, as shown in Lemma 4, if one candidate’s cdf has an atom at some strategy 

i', then the other candidate must put no probability weight in some interval just below the 

corresponding strategy on the ∆ = 0 locus, mJ(i').   

 

Lemma 4:   

(a) If γF(f') > 0, any f' with 0 < f' ≤ f*, then there exists some δ' > 0 such that 

ΓT(mT(f')) = ΓT(mT(f') - δ') 

(b) If γT(t')  > 0, any t' with t* < t' ≤ 1, then there exists some δ' > 0 such that 

ΓF(mF(t')) = ΓF(mF(t') - δ') 

 

Proof:  

(a)  T’s expected payoff at t' = mT(f') is:   

EUT(t', ΓF) = XT + Ef[θT(t', f)] + BF(ΓF(f') - γF(f')/2).   

Consider values of t = t' - δ, for values of δ > 0.  At such values, T’s expected payoff is: 

γF(mF(t' - δ))where f' - ε = mT(t' - δ).   

Since ΓF has at most a countable number of atoms, if γF(f' - ε) > 0 for some ε, then there 

are arbitrarily close values of t > t' - δ at which γF(mT(t)) = 0.  T’s expected payoff at 

those values of t is strictly greater than at t' - δ.  Hence, T puts no probability weight at 

any t' - δ at which γF(mF(t' - δ)) > 0.  Then consider a t' - δ at which γF(mT(t' - δ))= 0: 

      EUT(t', ΓF) - EUT(t' - δ, ΓF) = Ef[θT(t', f) - θT(t' - δ, f)] + BT[ΓF(mT(t')) - ΓF(mT(t' - δ)) 

                                                      -  γF(mT(t'))/2].   



For any sequence of δ going to 0, θT(t' - δ, f) converges to θT(t', f) since θT(t', f) is 

continuous.  Since ΓF is right hand continuous but has an atom at f' = mT(t'), as δ 

converges to 0, ΓF(mT(t')) - ΓF(mT(t' - δ)) converges to γF(mT(t')).  Hence, lim
𝛿→0

[EUT(t', ΓF) 

- EUT(t' - δ, ΓF)] = BTγF(f')/2 > 0.  There must then exist some δ' such that EUT(t', ΓF) > 

EUT(t' - δ, ΓF), all 0 < δ < δ'.  T will put no probability weight in the interval [t' - δ', t'].  

Since γT(t') = 0 from Lemma 3, ΓT(t') = ΓT(t' - δ') as asserted. 

(b)  The proof follows identically to that in (a), switching the roles of F and T.  Q.E.D. 

 

Fourth, as shown in Lemma 5, if one candidate has an interval in which no 

probability weight is placed, then the other candidate places no probability weight in the 

corresponding interval on the ∆ = 0 locus.  See Figure 2 for an example of this. 

  

Lemma 5:  If there exists an interval (a, b) with 0 < a < b < f*, and ΓF(b – ε) = ΓF(a) for 

all 0 < ε < b – a, then ΓT(mT(b – ε)) = ΓT(mT(a)).  

 

Proof:  Consider any t with mT(b) > t > mT(a).  Then EUT(t, ΓF) = XT + Ef[θT(t, f)] + 

BTΓF(a).  From (i), this is decreasing in t.  Hence, T will put no probability weight on t in 

the given interval.  Q.E.D. 

 

Fifth, as shown in Lemma 6, neither candidate has an atom on the interior of the 

intervals in which they may place probability weight, 0 < f < f* for F and t* < t < 1 for T.    

 

Lemma 6:  γF(f) = 0 for all f with 0 < f < f* and γT(t) = 0 for all t with t* < t < 1. 



 

Proof:  Assume that the Lemma is not true and that there exists an f′, 0 < f′ < f* with 

γF(f′) > 0.   Then from Lemma 3, γT(mT(f')) = 0 must hold.  From Lemma 4, ΓT(mT(f') = 

ΓT(mT(f' - δ)) for some δ > 0.  Then EUF(f', ΓT) = XF + Et[θF(f', t)] + BTΓT(mT(f')) and 

EUF(f' - ε, ΓT) = XF + Et[θF(f' - ε, t)] + BTΓT(mT(f')) and EUF(f' - ε, ΓT) - EUF(f', ΓT) = 

Et(θF(f' - ε, t) - θF(f', t)] > 0.  This contradicts F being willing to put probability weight at 

f', so γF(f') = 0 must hold as asserted.  A similar contradiction follows if γT(t′) > 0, some 

t* < t′ < 1 is assumed.  Q.E.D. 

  

              Next, as shown in Lemma 7, neither candidate has an interval with no 

probability weight in the relevant range, that is, each cdf is strictly increasing over that 

range.   

 

Lemma 7:  There exist f′ and t′, with 0 < f′ < f*, t* < t′ < 1, and t′ = mT(f′) such that:  

(i) ΓF(f′) = 1 and ΓF(b) >  ΓF(a) for any 0 < a < b < f* ,and 

(ii) ΓT(t′) = 1 and ΓT(b) >  ΓT(a) for any t* < a < b < 1. 

 

Proof:  Since there does not exist a pure strategy equilibrium, not all probability weight 

can be at an atom at 0.  From Lemma 2, F must have probability weight in the interval (0, 

f*) and from Lemma 6, none of this is at an atom.  Assume that there is an interval (a, b) 

∈ (0, f*) with ΓF(b) = ΓF(a) but ΓF(b + δ) >  ΓF(b), for any small δ > 0.  From Lemma 5, 

ΓT(mT(b)) = ΓT(mT(a)) must also hold.  Then: 

 EUF(b + δ, ΓT) = XF + Et[GF(b + δ, t)] + BFΓT(mT(b + δ)), while at a, 



 EUF(a, ΓT) = XF + Et[GF(a, t)] + BFΓT(mT(a)). 

Since lim ΓT(mT(b + δ)) = ΓT(mT(b)) = ΓT(mT(a)), then, given (1): 

 lim
𝛿→0

[EUF(b + δ, ΓT) – EUF(a, ΓT)] = Et[GF(b, t)] - Et[GF(a, t)] < 0.   

This contradicts F placing probability weight above b.  There must thus exist an f′, 0 < f′ 

≤ f*, with ΓF(f) strictly increasing between 0 and f′.  Q.E.D. 

 

 Finally, as shown in Lemma 8, the only possible atoms for each candidate are at 

completely positive campaigns.  

 

Lemma 8:  The only atom for F is at f = 0 with γF(0) ≥ [𝐸�̃�[𝜃𝑇(0,𝑓)] - 𝐸�̃�[𝜃𝑇(𝑡∗, 𝑓)]] / B 

> 0.  The only possible atom for T is at t = 0. 

 

Proof:  From Lemmas 6 and 7, ΓF(f) is continuous and increasing over (0, f′) and ΓT(t) is 

continuous and increasing over (t*, t′). Combining this with Lemma 4, F cannot have an 

atom at f′ and T cannot have an atom at t′.  Thus, the only possible atom for F is at f = 0 

and the only possible atoms for T are at t =0 or t = t*.  The expected utility for T must be 

at least as high at t* + ε as at 0 since T puts probability weight near t*, from Lemma 7.  

Hence, for all ε > 0, XT + [𝐸�̃�[𝜃𝑇(𝑡∗ +  𝜀, 𝑓)] + BTΓF(mF(t* + ε)) ≥ XT + 𝐸�̃�[𝜃𝑇(0,𝑓)].  

Since lim
𝛿→0

 ΓF(mF(t* + ε)) = γF(0), this yields the given bound on γF(0).  Since F has an 

atom at 0 then T cannot have one at t* from Lemma 3.  Q.E.D. 

 



                Building on these results, a more complete characterization of the cdfs for the 

two candidates is given in Theorem 1.  As pointed out below, this is not, however, an 

explicit solution for them.   

 

Theorem 1:  There exist f' and t' with ∆(f′, t′) = 0 such that the equilibrium cdfs satisfy 

the following: 

    Γ𝐹(𝑓) =  1 + [𝐸�̃��𝜃𝑇�t′,𝑓�� −  𝐸�̃��𝜃𝑇�𝑚𝑇(𝑓),𝑓��] 𝐵𝑇⁄ , 0 ≤ f ≤ f' 

    Γ𝐹(𝑓) =  1, f' ≤ f ≤ 1 

    𝛾𝐹(0) =  1 + �𝐸�̃�[𝜃𝑇�t′,𝑓�] −  𝐸�̃��𝜃𝑇(𝑡∗,𝑓)�� 𝐵𝑇�  

 

    Γ𝑇(𝑡) =  𝛾𝑇(0), 0 ≤ t ≤ t* 

    Γ𝑇(𝑡) =  1 + [𝐸�̃�[𝜃𝐹(𝑓′, �̃�)] −  𝐸�̃�[𝜃𝐹(𝑚𝐹(𝑡), �̃�)]] 𝐵𝐹⁄ , t* ≤ t ≤ t' 

    Γ𝑇(𝑡) =  1, t' ≤ t ≤ 1 

    𝛾𝑇(0) =  1 + �𝐸�̃�[𝜃𝐹(𝑓′, �̃�) −  𝐸�̃��𝜃𝐹(0, 𝑡)��� 𝐵𝐹�  

 

In addition, one of the following must hold: 

(a) 𝐸�̃��𝜃𝑇�𝑡′,𝑓�� = 𝐸�̃��𝜃𝑇�0,𝑓�� −  𝐵𝑇 and 𝐸�̃�[𝜃𝐹(𝑚𝐹(𝑡′), �̃�)]  ≥  𝐸�̃�[𝜃𝐹(0, �̃�)] - BF, 

or 

(b) 𝐸�̃�[𝜃𝐹(𝑚𝐹(𝑡′), �̃�)] =  𝐸�̃�[𝜃𝐹(0, �̃�)] - BF and 𝐸�̃��𝜃𝑇�𝑡′,𝑓�� ≥ 𝐸�̃��𝜃𝑇�0,𝑓�� −  𝐵𝑇 

 

Proof:  For candidate F to be willing to put probability weight in the interval [0, f'] 

consistent with Lemmas 7 and 8, EUF must be constant on that interval.  That is: 



EUF(f, ΓT) = XF + 𝐸�̃�[θF(f, �̃�)] + BFΓT(mT(f)) = CF, 0 ≤ f ≤ f'. 

Solving yields: 

 ΓT(mT(f)) = [CF - XF - 𝐸�̃�[θF(f, �̃�)]] / BF, 0 ≤ f ≤ f'. 

Substituting t = mT(f) and f = mF(t) yields: 

 ΓT(t) = [CF - XF - 𝐸�̃�[θF(mF(t), �̃�)]] / BF, t* ≤ t ≤ t'. 

Since ΓT(t') = 1 from Lemma 7, CF = BF + XF + 𝐸�̃�[θF(mF(t'), �̃�)], which gives: 

 ΓT(t) = 1 + [𝐸�̃�[θF(mF(t'), �̃�)] - 𝐸�̃�[θF(mF(t), �̃�)]] / BF, t* ≤ t ≤ t'. 

From Lemma 2, ΓT(t* - ε) = ΓT(0), all 0 < ε < t*.  Since T can only have an atom at 0, 

γT(0) = ΓT(t*). 

 For T to be willing to put probability everywhere in the interval [t*, t'], EUT must 

be constant on that interval with: 

EUT(t, ΓF) = XT + 𝐸�̃�[θT(t, 𝑓)] + BTΓF(mF(t)) = CT, t* ≤ t ≤ t'.   

Solving yields: 

 ΓF(mF(t)) = [CT - XT - 𝐸�̃�[θT(t, 𝑓)]] / BT, t* ≤ t ≤ t'. 

Since ΓT is constant on [t', 1], then from Lemma 5, ΓF is constant on [f', 1] with f' = 

mF(t').  Then ΓF(f') = 1 must hold.  Using this to solve for CT and substituting into the 

expression for ΓF(mF(t)) yields: 

 ΓF(mF(t)) = 1 +  [𝐸�̃�[θT(t', 𝑓)] - 𝐸�̃�[θT(t, 𝑓)]] / BT, t* ≤ t ≤ t'. 

To tie down the value of f' and t', three possibilities exist: T has an atom at 0, T 

has a higher expected utility anywhere in the range (t', t*) than at 0, or T is indifferent 

between 0 and points in the range (t', t*) but has no atom at 0.  If T has an atom, then  

γT(0) = ΓT(t*) = 1 + 𝐸�̃�[θF(f', �̃�)] - 𝐸�̃�[θF(0, �̃�)]] / BF > 0 or: 



 𝐸�̃�[θF(mT(t', �̃�)] > 𝐸�̃�[θF(0, �̃�)]] - BF.   

T must then be indifferent between t = 0 and any t with t* <  t  ≤  t'.  Since T always wins 

when playing t' but never wins when playing 0, this implies that 𝐸�̃�[θT(t', 𝑓)] = 𝐸�̃�[θT(0, 

𝑓)] - BT. If T is not willing to have an atom at t = 0, 𝐸�̃�[θT(t', 𝑓)] > 𝐸�̃�[θT(0, 𝑓)] - BT.  

Since t* is the lower bound on the support of T’s distribution, and there is no atom there 

from Lemma 8, then ΓT(t*) = 0 must hold.  From the formula for ΓT(t), BF + 𝐸�̃�[θF(mF(t'), 

�̃�)] - 𝐸�̃�[θF(mF(t*), �̃�)] = 0 or 𝐸�̃�[θF(f ′, �̃�)] = 𝐸�̃�[θF(0, �̃�)] - BF.  In the third case where T is 

indifferent but has no atom, these conditions, when combined with those in each of the 

first two cases, yield (a) and (b).  Q.E.D. 

 

           Although the ΓI(i) functions given in Theorem 1 characterize the equilibrium 

mixed strategies, they are not explicit solutions.  ΓF(f) depends on an expectation taken 

with respect to probabilities specified by the derivative of ΓF(f).  To actually find the 

equilibrium cdfs, a fixed point is needed.  Assuming a ΓF(f) and substituting it into the 

expectations in Theorem 1 yields a new Γ�𝐹(𝑓).  To be an equilibrium, this Γ�𝐹(𝑓) must be 

the same as the function initially posited.  Such a fixed point may or may not exist. When 

it does not, the game has no equilibrium.  While it is difficult in general to determine 

when there is no equilibrium or to specify it when there is, for some specific 𝜃I functions, 

it is possible to explicitly solve for the equilibrium cdfs, as in the example given in the 

next section.   

 

5.  An explicit solution 

Consider the following functional form for the effect of campaigning on reputation: 



 

θΙ(i, j) = G(1 – i) – jL + (L – D)(ij)             (6) 

 

Then θI(0, 0) = G, θI(1, 1) = -D, θI(1, 0) = 0, θI(0, 1) = G – L.1

 

  For this function, the 

conditions  (1), (2), (4), and (5) under which there is no pure strategy equilibrium are 

straightforward.  

 max{0, L – D}  < G < L                                                                                       (7) 

 

 G < B                                                                                                                     (8) 

 

     0 < XF – XT < L – G                                                                                             (9) 

 

(7) ensures that conditions (1) and (2) are satisfied and (8) implies that (4) is satisfied.  

For this θI, ∆(f, t) = XF – XT + (f – t)(L – G).  Since ∆(1, 1) = XF – XT, the lower 

inequality in (9) ensures that (5) is satisfied.   Setting ∆ = 0 and solving yields t = f + (Xf 

– Xt)/(L - G) = mT(f).  Then t* = 1 – f* = (Xf – Xt)/(L – G).  The inequalities in (9) ensure 

that t* and f* are between 0 and 1.  

Expressions for the means of the distributions of f and t, µi ≡ 𝐸�̃�[𝚤̃], are given in 

Lemma 9. 

 

                                                 

1 This θI(i, j) function is consistent with the assumptions in the discrete decision model in Fletcher and 
Slutsky (2010).  Negative campaign wars may cause either voter anger or voter apathy here, as D may be 
greater or less than L. 



Lemma 9: In an equilibrium, the following must hold: 

  

𝜇𝐹 =  
𝐺(𝑓′)2

2𝐵 +  (𝐿 − 𝐷)(𝑓′)2
 

  

𝜇𝑇 =  𝐺(�𝑡′�
2
−(𝑡∗)2)

2𝐵 + (𝐿−𝐷) ((𝑡′)2−(𝑡∗)2)
  

 

Proof:  Substituting θΙ(i, j), mT(f), and t* into Theorem 1 yields ΓF(f) = 1 + [(t – 𝑡′)(G –  

(L – D)𝜇𝐹)]/B  and γF(0) = 1 + [(t* – 𝑡′)(G – (L – D)𝜇𝐹)]/B.  For any assumed value of 

µf, a cdf is determined whose mean can be computed by taking the derivative of Γf(f) 

found after substituting t = f + t*.  Then the mean of this cdf is �̂�𝐹 =  𝛾𝐹(0) ⋅ 0 +

 ∫ 𝑓(𝐺 − (𝐿−𝐷)𝜇𝐹
𝐵

)𝑑𝑓 =  [𝐺−(𝐿−𝐷)𝜇𝐹]
2𝐵

(𝑓′)2𝑓′

0  .  Setting �̂�𝐹 =  𝜇𝐹 and solving yields the 

expression given for 𝜇𝐹.  Similarly, 𝜇𝑇 can be found from substituting into ΓT(t).  Q.E.D. 

 

 

Since  𝑓′ = 𝑡′ − t*, both means, and hence, both cdf’s are determined by t′. Thus there 

exist a family of pairs of cdf’s that depend on only one variable.  A Nash equilibrium 

exists if in this family there exists a 𝑡′ between t* and 1 which also satisfies either (a) or 

(b) of Theorem 1.  Theorem 2 specifies the parameter values at which such a 𝑡′exists, 

gives its unique value in those cases, and gives the parameter values under which no such 

𝑡′ exists.  

 



Theorem 2:  Assume that campaigns effect reputation according to the function in (6) 

under the parameter restrictions in (7) – (9).   

(I) The unique Nash equilibrium cdf’s for the two candidates are: 

ΓF(f) =  1 +  2�f− f′�G
2B + (L−D)(f′)2

 ,  0 ≤ f ≤ f ′ 

ΓF(f) =  1, f ′ ≤ f ≤ 1  

 

ΓT(t) =  1 +  2�t∗−t′�G
2B + (L−D)((t′)2−( t∗)2)

 ,  0 ≤ t ≤ t* 

ΓT(t) =  1 +  2�t−t′�G
2B + (L−D)((t′)2−( t∗)2)

 ,  t* ≤ t ≤ t′  

ΓT(t) =  1,    t′ ≤ t ≤ 1  

This Nash equilibrium exists in either of the following circumstances: 

(i) D – L > 0 and B ≤ min{(3/2)G2/(D – L) +t*G, (1/2)(D – L)(1 – t*)2 + G}     

with t′ = f′ + t* =  t* - G/(D – L) + [(G/(D – L))2 + 2(B –t*G)/(D – L)]1/2   

      (ii)  D – L > 0 and (3/2)G2/(D – L) + t*G ≤ B ≤ (1/2)(D – L)(1 – (t*)2) + (1 – t*)G    

 with t′ = f′ + t* =  - G/(D – L) + [((G/(D – L)) + t*)2 + 2B/(D – L)]1/2   

(II) No Nash equilibrium exists in any of the following ranges of parameter values: 

       (iii)  D – L ≤ 0 

        (iv)  (1/2)(D – L)(1 – t*)2 + G < B < (3/2)G2/(D – L) +t*G 
         
         (v)  max{min{(3/2)G2/(D – L) +t*G, (1/2)(D – L)(1 – t*)2 + G}, (1/2)(D – L)(1 –    
                
                  (t*)2) + (1 – t*)G} < B    
 

Proof:   Substituting the values of µi given in Lemma 9 into the cdf’s of Theorem 1 after  

having substituted the specific functions of the example yields the ΓF(f)  and ΓT(t)  given  

in (I) of the Theorem.  For these to be valid either (a) or (b) of Theorem 1 must hold.  



In (a), T is willing to place probability weight on 0 so must receive the same expected  

payoff at 0 as at t′. Substituting θΤ(t, f) into the expected payoffs for T at these two values 

 yields : 

 -t′G + (L – D)t′𝜇𝐹 + B = 0 

Since B > t′G from (8), this can only hold if L – D < 0.  Substituting the value of 𝜇𝐹 from 

Lemma 9 and simplifying yields the following quadratic equation in t′: 

 (t′)2 + 2(G/(D – L) – t*)t′ + ((t*)2 - 2(G/(D – L)) = 0  

Solving this using the quadratic formula yields: 

 t′ = t* - G/(D – L) + ((G/(D – L))2 + 2(B – t*G)/(D – L))1/2 

 Of the two roots in the quadratic formula, only the + root is valid since t′ > t* must hold. 

For this to be valid, t′ ≤ 1 must hold. This is true if and only if the parameter restriction  

B ≤ (1/2)(D – L)(1 – t*)2 + G.  In addition, at this t′, 0 ≤ γT(0) must hold. Substituting this 

t′ into γT(0) = ΓT(t*) and manipulating yields: 

 B ≤ (3/2)G2/(D – L) +t*G 

Thus, the three conditions in (i) are necessary and sufficient for there to exist a t′ with  

t* < t′ ≤ 1 with EUT(0, ΓF) = EUT(t′, ΓF) and 0 ≤ γT(0).  Since f′ = t′ -  t*, then 

f′ lies between 0 and 1 making ΓF a valid cdf. 

 In (b) of Theorem 1, γT(0) = 0 holds.  Since γT(0) = ΓT(t*), this is true if  

 2B + (L – D)[(t′)2 – (t*)2] + 2G(t* - t′) = 0  

As above, from (8), this is possible only if D > L. Solving this quadratic equation yields: 

 t′ = - G/(D – L) + ((G/(D – L) + t*)2 + 2B/(D – L))1/2 

where again the positive root is taken to ensure that t > t*.  Imposing t′ ≤ 1 yields the 

following parameter restriction: 



 B ≤ (1/2)(D – L)(1 – (t*)2) + (1 – t*)G 

T is willing to have γT(0) = 0 iff EUT(0, ΓF) ≤ EUT(t′, ΓF).  This holds iff: 

 0 ≤ 2B + (L – D)(t′ – t*)2 – 2Gt′ 

Substituting the value of t, this holds under the following parameter restriction: 

 (3/2)G2/(D – L) + t*G ≤ B 

Thus, the parameter restrictions of (ii) are necessary and sufficient for (b) of Theorem 1 

to hold for this specific case.   

 Since an equilibrium exists iff the conditions in (I) hold, no equilibrium exists if 

both (i) and (ii) are violated given (7) – (9).  The conditions in (iii), (iv), and (v) hold iff 

both (i) and (ii) fail.  Q.E.D. 

  

ΓF and ΓT are shown in Figure 3 for case (i) which corresponds to (a) in Theorem 

1 where T has an atom at 0. Case (ii) corresponds to Theorem 1(b) in which T has no 

atoms.  In either case, since the cdf of ΓF is linear on the range (0, f'], the pdf is uniform 

on that range.  Similarly, the cdf of ΓT is linear on the range [t*, t'].   

The regions for the three cases in which no equilibrium exists have 

straightforward descriptions.  The region in (iii) arises when voters either are not 

adversely affected by a negative campaign war or do have meltdown in their attitudes but 

meltdown is in the form of apathy, D < L.  That is, voters do not like negative campaign 

wars but their response to one is to tune out and not pay attention to campaigns, lessening 

the effectiveness of such things as negative ads.  For an equilibrium to exist, a negative 

campaign war must cause meltdown in the form of anger.  Each candidate’s reputation 

must fall more in a negative campaign war than from just facing an opponent’s attacks, D 



> L.  However, if D – L is positive but small, the condition in (iv) is satisfied and no 

equilibrium exists.  D – L must be sufficiently large that at least one of the inequalities in 

(iv) is violated for an equilibrium to exist.    

Nonexistence can also arise if B is sufficiently large as given in region (v).  In this 

case, candidates, especially candidate T, must be Lombardians, carrying most heavily 

about winning relative to other reputational effects.  Since assuming that the goal of 

candidates is to maximize their probability of winning, this possibility of nonexistence is 

significant. How candidates would behave in such cases is considered below.    

 The frontrunner appears to put more weight on positive campaigning than the 

trailing candidate.  This is consistent with the results from Skaperdas and Grofman () and 

Herrington and Hess ().   

 

Theorem 3:  Under the parameter values at which a mixed strategy equilibrium exists, 

then γT(0) < γF(0) and 𝜇𝐹 <  𝜇𝑇 . 

 

Proof:   Using γT(0) = ΓT(t*) and γF(0) = ΓF(0), the sign of γT(0) - γF(0) is the same as the 

sign of (t* - t')(D – L).  Since D > L for an equilibrium to exist and t* < t', then γT(0) < 

γF(0) must hold.  Using the expressions for 𝜇𝐹 and 𝜇𝑇 from Lemma 9, the sign of 𝜇𝐹 - 

 𝜇𝑇 is the same as the sign of t* - t', which must be negative.  Q.E.D. 

 

Given the explicit solutions for the equilibrium mixed strategies, the comparative 

statics with respect to the various parameters can be determined.  These are given in 

Theorem 3.   



 

Theorem 4:   

(a) An increase in BI causes a first order stochastic dominating increase in positive 

campaigning by J. 

(b) An increase in D causes a first order stochastic dominating increase in the amount 

of negative campaigning by both candidates. 

(c) A larger difference in the candidates’ initial reputations (XF - XT larger) causes a 

first order stochastic dominating increase in the amount of positive campaigning 

by both candidates. 

(d) A candidate’s expected utility can decline in their initial reputation. 

 

Proof: 

 

In the next section we will examine evidence from the 2002 elections for 

governor, Senate and House to see if it is consistent with the theory.   This is complicated 

because most of the parameters of the model are unobservable.  Thus, we cannot directly 

know which candidate enters the race with the higher reputation.  We can observe the 

outcome of the election, but a trailing candidate might win the election with a sufficiently 

negative campaign.  Given the distributions given in Theorem 2, we can compute the pdfs 

of the winners and losers after taking this strategic interaction into account.  Theorem 5 

derives the pdfs for the winners and losers of the election; these can be directly compared 

to the data. 

 



Theorem 5: 

 

Proof:   

 

 

6.  Some empirical evidence 

Most of the variables in the model are not observable.  For example, we cannot 

directly observe how positive or negative advertising affects the candidates’ reputations, or 

the value the candidates place on winning the election.  Complete polling data would give us 

an idea of the candidates’ relative pre-election reputations, but most polls are conducted 

during ---- not before --- the campaigns, and polling questions and samples are not consistent 

across races.   

However, the theory does make some predictions that can be tested with available 

data.  The Campaign Media Analysis Group (CMAG) collects real-time data on political 

advertisements at the individual ad level, including such information as ad content, length, 

and time and station on which the ad was aired. The data are sold to candidates and news 

organizations, as well as the Wisconsin Advertising Project, which releases the data for 

academic use after a lag of several years, and after adding a significant amount of content 

analysis.  This includes some characterizations that can be used to determine whether ads are 

positive or negative.  One of these characterizations is “Is the favored candidate’s opponent 

mentioned in the ad?”  As candidates are unlikely to mention their opponents unless their 

purpose is to put them in a negative light, we consider any ad where the opponent is 



mentioned to be a negative ad, and all others to be positive.2

Recall that the theory makes the following predictions: 

  From this, we construct the 

fraction of each candidate’s advertising occurrences that are negative (“negativity”). 

 

1. The only pure strategy equilibria have either both candidates going 

completely negative or both candidates going completely positive. 

2. The frontrunner has an atom at 0 negativity and puts no weight near 

negativity of 1. 

3. The trailing candidate may have an atom at 0 negativity, but puts no 

weight above but near zero.  The trailing candidate may have weight at or 

near complete negativity. 

 

We use CMAG data from the 2002 races for governor, Senate and House of 

Representatives to construct the negativity measure for each candidate, and determine 

whether the candidates’ choices are consistent with the mixed strategy equilibria predicted by 

the theory.3

First, consider that if the equilibria were in pure strategies, the negativity between 

the winner and the loser of the race would show a strong correlation.  The simple 

  We drop from our sample races with more than two serious candidates, as 

our model addresses only two-candidate contests, and races that are effectively 

uncontested.  Our sample includes 280 candidates from the 140 races with two serious 

candidates who both purchased campaign advertising.    

                                                 
2 Other characterizations that can be used as measures of negativity are also available, but fewer ads could 
be characterized than with our favored measure.  However, the results using alternative measures are 
qualitatively similar to those presented here, and are available on request from the authors.   
3 We include only advertisements shown after the primaries in the relevant state, as a candidate --- 
particularly an incumbent --- might not have a clear sense of her opponent’s identity until after the primary.  
Election outcomes are from cnn.com. 



correlation between the negativity of the winners and losers is a rather weak 0.23, 

suggesting that most candidates are not employing pure strategies.  Figure 3 shows the 

histograms of negativity for all winning candidates, and separately for the losing 

candidates.   
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