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1 Introduction

Consider the problem of two countries engaged in preventing a common enemy from acquiring advanced

weapons. Each country independently expends resources devoted to prevention in its sphere of influence.

The enemy will try to acquire weapons from the least guarded location, but, if better-armed, the enemy

may strike at either country. Thus, success of the joint effort depends on how secure the least protected

source of weapons is. Also, each country possesses private information about the severity of the threat,

obtained from its intelligence agencies, along with other information about the benefits of alternative uses

of its resources. What determines each country’s success in such a joint endeavor? Would an information-

sharing agreement facilitate success? And would it be in each country’s individual interest to truthfully

reveal information, or would exaggerations prevail? How are information-sharing and prevention activities

affected by the asymmetries between countries, e.g., better information, greater vulnerability to an enemys

blow, the enemys declared intent to strike at one country, and the like?

In this paper, we analyze a situation that shares important characteristics with the above example:

• Distinct parties must take coordinated action to thwart a common enemy;

• Success of the common effort is determined, in large measure, by the party that expends the least effort

(in other words, this is an example of weakest-link technology, e.g. Hirshleifer, 1983);

• All parties possess private information that may affect their willingness to take action;

• Information-sharing is voluntary and non-verifiable (e.g., because of concerns about the security of

sources); and

• Contracts specifying side-payments are not enforceable in a court of law.

First, we characterize equilibrium of the symmetric, one-shot game without communication. Although

multiple equilibria exist, we are able to identify the “best” one from the players’ perspective: i.e., the equilib-

rium that maximizes the interim expected payoff of any type. Our characterization highlights a property of

the distribution of private information about the marginal cost of effort that we label “regularity.” We show

that regularity is a necessary and sufficient condition for the best equilibrium to be strictly decreasing in the

marginal cost of effort. However, even under regularity, all equilibria of the game—including the best—are

inefficient, in any of the definitions in Holmström and Myerson (1983) that are appropriate for environments

with private information.

We then perform comparative statics on the distribution of marginal costs for the symmetric case and

focusing on the best equilibrium. Reasonably, we show that first-order stochastic dominance shifts that lead
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to higher costs result in players being worse-off. The results for second-order stochastic dominance (even

with single-crossing cdfs) are less clear cut, especially without regularity, and we show examples in which

the less-risky distribution may have a better (i.e. yielding higher interim expected payoffs) or a worse best

equilibrium. We extend our comparative static analysis to regular, two-player situations where contributors

are asymmetric. In particular, we show that if one player’s cost distribution improves (worsens) in the sense

of first-order stochastic dominance, then both player’s contributions and utility increase (decrease).

Finally, we analyze communication. We introduce a pre-play exchange of messages, and we assume that

post-message play continues with the appropriate best equilibrium. We consider two communication proto-

cols. In the first communication is limited, a situtation meant to capture the fact that not all information

may be transmissible—for instance, there may be overriding security reasons. In particular, we focus infor-

mation transmission that only conveys whether the situation is favorable. We model this setup as having

marginal costs that may be drawn from one of two distributions ordered by first-order stochastic dominance,

and agents can send a message that identifies their cost distribution. In this case, we show that it is im-

possible for agents to be sincere in equilibrium. We then consider the case of unlimited communication,

in which agents can reveal the exact realization of their cost parameter. In this setup, full-revelation of

information is an equilibrium outcome, and agents are as well-off as in the best equilibrium of the game with

full-information.

Two strands of literature are related to our work. First, our framework uses the weakest-link aggregator

function, and thus belongs to the literature stemming from the seminal paper of Hirshleifer (1983). This

extensive literature has analyzed many variations of the weakest-link public good game (e.g., Vicary 1990,

Sandler and Vicary 2001, and Vicary 2002 consider different timings of contributions and the possibility of

monetary or in-kind transfers), and has applied the analysis to various situations, from levees (Hirshleifer

1983) to security perimeters in alliances (Murdoch 1995), to cooperation in dredging successive stretches

of a navigation channel (Harrison and Hirshleifer, 1989). However, we are not aware of the existence of

a formal analysis of the effects of private-information within this framework, let alone of a treatment of

communication.

The second strand of related literature concerns the voluntary provision of public goods with private

information without an uninformed mediator who has full-commitment ability (see, e.g., Alboth et al. 2001,

Barbieri and Malueg 2008a and 2008b, Laussel and Palfrey 2003, Martimort and Moreira 2010, and Menezes

et al. 2001). This strand of the literature has analyzed different variations of the two-player subscription and

contribution games (using the terminology of Admati and Perry, 1991), in which the success of the collective

action depends on the sum of individual efforts and contributions may or may not be refunded. Also, within

this strand of the literature, Agastya et al. (2007) provide an analysis of communication in a two-person
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contribution game. In contrast, we analyze the weakest-link technology, where success depends only on the

lowest effort.

The rest of the paper proceeds as follows. Section 2 describes the model. Section 3 characterizes equi-

librium and analyzes its efficiency properties. Comparative statics for the symmetric and asymmetric case

are in Section 4, while Section 5 analyzes communication. Section 6 concludes. Technical proofs are in the

Appendix.

2 The Model

We study the problem of n (≥ 2) players who simultaneously contribute to the funding of a public good.

Each player’s benefit from amount G of the public good is given by v(G), where v′ > 0 and v′′ < 0 for

all G > 0. Players differ in their costs of contributing to the public good. We let ci denote the marginal

cost to player i. We model this provision game as one of private information, where each player’s cost is

independently drawn from the cumulative distribution F having support [c, c̄]. For now we assume c̄ ≤ v′(0),

so all types c < c̄ are potentially willing to contribute. We can relax this later as desired. A player knows

his own marginal cost of provision but no one else’s. If player i contributes gi and the realized value of the

public good is G, then player i’s net payoff is v(G)− cigi.

In this paper we study the “Weakest-Link” “aggregator function”: if the vector of contributions is

(g1, . . . , gn), then the realized level of the public good is GWL ≡ min{g1, . . . , gn}.

3 Equilibria

We next derive Bayesian equilibria. Taking as given the strategies of the others, a player chooses his

own contribution to maximize −cg + E[ v(G) ]. We denote the equilibrium strategy function of player i as

gi : [c, c̄] → <+. Usual incentive compatibility arguments imply that every gi will be weakly decreasing in

cost. Moreover, a Bayesian equilibrium (gj)j must satisfy g1(c) = · · · = gn(c), for otherwise the player

with the largest contribution at c could reduce his contribution (when his cost parameter is c) to mink gk(c)

and thereby raise his expected payoff (as the realized level of the public good would not change). Because

equilibrium strategies are monotonic, they are almost everywhere differentiable, which yields the following

necessary condition for equilibrium.

Lemma 1. If gi(ci) is an element of the best response of type ci of player i to {gj}j 6=i, then the following
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two inequalities must hold for gi(ci) > 0:

−ci + v′(gi(ci))
∏
j 6=i

lim
γ↑gi(ci)

Pr(gj ≥ γ) ≥ 0, (1)

and

−ci + v′(gi(ci))
∏
j 6=i

lim
γ↓gi(ci)

Pr(gj ≥ γ) ≤ 0; (2)

for gi(ci) = 0 only (2) applies.

The proof of Lemma 1 essentially is a check that at gi(ci) > 0 the left-hand derivative of player i’s payoff

is nonnegative and the right-hand derivative is nonpositive. In the next two propositions we apply Lemma 1

to considerably simplify the search for equilibria. The first proposition shows equilibrium strategies are

continuous; the second shows all equilibria are symmetric.

Proposition 1. All equilibrium strategies are continuous.

We have already seen that g1(c) = . . . = gn(c) in equilibrium, but this does not exclude the possibility

that players’ strategies are not all identical. The next proposition does this.

Proposition 2. All equilibria are symmetric.

We now characterize all equilibria, which, by Propositions 1 and 2, are continuous and symmetric. With

the weakest-link technology, the level of the public good is determined by the player with the highest cost. It

is therefore helpful to define c[k]
1 as the maximum realization of k independent draws from the distribution F .

Let H and h denote the cumulative distribution and density function of c[n−1]
1 . The symmetric equilibrium

strategy g is characterized in the following proposition.

Proposition 3 (Characterization). Consider a continuous and non-increasing function g : [c, c̄]→ <+. The

function g is a symmetric equilibrium strategy if and only if, for almost all c ∈ [c, c̄], all of the following

conditions are satisfied if g(c) > 0:

−c̄+ v′(g(c̄)) ≥ 0, (3)

−c+ v′(g(c))H(inf{s : g(s) = g(c)}) ≤ 0, ∀c such that g is not strictly decreasing at c, (4)

−c+ v′(g(c))H(sup{s : g(s) = g(c)}) ≥ 0, ∀c such that g is not strictly decreasing at c; (5)

and v′(g(c)) =
c

H(c)
, ∀c such that g is strictly decreasing at c. (6)

If g(c) = 0, then only (4) applies.
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It is trivial to verify that g(c) ≡ 0 is a symmetric equilibrium strategy. It is more interesting to identify

equilibria where g is, at least in part, strictly decreasing. Using (6) and the fact that v′ is strictly decreasing,

we see that g can indeed be strictly decreasing only if c/H(c) is strictly increasing. We will say that the

provision game with weakest link technology is regular if c/H(c) is strictly increasing over [c, c̄]. Because

H(c) = (F (c))n−1 and h(c) = (n− 1)(F (c))n−2f(c), we see that

0 <
d(c/H(c))

dc
=

(F (c))n−2 [F (c)− (n− 1)f(c)c]
(F (c))2(n−1)

holds if and only if
f(c)
F (c)

<
1

(n− 1)c
. (7)

We can use the above inequality to derive a necessary condition that F must satisfy for regularity. The

inequality in (7) yields

− log(F (c)) = log(F (c̄))− log(F (c)) =
∫ c̄

c

d log(F (t))
dt

dt <

(
1

n− 1

)∫ c̄

c

1
t
dt =

(
1

n− 1

)
log
( c̄
c

)
,

which in turn implies F (c) > (c/c̄)
1

n−1 for any c ∈ (c, c̄). From the previous inequality, we also conclude that

if F is atomless and c > 0, then the distribution is not regular.

Nonetheless it is possible to describe with relative ease all equilibria of the weakest-link private provision

game with the help of Figure 1. The red curve depicts the function c/H(c). The black line depicts the function

v′(g(c)), for a symmetric equilibrium strategy g(c). It is convenient to begin the description of equilibrium

strategies at c̄, noting that, by (3), v′(g(c̄)) must lie on or above c̄/H(c̄) = c̄ (recall the assumption that

v′(0) ≥ c̄). Starting at c = c̄ and moving backwards towards c, there are only two ways for v′(g(c)) to

move: it either follows c/H(c) or it stays flat. However, the first option is open only if v′(g(c)) = c/H(c)

and if c/H(c) is increasing. Therefore, in the regular case, if for some c̃ ∈ [c, c̄] we have v′(g(c̃)) > c̃/H(c̃),

then v′(g(c)) is constant on c ∈ [c, c̃]. This is the case depicted in Figure 1. Similarly, if c/H(c) is strictly

decreasing (a situation guaranteed by F convex), then all equilibrium strategies are flat. Even when c/H(c)

displays many increasing and decreasing segments, we can easily identify the equilibrium with the largest

interim expected contributions using the following procedure:

1. Start at v′(g(c̄)) = c̄/H(c̄) = c̄ (this is possible because of the assumption that v′(0) ≥ c̄), and, moving

in the direction of c, begin by follow c/H(c). Set the counter z = 1.

2. Proceed with v′(g(c)) that mirrors c/H(c) until the latter function reaches a local minimum at, say,

c̃z.
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c̃/H(c̃)

v′(g(c)) = c/H(c)

v′(g(c)) > c/H(c)

c̃ c̃1c c

c/H(c), v′(g(c))

c̄

Figure 1: Multiple equilibria are possible even in the regular case.

3. Let v′(g(c)) remain flat at v′(g(c̃)) = c̃/H(c̃) until c = c unless a further intersection with c/H(c)

occurs at, say, c∗z < c̃z,

4. Increase the counter z by 1 and repeat step 2

As depicted in Figure 2, the above procedure identifies the lowest v′(g(c)) in equilibrium and hence the

largest possible g(c).

v′(g(c)) < c/H(c)

c̃2 c∗1 c̃1 c̄

c̃2/H(c̃2)

c̃1/H(c̃1)

v′(g(c)) = c/H(c)

v′(g(c)) < c/H(c)

v′(g(c)) = c/H(c)

c c

c/H(c), v′(g(c))

Figure 2: Need a caption here.

The above procedure maps out as the candidate v′(g(c)) for the best equilibrium the largest weakly

increasing function that is bounded above by c/H(c). Now it is easy to account for the situation where

v′(0) < c̄. The best equilibrium is found where v′(g(c)) is equal to the largest weakly increasing function

bounded above by max{c/H(c), v′(0)}.

The equilibrium identified by the previous procedure is especially important because it is the one that

maximizes the interim expected payoff of any type. To see this, the next lemma restates the familiar incentive-
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compatibility result to fit our framework where the asymmetric information is about c, the marginal cost of

contributions. We first note that, given a the symmetric strategy g, if player 1 has marginal cost c but acts

as if his cost is c′, his payoff will be

U(c′ | c) = −cg(c′) +
∫ c′

c

v(g(c′))h(c̃) dc̃+
∫ c̄

c′
v(g(c̃))h(c̃) dc̃

= −cg(c′) +H(c′) v(g(c′)) +
∫ c̄

c′
v(g(c̃))h(c̃) dc̃. (8)

We now have the following.

Lemma 2 (Utility in equilibrium). Let the utility in any equilibrium be U∗(c) ≡ U(c′ = c | c), where U(c′ | c)

is defined in (8), for some equilibrium strategy g(c). We then have

U∗(c) = U∗(c̄) +
∫ c̄

c

g(s) ds.

By Lemma 2, interim utility is maximized by choosing the largest possible g(c) and the largest U∗(c̄). As

discussed, the earlier procedure identifies the largest possible g(c) in equilibrium. Moreover, in any symmetric

equilibrium, type c̄ is sure the quantity of public good provided is g(c̄) for a payoff of v(g(c̄))−c̄g(c̄). Therefore,

and as prescribed by the previous procedure, U∗(c̄) is maximized when v′(g(c̄)) = c̄ (implicitly we have again

used v′(0) ≥ c̄).

As our leading example of a value function we use v(G) = G− 1
2G

2. In this case we see that, assuming

regularity, the equilibrium contribution strategy is g(c) = 1−c/H(c). The associated equilibrium provision

of the public good is therefore E[GWL ] = E
[
g
(
c
[n]
1

) ]
. The cdf of the maximum cost, c[n]

1 , is given by

M(t) = (F (t))n, with density m(t) = n(F (t))n−1f(t). Consequently,

E[GWL ] =
∫ 1

0

g(t)m(t) dt (9)

= 1−
∫ 1

0

(
t

(F (t))n−1

)
n(F (t))n−1f(t) dt (10)

= 1− n
∫ 1

0

tf(t) dt (11)

= 1− nE[ c ] . (12)

Example 1 (Power function costs).

Suppose F (c) = ct on [0, 1], where t > 0. Here E[ c ] = t/(t + 1). Then c/H(c) = c1−(n−1)t is increasing

if and only if t < 1/(n − 1), yielding the regular case. Suppose v(G) = G − 1
2G

2. In the regular case, the

equilibrium strategy is g(c) = 1− c1−(n−1)t, which is positive for all c < 1. Also, if t < 1/(n− 1), then the
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above analysis implies

E[GWL ] = 1− n
(

t

t+ 1

)
,

which approaches 0 as t ↑ 1/(n− 1).

We now investigate the efficiency properties of equilibrium. We show that no equilibrium is efficient, for

any of the definitions of efficiency that are appropriate for environments with private information, as described

by Holmström and Myerson (1983). Indeed, the main result of this section shows an alternative provision

mechanism with an equilibrium allocation that ex post dominates any equilibrium allocation characterized

in Proposition 3.

The alternative mechanism is very simple. First, each agent makes a report c′i to the designer. Then, the

public good produced G is such that v′(G) = max{c′1, . . . , c′n} and all players contribute G. For any equilib-

rium of the weakest-link game characterized in Proposition 3, let ueqi (c1, . . . , cn) denote the ex post payoff

to player i; let ualti (c1, . . . , cn) denote the ex post payoff to player i in the alternative mechanism described

above, after truthful reporting by all players. We then obtain the following (the proof is in the Appendix).

Proposition 4 (Ex post incentive Pareto-dominance). The alternative mechanism is incentive compati-

ble and individually rational. Moreover, ualti (c1, . . . , cn) ≥ ueqi (c1, . . . , cn) for all (c1, . . . , cn), with strict

inequality with positive probability.

This Pareto improvement brought about by the alternative mechanism can be understood as follows. For

each realized cost, c, a player has a most desirable level of the public good, namely, that for which v′(G) = c.

The payoff v(G) − cG is concave in G. The alternative mechanism has all players contribute to the level

that funds the most-preferred level for the highest-cost player. All players are willing to contribute at least

this much because all of their most-preferred levels of the public good are at least this large. In equilibrium,

however, each player with c < c̄ contributes less than necessary to fund his most-preferred level, so the

realized level of the public good is less than the preferred level for the highest-cost player. Thus, for for

almost all realizations of costs, the alternative mechanism moves the outcome closer to each player’s most

desired result, so that all players’ payoffs increase.

4 Comparative statics

Here we explore how changes in the distribution of players’ costs affects equilibrium strategies. One naturally

expects that a shift to lower costs, in the sense of first-order stochastic dominance, would lead to contribution

strategies that are greater, as for each realization of cost one believes the other players’ costs are likely to be

low and therefore they are more disposed toward greater contributions. Indeed, if F2 first-order stochastically

8



dominates F1, then for any equilibrium strategy of the game with distribution of costs given by F1, there is

in the game with distribution F2 an equilibrium strategy that is everywhere at least as large as when the

distribution is F1. This follows from the simple fact that for all c, c/F1(c) ≤ c/F2(c), so the greatest weakly

increasing function bounded above by c/F1(c) is everywhere no larger than the greatest weakly increasing

function bounded above by c/F2(c).

Proposition 5 (First-order stochastic dominance). Suppose F1 and F2 are two distributions of cost, and

suppose that F2(c) ≤ F1(c) for all c, with strict inequality for some c. For contributors, the best equilibrium

under F1 is better than the best equilibrium under F2.

Proposition 6 (Single-crossing cdfs). Suppose there are n contributors. Suppose F1 and F2 are regular

distributions and there exists c0 ∈ (c, c̄) such that F2(c) < F1(c) for c ∈ (c, c0) and F2(c) > F1(c) for

c ∈ (c0, c̄). Let gi denote the best equilibrium strategy under distribution Fi, i = 1, 2. Then g1(c) > g2(c) for

c ∈ (c, c0) and g1(c) < g2(c) for c ∈ (c0, c̄).

The previous proposition includes the case where F1 and F2 are ordered by second-order stochastic

dominance, with F2 being less risky than F1 and the cdfs crossing just once on (c, c̄). This general relationship

does not extend to the case where distributions are not regular. In this case, the less-risky distribution may

have a better or a worse best equilibrium, as illustrated by the next two examples. These examples rely on

the beta distribution. Let B(c | a, b) denote the cdf of a beta distribution on [0, 1] with parameters a and b,

so the mean of the distribution is a/(a+ b).

0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

c

c/B(c | 4, 4)

c/B(c | 2, 2)

Figure 3: Graphs of c/B(c | a, b) in Example 2

Example 2. Consider the two beta distributions B(c | 2, 2) and B(c | 4, 4).
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These distributions are symmetric about 1/2, with B(c | 4, 4) being less risky than B(c | 2, 2). Over

[0, 1/2), c/B(c | a, b) exceeds 1 for both distribution. The following figure shows c/B(c | 2, 2) > c/B(c | 4, 4)

for all c ∈ (1/2, 1). Therefore the best equilibrium under the less risky distribution B(· | 4, 4) is better than

the best equilibrium under distribution B(· | 2, 2).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

c

c/B(c | .75, .75)

c/B(c | .25, .25)

Figure 4: Graphs of c/B(c | a, b) in Example 3

Example 3. Consider the two beta distributions B(c | 1/4, 1/4) and B(c | 3/4, 3/4).

These distributions are symmetric about 1/2, with B(c | 3/4, 3/4) being less risky than B(c | 1/4, 1/4).

Over (1/2, 1), c/B(c | ai, bi) exceeds 1, i = 1, 2; and, over (0, 1/2), c/B(c | a1, b1) and c/B(c | a2, b2) are

strictly increasing with c/B(c | .25, .25) < c/B(c | .75, .75). Therefore the best equilibrium under the less

risky distribution B(· | .75, .75) is worse than the best equilibrium under distribution B(· | .25, .25).

4.1 Extension: Asymmetric Players

We now consider a two-player, asymmetric game. While we maintain the assumption that the support of

marginal costs is [c, c̄] for each player, we now allow for distinct cumulative distribution of costs F1 and F2.

Also, for simplicity we only focus on equilibrium strategies that are strictly decreasing. Therefore, fixing 2’s

strategy g2(c2), type c1’s utility of contributing γ is

−c1 γ + v(γ) Pr(g2 ≥ γ) +
∫
{c2: g2(c2)<γ}

v(g2(c2)) dF2(c2).
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Denoting the inverse contribution function φ2 ≡ g−1
2 , and differentiating with respect to γ, we obtain the

first-order condition

v′(γ)F2(φ2(γ))− c1 = 0.

Replicating the same steps for Player 1 and noticing that, in equilibrium, c1 = φ1(g1(c1)), we obtain this

system of functional equations that characterizes equilibrium, for any equilibrium contribution level γ:


v′(γ)F2(φ2(γ))− φ1(γ) = 0

v′(γ)F1(φ1(γ))− φ2(γ) = 0.
(13)

We illustrate equilibrium in the next example, which reprises our earlier Example 1

Example 4 (Asymmetric Power function costs.).

Suppose F1(c) = ca and F2(c) = cb on [0, 1], where a < b and ab < 1. Also, suppose v(G) = G − 1
2G

2.

Condition (13) yields (φ2(γ))1−ab = (1−γ)a+1 and (φ1(γ))1−ab = (1−γ)b+1, thus, the equilibrium strategies

are g1(c) = 1 − c
1−ab
1+b , and g2(c) = 1 − c

1−ab
1+a . As it is readily checked, we have g2(c) > g1(c). Note that

this occurs while F2 first-order stochastically dominates F1—which in our context means that costs for

Player 2 are “larger.” This is a reflection of the complementarity of efforts in the weakest-link framework:

being matched with a worse partner makes a player contribute less. This interpretation is reinforced by the

comparison to the symmetric case in Example 1, for which we take F1(c) = F2(c) = ca and we obtain an

equilibrium contributions g0(c) = 1− c1−a. Note that we obtain g2(c) < g0(c). Indeed,

g2(c) < g0(c) ⇐⇒ 1− c
1−ab
1+a < 1− c1−a

⇐⇒ c1−a < c
1−ab
1+a

⇐⇒ ln
(
c1−a

)
< ln

(
c

1−ab
1+a

)
⇐⇒ 1− ab

1 + a
< 1− a (since c < 1)

⇐⇒ 1− ab < 1− a2

⇐⇒ a < b,

and a < b is assumed. Thus, the overall ranking of contribution functions is g0(c) > g2(c) > g1(c), which

shows that, in response to a first-order-stochastic-dominance increase in the costs of Player 2, both players

end up reducing their contributions.

The patterns highlighted in Example 4 are general, as the next Proposition demonstrates.
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Proposition 7 (Asymmetric first-order stochastic dominance shifts). Consider the game where players’

distributions are given by the pair (F1, F2) and denote the equilibrium contribution functions as g1 and g2.

Now consider the game where players’ distributions are given by the pair (F1, F̂2) and denote the equilibrium

contribution functions as ĝ1 and ĝ2. Let F̂2 first-order stochastically dominate F2. Then

ĝ1(c1) < g1(c1) and ĝ2(c2) < g2(c2).

Proof. We prove the proposition by showing that the types that contributes the same amount γ in the two

games is smaller under (F1, F̂2). In other words, recalling our definition of inverse, we show φ̂1(γ) < φ1(γ)

and φ̂2(γ) < φ2(γ). Since strategies are strictly decreasing, continuous, and end at the same level in both

games—the level that maximizes (for g) −c̄g + v(g)—this implies the conclusion of the proposition. We

proceed graphically, first by fixing γ, and then by using the system of equations in (13) to define φ1(γ) and

φ2(γ), as in Figure 4.1.

The first-order stochastic shift is represented by the curve in red. Clearly, each component of the solution

of the system (13) becomes smaller.

x = v′(γ)F̂2(y)

1

1

y = v′(γ)F1(x)

x = v′(γ)F2(y)

c x

yφ2(γ)

φ1(γ)

φ2(γ)

φ̂1(γ)

φ̂2(γ)

Figure 5: Graphs for the proof of Proposition 7.
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5 Communication

We now turn to the issue of communication. We augment our basic game with a round of pre-play commu-

nication. Thus, the timing of the game is as follows:

1. Agents receive their private information;

2. Agents exchange non-binding messages;

3. Taking into account their private information, messages sent, and updating upon the messages received,

agents make their contribution decisions; and then

4. Payoffs are received.

In this framework, the analysis in the previous sections corresponds to subgames starting at point 3. In

particular, while we have shown that multiple equilibria exist, we focus on the best equilibrium, for simplicity

and to avoid creating spurious multiplicity.

Similarly to Agastya et al. (2007), we consider two communication protocols: limited and unlimited. We

cast limited communication in a framework meant to capture that, at times, it is impossible for agents to

reveal all of their information in detail—for instance, the security of their sources may be compromised by

such openness. We model this situation as one in which marginal costs are drawn from a favorable or an

unfavorable distribution, and agents may communicate which distribution, but not the exact realization of

the cost. We demonstrate that truthful revelation of information is not an equilibrium in the next example.

Example 5.

Consider two players and two possible distributions of the cost, F and F̂ , with F first-order stochasticallly

dominated by F̂ . Each player first learns from which distribution its costs are drawn from. Then players

may exchange a message identifying whether their cost distribution is “favorable” (F ), or “unfavorable”

(F̂ ). Finally, agents receive their private information, observe the history of messages, and make their

contribution decision. It turns out that truthful revelation of information is not possible. Indeed, it is an

immediate consequence of Proposition 7 that Player 1 benefits from convincing 2 that its cost distribution

is F rather than F̂ , since 2 will contribute more. This benefit accrues to 1 for any realization of its cost

parameter. Thus, Player 2 cannot expect 1 to be truthful.

We now turn to the case of unlimited communication, assuming that players’ messages can be as specific

to include their exact realization of the cost. In this case, it turns out that the results are surprisingly

positive, as the next proposition demonstrates.
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Proposition 8 (Full-revelation of information). There exists an equilibrium of the game with unlimited com-

munication that implements the alternative mechanism allocation in Proposition 4, in which, corresponding

to cost realizations (c1, . . . , cn), the level of public good produced is G is such that v′(G) = max{c1, . . . , cn}

and all players contribute G.

Proof. The proof proceeds by backwards induction. First note that, assuming truthful, full revelation of

information, not only is a contribution of G such that v′(G) = max{c1, . . . , cn} an equilibrium of the full-

information, weakest-link provision game; it is the best equilibrium, since we do not allow for transfers. This

is the critical step of the argument. The rest of the argument follows as for Proposition 4. In particular,

considering incentives at the interim-stage, note that this allocation is the same prescribed in the alternative

mechanism allocation in Proposition 4. Thus, as demonstrated in the Proof of Proposition 4, and in particular

in equation (19), truthful revelation of information is an equilibrium.

In other words, Proposition 8 states that cheap-talk resolves all inefficiencies deriving from asymmetric

information, as long as unlimited information revelation is possible.
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Appendix

Proof of Lemma 1. We can rewrite type ci’s utility of contributing γ as

−ci γ + v(γ)
∏
j 6=i

Pr(gj ≥ γ) +
∑
j 6=i

∫
{cj : gj(cj)<γ}

v(gj(cj)) ·
∏
s6=i,j

Pr(gj(cj) < gs)

 f(cj) dcj . (14)

For a sufficiently small ε > 0 and for any j, gj is either strictly decreasing when taking values in (gi(ci) −

ε, gi(ci)), or there is no type cj such that sj(cj) ∈ (gi(ci) − ε, gi(ci)). In the latter case, both the term

Pr(gj ≥ γ) and the set {cj : gj(cj) < γ} are (locally) independent of γ, so they behave as constants in the

first-order condition for optimality of γ = gi(ci). In the former case, the inverse of gj is locally well-defined.

Denoting with J the set of players for whom this is the case, we can then rewrite (14) as

−ci γ + v(γ)
∏
j 6=i

Pr(gj ≥ γ) +
∑

j 6=i, j /∈J

∫
{cj : gj(cj)<γ}

v(gj(cj)) ·
∏
s 6=i,j

Pr(gj(cj) < gs)

 f(cj) dcj

+
∑

j 6=i, j∈J

∫ c̄j

g−1
j (γ)

v(gj(cj)) ·
∏
s6=i,j

Pr(gj(cj) < gs)

 f(cj) dcj ,

and the derivative with respect to γ of the above is

−ci + v′(γ)
∏
j 6=i

Pr(gj ≥ γ) +
∑

j 6=i, j∈J

v(γ)f(g−1
j (γ))

dg−1
j (γ)
dγ

∏
s 6=i,j

Pr(gs ≥ γ)

−
∑

j 6=i, j∈J

dg−1
j (γ)
dγ

v(gj(g−1
j (γ))) ·

∏
s6=i,j

Pr
(
gj(g−1

j (γ)) < gs
) f((g−1

j (γ)).

Thus, the necessary first-order condition from below simplifies as

−ci + v′(γ)
∏
j 6=i

Pr(gj ≥ γ) ≥ 0, ∀γ ∈ (gi(ci)− ε, gi(ci)),

from which we derive (1). Clearly, if gi(ci) = 0, then the previously displayed condition is not applicable.

The inequality in (2) can be derived along similar lines.

Proof of Proposition 1. We prove this by showing that the best-reponse of type ci to the equilibrium strate-

gies {gj}j 6=i contains only one value. By contradiction, suppose g̃ > ĝ are both optimal choices against

{gj}j 6=i. Applying Lemma 1, and in particular (1) to g̃ and (2) to ĝ, we obtain

−ci + v′(g̃)
∏
j 6=i

lim
γ↑g̃

Pr(gj ≥ γ) ≥ −ci + v′(ĝ)
∏
j 6=i

lim
γ↓ĝ

Pr(gj ≥ γ)
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which is impossible unless
∏
j 6=i lim

γ↓ĝ
Pr(gj ≥ γ) =

∏
j 6=i lim

γ↑g̃
Pr(gj ≥ γ) = 0, because v′(g̃) < v′(ĝ) by strict

concavity and because ∏
j 6=i

lim
γ↑g̃

Pr(gj ≥ γ) ≤
∏
j 6=i

lim
γ↓ĝ

Pr(gj ≥ γ) ,

since g̃ > ĝ. If
∏
j 6=i lim

γ↓ĝ
Pr(gj ≥ γ) =

∏
j 6=i lim

γ↑g̃
Pr(gj ≥ γ) = 0, it is immediate to verify that g̃ is not optimal:

a small decrease in contribution leaves the expected value of the public good unchanged.

Proof of Proposition 2. Without loss of generality, assume that the strategies of players 1 and 2 are not the

same. There are two cases to consider. In the first, at the moment c̃ ≥ c in which g1 and g2 become different,

both strategies are strictly decreasing. This implies that there exists an interval of contribution levels such

as g̃ in Figure 5 in which the same contribution is made by two different types.

g2(c)

g̃

g1(c)

c̃2c̃1
c c̃

c
c̄

Figure 6: Both strategies are decreasing

Because the number of players is finite, we can choose g̃ so that no strategy of any player has a flat spot

at g̃. Note how Lemma 1 leads to

v′(g̃)F (c̃2)
∏
s>2

Pr(gs ≥ g̃) = c̃1. (15)

Indeed, the limits in (1) and (2) are identical as soon as there is no gj that has a flat spot at g̃. Similarly,

we obtain

v′(g̃)F (c̃1)
∏
s>2

Pr(gs ≥ g̃) = c̃2. (16)

Equations (15) and (16) imply F (c̃1) c̃1 = F (c̃2) c̃2, which is impossible because F (c) c is strictly increasing

and c̃1 6= c̃2. The previous argument can be extended to any segment of equilibrium strategies to conclude

that there cannot exist a range of contributions such that equilibrium strategies are strictly decreasing and

different. Therefore, in our quest for asymmetric equilibria, we can restrict attention to situations such that,

at the moment in which the first divergence between strategies occurs, at least one strategy remains flat,

as depicted in Figure 7 below, where g1 and g2 are flat at the beginning, but, for costs larger than c̃1, g2
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becomes strictly decreasing at least up to c̃2 while g1 remains flat at least up to c̃2.

g2(c)

g̃

ĝ

g1(c)

c̃2c̃1
c c

c̄

Figure 7: One strategy is locally constant and the other is decreasing.

Note that, by the previous discussion, there cannot be any contributions of player 1 between ĝ and g̃, so

by Proposition 1, this implies that player 1’s strategy must be constant all the way up to c̄1. Now, applying

equation (2) in Lemma 1 for type c̃2 of player 2, we obtain

−c̃2 + v′(ĝ)
∏
j 6=2

lim
γ↓ĝ

Pr(gj ≥ γ) ≤ 0. (17)

As for type c̃2 of player 1, applying equation (1) in Lemma 1, we obtain the necessary condition

−c̃2 + v′(g̃)
∏
j 6=1

lim
γ↑g̃

Pr(gj ≥ γ) ≥ 0. (18)

The conditions (17) and (18) are incompatible. To see this, observe that equations (17) and (18) imply

v′(ĝ)
∏
j 6=2

lim
γ↓ĝ

Pr(gj ≥ γ) ≤ v′(g̃)
∏
j 6=1

lim
γ↑g̃

Pr(gj ≥ γ) ,

which, because v′(ĝ) > v′(g̃), in turn implies

∏
j 6=1

lim
γ↑g̃

Pr(gj ≥ γ) >
∏
j 6=2

lim
γ↓ĝ

Pr(gj ≥ γ) .

And this last inequality is contradicted by

∏
j 6=1

lim
γ↑g̃

Pr(gj ≥ γ) ≤
∏
j 6=2

lim
γ↑g̃

Pr(gj ≥ γ) ≤
∏
j 6=2

lim
γ↓ĝ

Pr(gj ≥ γ) ,

where the first inequality follows because g1 is uniformly larger than g2, and the second inequality follows
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because eventually all elements of the subsequence converging to g̃ are larger than all elements of the

subsequence converging to ĝ, since g̃ > ĝ. Therefore we can exclude the case depicted in Figure 7 as well,

thus concluding the proof, because any other possible configuration would involve jumps, which are ruled

out by Proposition 1.

Proof of Proposition 3. Necessity. Follows from Lemma 1. In particular, when g is strictly decreasing at c,

the limits in (1) and (2) are the same, hence one obtains (6). Sufficiency. The derivative of U(c′ | c) (see

(8)) with respect to c′ is, almost always,

∂U

∂c′
= g′(c′) [−c+H(c′)v′(g(c′))] .

This, along with condition (6), implies that any deviation from g(c) to a different contribution γ such that

γ = g(c′) for some c′ ∈ [c, c̄] is not profitable. Indeed, consider for instance c′ > c. We obtain

U(c′ | c) = U(c′ = c | c) +
∫ c′

c

g′(c̃) [−c+H(c̃)v′(g(c̃))] dc̃.

By condition (6), the integrand in the above expression is either zero (when g′(c̃) = 0), or it is strictly

negative for any c̃ > c:

g′(c̃) [−c+H(c̃)v′(g(c̃))] = g′(c̃) [−c+ c̃] < 0.

Therefore, since g is continuous, it follows that U(c′ | c) < U(c | c). The case c′ < c is similar. To conclude

the proof, we now rule out deviations to contributions γ outside the range of g. Because of the weakest-link

technology, it is obvious that if γ > g(c), then a deviation to γ is dominated by one to g(c). Consider now

γ < g(c̄). The utility of such deviation is −cγ + v(γ), with derivative

−c+ v′(γ) > −c+ v′(c̄) ≥ 0,

where the last inequality follows from (3). Therefore, a deviation to γ < g(c̄) is dominated by one to g(c̄),

thus concluding the proof of sufficiency.

Proof of Lemma 2. Using (8), we obtain

dU∗(c)/dc = −g(c)− cg′(c) + h(c)v(g(c)) +H(c)v′(g(c))g′(c)− v(g(c))h(c)

= −g(c)− g′(c)(c−H(c)v′(g(c)))

= −g(c),
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where the last equality follows from Proposition 3, since almost everywhere either g′(c) = 0 or g′(c) < 0, in

which case v′(g(c))H(c) = c. The lemma follows by integration of dU∗(c)/dc = −g(c).

Proof of Proposition 4. For compactness, let φ ≡ (v′)−1; so equilibrium contributions are φ(c/H(c)) when

strictly decreasing and the contributions in the alternative mechanism are φ(max{c1, . . . , cn}). We begin by

showing incentive compatibility of the alternative mechanism. If all other agents are truthful, the interim

expected utility of an agent of type c that announces c′ is

Ualt(c′|c) = H(c′) (v(φ(c′))− cφ(c′)) +
∫ c̄

c′
(v(φ(c̃))− cφ(c̃))h(c̃) dc̃,

so that

∂Ualt(c′|c)
∂c′

= H(c′)φ′(c′) (v′(φ(c′))− c)


> 0 ∀c′ ∈ [c, c)

= 0 if c′ = c

< 0 ∀c′ ∈ (c, c̄] ,

(19)

where the signs follow because φ′ < 0 by strict concavity of v. Thus, truthful revelation is optimal and

incentive compatibility is proven.

We now turn to ex post Pareto-dominance. We begin by establishing the following upper bound on

equilibrium contributions:

φ(c) > g(c) ∀c ∈ [c, c̄), (20)

where g is any symmetric equilibrium strategy. To verify the condition in (20), it is convenient to work

with the equivalent relation c < v′(g(c)). Note first that equation (6) in Proposition 3 yields the following

implication:

g′(c) > 0⇒ v′(g(c)) = c/H(c) > c, (21)

which, along with (3) and the continuity of g established in Proposition 1, implies that there exists ε > 0

such that

c < v′(g(c)) ∀c ∈ (c̄− ε, c̄). (22)

Next, by contradiction suppose c∗ ≥ v′(g(c∗)) for some c∗. Then, by continuity of g and by (22), there must

exist c∗∗ > c∗ such that c∗∗ ≥ v′(g(c∗∗)) and g′(c∗∗) > 0. The last two inequalities contradict (21), therefore

condition (20) is verified and the upper bound on equilibrium contributions is established.

We conclude the proof of ex post Pareto-dominance focusing on player 1 for concreteness. Fix any

realization of costs (c1, . . . , cn) and first suppose c1 ≤ c̃ < c̄. Then ueq1 (c1, . . . , cn) = v(g(c̃)) − c1g(c1), so,
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because g(c̃) ≤ g(c1), we obtain

ueq1 (c1, . . . , cn) ≤ v(g(c̃))− c1g(c̃). (23)

By c1 ≤ c̃ < c̄, we have

g(c̃) < φ(c̃) ≤ φ(c1), (24)

where the first inequality follows from (20) and the second from v strictly concave. Note now that v(γ)− c1γ

is strictly increasing in γ for γ < φ(c1). Therefore, (23) and (24) yield

ueq1 (c1, . . . , cn) < v(φ(c̃))− c1φ(c̃) = ualt1 (c1, . . . , cn).

Next suppose c̄ > c1 ≥ c̃. With a similar reasoning, we obtain

ueq1 (c1, . . . , cn) = v(g(c1))− c1g(c1)

< v(φ(c1))− c1φ(c1)

= ualt1 (c1, . . . , cn),

thus concluding the proof that the alternative mechanism is ex post Pareto-dominant.

Finally, individual rationality of the alternative mechanism follows from individual rationality of the

weakest-link equilibrium and from the ex post Pareto-dominance result above.
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