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Abstract 

 

The role of uncertain commitment on disagreement in bargaining is studied in 
symmetric information environments. Two players make simultaneous demands of a 
unit sized pie. Following incompatible demands they simultaneously choose whether 
to stick to their demand or accept the other's offer. Accepting the other's offer is costly 
with the cost being uncertain when demands are made but common knowledge before 
the second stage. Both parties sticking to their incompatible demands leads to 
disagreement. When the revoking costs have continuous densities and intervals for 
support, the model can be made tractable by using a global game information 
structure. Disagreement is shown to not exist in equilibrium if both players face the 
same but uncertain revoking cost. Even when the revoking costs are independently 
distributed disagreement cannot arise if the cost distributions first order stochastically 
dominate the uniform distribution. These results are found to be in sharp contrast with 
predictions from models where the cost has a discrete distribution with values of 
either zero or greater than one and models where the success of a commitment attempt 
is determined exogenously.  
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1 Introduction

Does the ability to attempt commitment to aggressive demands lead to dis-
agreement in bargaining between two rational agents, when the success of the
commitment attempt is ex ante uncertain? A successful commitment attempt
here refers to a bargainer being unable to back down from a stated demand.
While Schelling(1960) forcefully answers in the affirmative through a series of
informal but carefully formulated arguments, the question clearly needs to be
further qualified for a definitive answer in a formal model. Importantly, the
model needs to specify the requirements for a commitment attempt to be suc-
cessful. Crawford(1982) frames the question in a formal game theoretic model,
where two bargainers simultaneously choose whether to attempt commitment,
and if so, what share of the surplus to demand. Following incompatible demands
each agent decides simultaneously whether to back down and accept the other
agents offer or stick to her original demand. Crucially, however, backing down
is costly with each agent getting to know only her own backing down (revok-
ing) cost, after the initial demands are made. The uncertainty shared by the
two agents regarding the costs of backing down, when they make their initial
demands, is captured by a pair of distribution functions that are commonly
known. An agent, therefore, achieves commitment if in equilibrium following
incompatible demands she chooses to stick to her demand. Disagreement results
if both agents commit to incompatible demands and then do not back down.
Crawford(1982) shows that while efficient (no disagreement) equilibria typically
exist when the probability of the revoking cost being high is high, when this
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probability is low disagreement occurs. Indeed when this probability is low
enough all equilibria feature a positive probability of disagreement.

This paper extends the analysis of Crawford(1982) to symmetric information
environments. The basic framework adhered to through most of the paper is the
following. Two agents bargain over a pie of size 1 by simultaneously announcing
their demands in the first stage. If these demands are compatible (add up to less
than 1) then each agent gets her own demand and half the remaining surplus, if
any. Following incompatible demands each agent gets to know the revoking cost
faced by both agents.1 Subsequently a second stage game is played where each
agent must decide whether to stick to her original demand or accept the other’s
offer. If player 1 sticks to her demand while player 2 concedes then player 1 gets
her original demand. Player 2 gets the share offered by player 1 and also pays
her revoking cost. If both players concede then both get their opponents offer,
pay their respective revoking costs and split in half the excess of the surplus
over the sum of their offers. Both players sticking to their incompatible demands
results in disagreement with a resulting payoff of 0 to both. When making their
demands both players only know the distributions for the revoking costs.

Given this general framework it is shown that assumptions regarding the
distribution of revoking costs crucially determine the qualitative predictions of
the model. In particular, as is done in Crawford(1982), the model can be made
relatively simpler by assuming that the revoking cost for each player can either
be 0 or some value greater than 1. Assuming the distributions are independent,
it is shown that both players demanding the entire pie can in fact be supported
as an equilibrium. Indeed, this is true irrespective of the probability of the cost
being high. Further if the probability of the cost being 0 is greater than half then
all equilibria must involve disagreement. It turns out that even the assumption
of the distributions being independent can be dispensed with. Even if both
players in the first stage know for sure that they will face exactly the same
(but uncertain) revoking cost, disagreement persists. Both parties demanding
the entire pie continues to be supported in equilibrium. One may consider
these results to provide strong support to Schelling’s view. However, it is shown
that while gaining tractability by considering discrete distributions, a crucial yet
subtle aspect of such bargaining environments is lost. In particular these models
feature equilibria where the probability with which a player backs down in the
second stage does not depend upon the amount demanded by either player.
Notice that a player has no option but to stick to her demand when her revoking
cost is high. Consequently if an agent faces a revoking cost of 0 against one who
faces the high cost, the unique second stage equilibrium behavior would involve
the former backing down. The existence of multiple equilibria in the second stage
game when both agents face 0 costs makes supporting disagreement essentially
a question of selecting an appropriate equilibrium. Crucially this equilibrium
selection does not have to systematically depend upon the amounts demanded.
This results in disagreement all too readily.

1Section 2.1 considers an asymmetric information environment where each agent only gets
to know her own revoking cost.
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The paper then studies the case where players do not believe that interme-
diate revoking costs are impossible. In particular, the density functions for the
revoking costs are assumed to be strictly positive and continuous over an inter-
val between and including 0 and some value greater than 1. While such density
functions exacerbate the second stage multiplicity problem mentioned above, it
also allows for the use of a global game information structure. It is assumed
that before playing the second stage game each player gets to know the revoking
costs faced by both players, but with a small amount of noise. The equilibrium
properties of this model is studied for the limiting case when the amount of
noise is made arbitrarily small. The use of such global game arguments resolves
the second stage multiplicity, and reveals markedly different equilibrium behav-
ior. In particular it is shown that when both players know that they will face
the same (but uncertain) cost of backing down, if the amount of noise is small
enough, disagreement can not be supported in equilibrium, irrespective of the
density function. Efficient equilibria, on the other hand, always exists. Even
if the revoking cost distributions are assumed to be independent, it is shown
that for any distribution function that first order stochastically dominates the
uniform distribution, not only can the efficient demand profile (1/2, 1/2) be
supported, disagreement can not be supported in equilibrium.

To understand the intuition behind these results it will help to spell out the
counteracting forces involved in the model. Disagreement arises if both parties
make high demands that consequently are incompatible, since there is always
a state of the world where neither player can back down following such a de-
mand profile. Player 1’s incentive to make a higher demand is driven by the
possibility that following incompatible demands she will face a high revoking
cost (and therefore achieve commitment), while player 2 faces a low cost and
is therefore better off conceding. The corresponding disincentive to making a
high demand arises from the possibility that following incompatible demands
both players will face high costs resulting in disagreement and the resultant loss
of the entire surplus. These two features are present in both the discrete and
continuous distribution models. The continuous distribution models along with
the global games information structure, however, gives rise to a second disin-
centive to making higher demands. A higher demand makes it more difficult for
one’s opponent to concede thereby conferring a greater probability of success to
the latter’s commitment attempt. This in turn reduces the payoff an agent can
hope to get by making the higher demand. It is the addition of this disincentive
that results in the lack of disagreement in the continuous density models. The
global game structure results in the risk dominant outcome of the second stage
being played as a result of iterated elimination of dominated strategies when-
ever there would otherwise be multiple equilibria. This argument is especially
acute for the case where both agents face the same revoking cost. Given an
incompatible demand profile, in equilibrium, if one player makes a (sufficiently)
higher demand than the other, then in the second stage either both players stick
to their demands (when the cost is high enough) or the player with the higher
demand backs down while the one with the lower demand gets her way. When
the distributions are independent, the players essentially weigh the benefits of
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making a higher demand against the subsequent shrinking of the risk dominant
region (of the state space) where she actually gets her demand.

The basic framework of the present analysis is almost identical to that of
Crawford(1982). The only difference is the payoffs that result following incom-
patible demands if both player’s choose to back down. In Crawford(1982) the
payoff is given by an exogenously set compromise payoff, while in the present
model each player gets what the other offered and gets half the remaining sur-
plus. This assumption is also made in Kambe(1999), Abreu and Gul(2000)
and Compte and Jehiel(2002). To show that this difference preserves the argu-
ments leading to disagreement in the asymmetric information model in Craw-
ford(1982), the asymmetric information disagreement results are replicated us-
ing the present model. Given that the analysis gets rid of an additional param-
eter (the compromise solution), the disagreement result of Crawford(1982) can
in fact be seen in a simpler setting.

It should be noted that Crawford(1982) initially presents a model in which
the revoking costs are continuously distributed and have intervals for support.
Unfortunately, however, this setting turns out to be intractable. The analy-
sis then focuses on discrete distributions where the costs can either be 0 or
so high that concession is found to be too costly irrespective of the demands
made. However, even in this simpler setting, it must be noted that given the
asymmetric information environment making a higher demand does increase the
probability of success of an opponent’s commitment attempt. So this crucial
feature, while preserved in asymmetric information environments when deal-
ing with discrete distributions, is lost in symmetric information environments
with discrete distributions. This issue itself necessitates the study of continuous
densities in the present paper. The symmetric information environment then
allows the use of global game arguments to make the model tractable. The
results from when the revoking costs are independent are qualitatively similar
to that of Crawford(1982) in that if the revoking cost is expected to be high
(the ex ante probability of a successful commitment is high) then disagreement
does not occur.

The results, however, are in sharp contrast with the findings in Ellingsen
and Miettinen(2008)(henceforth EM) who also analyze symmetric information
environments. EM show that presence of uncertain commitment always results
in disagreement. This surprising finding is delivered by the ability of the agents
in their model to use random commitment devices. Upon making use of such
a device and following incompatible demands, the bargainer is either forced to
stick to her demand, or forced to back down, with exogenously fixed probabil-
ities. While it is easy to think of devices that may force someone to stick to
their demand (a high realized value of the cost of backing down, for example),
it is not clear why with some fixed probability a player would be forced to back
down, irrespective of the other players action. To see the difference between
such an outcome and the possibility of facing low costs of backing down, con-
sider the case where both players demand the entire surplus. The use of such
devices would result in a state of the world (with positive probability) that
involves both parties backing down. This is not the same as costs being low
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for both parties, since in the latter case one agent backing down would give a
strict incentive for the other to stick to her demand. Not surprisingly, the EM
model predicts disagreement all too readily. Importantly it also involves both
players making the highest demand possible. The key modeling difference here
is that in the present paper achieving commitment is required to be the result
of equilibrium behavior as in Crawford(1982).

Following the replication of the asymmetric information results from Craw-
ford(1982), Section 2 extends the disagreement results to the symmetric setup
where both players get to know each others cost before the second stage, and
finally to the setup where both players face exactly the same cost of backing
down, that they commonly learn before the second stage game. Throughout
section 2, the distribution for the cost always has only two points in its support.
Section 3 considers the case where both parties face the same cost that is dis-
tributed over an interval. It states the agreement result that arises when players
get to know the cost with a sufficiently small amount of noise. Section 4 deals
with the case when the revoking costs are independent. Section 5 concludes.

2 Replication and extension of disagreement re-
sults

For the rest of the section the following basic model applies. Each subsection
will add a different set of assumptions to this framework. Two players, 1 and
2, play a two stage game. In what follows, a generic player will be denoted as
player i where i ∈ {1, 2}, with j being the other player, j ∈ {1, 2}, j 6= i. In the
first stage player i makes a demand zi ∈ [0, 1]. If the demands are compatible,
z1 +z2 ≤ 1, the game ends and the payoffs are given by (y1, y2) where yi = zi−d
with d = (z1 + z2 − 1)/2. If the demands are incompatible, z1 + z2 > 1, the
payoffs for the players are determined by the outcome of the following game.

Accept Stick
Accept 1− z2 + d− k1, 1− z1 + d− k2 1− z2 − k1, z2

Stick z1, 1− z1 − k2 0, 0

Table 1: Payoffs following incompatible demands

2.1 Two point independent distributions and asymmetric
information case

Add to the game defined above, the assumption that players in the first stage
do not know the value of ki. They only know that they are independent random
variables with Pr(ki > 1) = q and Pr(ki = 0) = 1− q. Following incompatible
demands and before playing the second stage game, players get to know their
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own but not their opponent’s ki.

Proposition 1. For any value of q ∈ (0, 1) there exists an equilibrium with a
positive probability of disagreement.

Proof. Fix q ∈ (0, 1). Let z = q+1
2 . Following an incompatible demand profile

(z1, z2), in the second stage Bayesian game, player i must always play the strictly
dominant action Stick when ki > 1. Equilibrium behavior when ki = 0 needs to
be pinned down. In this regard notice that playing Accept when ki = 0 for both
i, would constitute a Bayesian Nash Equilibrium if the following two inequalities
hold.

q(1− z2) + (1− q)(1− z2 + d) ≥ (1− q)z1 (1)

q(1− z1) + (1− q)(1− z1 + d) ≥ (1− q)z2 (2)

The left hand (right hand) side of the inequalities gives the expected payoff to
the player with ki = 0 from playing Accept (Stick) when her opponent’s strategy
involves playing Accept when the cost is zero and Stick when it is greater than
1. (1) and (2) hold with equality if z1 = z2 = z = q+1

2 .2 Clearly the demand
profile (z, z) is incompatible.

Consider now the following strategies. Each player demands z. Following
the demand profile (z, z) player i plays Accept when ki = 0 and Stick when
ki > 1. Following a demand profile where zi = z but zj > z, player i plays Stick
irrespective of ki while j plays Accept when kj = 0 and Stick when kj > 1.
Following an incompatible demand profile where zi = z but zj < z, both players
play Accept when their cost is 0 and Stick, when it is high. The strategies also
subscribe actions that constitute a BNE for any subgame not considered above.
It will be shown that such a strategy profile constitutes a Perfect Bayesian Nash
Equilibrium of the game.

Consider first, behavior in the second stage subgames. Only the behavior of
the types facing ki = 0 needs to be checked, since i must always play Stick when
ki > 1 as it is the strictly dominant action in that case. Following the profile
(z, z) both players with 0 cost play Accept. It has been shown earlier that for
this to be a BNE (1) and (2) must be satisfied. Given the derivation of z, this is
in fact the case. For incompatible demand profiles where zi = z and zj > z, the
strategies suggest that the low type of player i should play Stick while player j
with kj = 0 should play Accept. Given j’s strategy i’s low type choice would be
optimal if

q(1− zj) + (1− q)(1− zj + d) < (1− q)z (3)

Given that this relation holds with equality when zj = z and that the left
hand side is strictly decreasing in zj , it must be that for zj > z, (3) is indeed
satisfied. Further given that player i plays Stick always, player j does strictly
better by playing Accept when kj = 0. Finally for incompatible demand profiles
with zi = z and zj < z, notice that the inequalities (1) and (2) continue to be

2Note that d(z, z) = q
2
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satisfied. As a result the strategies involving low cost types playing Accept does
induce a BNE in such subgames. As for the first stage decisions, consider player
1. The expected payoff to 1 from demanding z when 2 demands z is given by
q(1− q)z+ (1− q)[q(1− z) + (1− q)(1− z+ (2z− 1)/2)]. If 1 demands less than
z, (z1 < z) her expected payoff is q(1− q)z1 + (1− q)[q(1− z) + (1− q)(1− z +
(z + z1 − 1)/2)] which is clearly less than her payoff from not deviating. If 1
demands z1 > z then her expected payoff is merely (1− q)(1− z), again strictly
less than if she had not deviated. It remains to be shown that no player would
want to deviate from the profile (z, z) to making the compatible demand 1− z.
Suppose this is a profitable deviation. Then it must be that,

q(1− q)z + (1− q)[q(1− z) + (1− q)(1− z + d)] < 1− z
⇒q(1− q)z + (1− q)(1− z) + (1− q)2d < 1− z

⇒q(1− q)z − q(1− z) + (1− q)2 q

2
< 0

⇒z − zq − 1 + z +
(1− q)2

2
< 0

⇒2z − 1− zq +
(1− q)2

2
< 0

⇒q − q + 1

2
q +

(1− q)2

2
< 0

⇒2q − q2 − q + 1− 2q + q2 < 0

⇒q > 1 (4)

(4) contradicts the initial assumption of q ∈ (0, 1). As a result no player would
want to deviate to making a compatible offer, from the incompatible profile
(z, z).

Proposition 2. If 0 < q < 1
2 then any equilibrium must entail a positive

probability of disagreement.

Proof. Suppose not. Let the compatible demand profile supported in equilib-
rium be (z1, z2) where z1 +z2 = 1. WLOG let z1 ≤ z2. Notice that substituting
z1 and z2 into the inequalities (1) and (2) makes the inequalities strict. Further
d(z1, z2) = 0. In particular, q(1−z2)+(1−q)(1−z2) > (1−q)z1. Consequently
if player 1 makes a higher demand, z1 +δ, the inequality will still be satisfied for
small enough values of δ. Indeed, to satisfy the inequality (1), δ should satisfy,
q(1− z2) + (1− q)(1− z2 + (δ/2)) ≥ (1− q)(z1 + δ), which in turn implies that,

δ ≤ 2qz1

1− q
(5)

To ensure that such a deviation maintains the second inequality it must be that,
q(1− z1− δ) + (1− q)(1− z1− δ+ (δ/2)) ≥ (1− q)z2. This in turn, simplifies to,

δ ≤ 2qz2

1 + q
(6)
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So if δ satisfies both (5) and (6), then following such a deviation, the subgame in-
volving the incompatible demand profile, (z1 +δ, z2), would involve both players
playing Stick when the cost is high and Accept when it is 0. To see that no other
BNE exists in the second stage game, note that both low types playing Stick
cannot occur in equilibrium. Further given that the inequalities (5) and (6) are
satisfied, if one of the low types plays Accept then the low type of the other player
must also play Accept. The expected payoff to player 1 from such a profile would
therefore be, q2(0) + q(1− q)(z1 + δ) + (1− q)[q(1− z2) + (1− q)(1− z2 + (δ/2))].
For this deviation to be profitable it must be that,

[q(1− q) + (1− q)]z1 + q(1− q)δ + (1− q)2(δ/2) > z1

⇒q(1− q)δ + (1− q)2(δ/2) > z1q
2

⇒(1− q2)δ > 2z1q
2

⇒δ > 2z1q
2

1− q2
(7)

Let z1 > 0. Then for such a deviation to exist, it simply needs to be shown that
there exists δ > 0 that simultaneously satisfies (5), (6) and (7). Notice that
2z1q

2

1−q2 < 2qz1
1−q ⇔

q
1+q < 1, and is satisfied for all q > 0. Further 2z1q

2

1−q2 < 2qz2
1+q ⇔

z1q
1−q < z2. Given that z1 ≤ z2, this is satisfied for all q < 1/2. Consequently, if

z1 > 0 and 0 < q < 1/2, there always exists a profitable deviation for player 1.
For the case where z1 = 0 and z2 = 1. If 1 deviates by demanding δ > 0

that satisfies δ < 2q
1+q , the inequality (1) would be reversed and hold strictly. In

other words following the demand profile (δ, 1), if player 2 plays Accept when
k2 = 0 and Stick otherwise, then player 1 would play Stick always. Also,
given that 1 plays Stick always, 2’s optimal action when k2 = 0 is indeed to
play Accept since it gives a payoff of 1 − δ as opposed to the payoff of 0 if
Stick is played. So these strategies constitute a BNE of the subgame following
(δ, 1). Both players playing Stick always is not a BNE of this subgame since
the low type of player 2 would strictly prefer to play Accept, as just described.
The low types of both players playing Accept cannot happen due to the strict
reversal of the inequality (1). So the only other potential BNE of this subgame
involves player 2 playing Stick always while the low type of player 1 plays
Accept. This would require the low type of player 2 to choose Stick, requiring,
q(1− δ) + (1− q)(1− δ + (δ/2)) ≤ (1− q)(1). But, this inequality is violated if
δ < 2q

1+q . The only BNE following a deviation to δ, therefore involves player 1
always playing Stick with the low type for player 2 playing Accept. Since this
deviation gives a strictly positive payoff to player 1 it is a profitable deviation.

So it has been shown that given any compatible demand profile (z1, z2) with
z1 ≤ z2 as long as 0 < q < 1/2, there always exists a profitable deviation for
player 1. Clearly, a symmetric argument applies for z2 ≤ z1. Consequently with
0 < q < 1/2 there cannot be any equilibrium involving compatible demands.
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2.2 Two point independent distributions and symmetric
information case

In this subsection, in addition to the basic model outlined earlier, it is assumed
that while the costs of backing down are uncertain to both players at the demand
stage, they become common knowledge following incompatible demand profiles.
In particular, in the first stage it is common knowledge that player i faces cost
ki which takes a value greater than 1 with probability q while Pr(ki = 0) =
1 − q. The two random variables are assumed to be independent. Following
incompatible demands the true values of k1 and k2 are made common knowledge
before the second stage game is played. The only difference from Subsection
2.1 lies in the elimination of asymmetric information in the second stage game.

Proposition 3. For 0 < q < 1 the incompatible demand profile (1, 1) can be
supported in equilibrium, resulting in disagreement with probability q2.

Proof. Consider the following strategies. Both players demand 1 in the first
stage. Following any incompatible demand profile (z1, z2), player i plays Stick
when ki > 1. If ki = 0 and kj > 1, then player i plays Accept. If k1 = k2 = 0,
then player 1 plays Stick while player 2 plays Accept.

Table 1 makes it clear that the strategies outlined above induce a Nash
Equilibrium in every subgame following incompatible demand profiles. Notice
that these subgames are dominance solvable except for the case where k1 =
k2 = 0. In the latter case both (Accept, Stick) and (Stick,Accept) are Nash
Equilibria. The particular selection made in this case is entirely arbitrary, but
sufficient to support the incompatible profile as an equilibrium outcome.

The expected payoff to player 1 from the strategies above is q(1−q)(1)+(1−
q)(1− q)(1). Deviating to any lower incompatible demand z1 gives an expected
payoff, q(1 − q)(z1) + (1 − q)(1 − q)(z1), while making a compatible demand
gives a payoff of 0. So player 1 has no incentive to deviate. Player 2’s expected
payoff from the stated strategies is q(1 − q)(1). Deviating to a lower but still
incompatible demand, z2, gives her q(1−q)z2. Finally deviating to a compatible
demand gives her 0. As a result player 2 also has no incentive to deviate.

Proposition 4. For 0 < q < 1/2, no efficient equilibrium exists.

Proof. Suppose not. Let (z1, z2) be supported in equilibrium, where z1 +z2 = 1.
Suppose player i deviates to demanding z̃i = 1. Player i’s expected payoff from
such a deviation must be no less than q2(0) + q(1 − q)(1) + (1 − q)q(1 − zj) +
(1− q)2(1− zj) = q(1− q) + (1− q)zi. For such a deviation to not be profitable
it must be that zi ≥ q(1 − q) + (1 − q)zi. This implies, zi ≥ 1 − q. Given that
q < 1/2 and z1 + z2 = 1, it must be that for some i ∈ {1, 2}, zi < 1 − q holds.
Such a player i would then do strictly better by deviating to a demand of 1.
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2.3 Two point identical distribution and symmetric infor-
mation case

The final extension involves getting rid of the assumption that the random
variables determining the cost of backing down are independent. In particular,
it is still assumed that both players are uncertain about their cost of backing
down while making their first stage demands. Further Pr(ki > 1) = q and
Pr(ki = 0) = 1 − q. In addition it is assumed that Pr(k1 = k2) = 1; both
players know that they will face exactly the same cost following incompatible
demands. Let the common cost be denoted k. This cost becomes common
knowledge after an incompatible demand profile and before the second stage
game is played.

Proposition 5. For 0 < q < 1 the incompatible demand profile (1, 1) can be
supported in equilibrium, resulting in disagreement with probability q2.

Proof. When k > 1, the unique Nash Equilibrium in the second stage game
involves both players playing Stick. k = 0, on the other hand, results in two pure
strategy NE, namely (Accept, Stick) and (Stick,Accept). Consider the following
strategies. Both players demand 1. Following any incompatible demand profile
(z1, z2), if k = 0, player 1 plays Stick while 2 plays Accept. Facing k > 1, both
players play Stick. As mentioned earlier, the subgame strategies constitute
Nash Equilibria. Player 1 gets an expected payoff of 1 − q. By deviating to
making any other demand z1, the expected payoff would become strictly less,
(1 − q)z1. Player 2, on the other hand, would always get 0 irrespective of her
first stage demand and therefore has no incentive to deviate. Consequently the
strategies support the demand (1, 1) in equilibrium. The subsequent probability
of disagreement is therefore q2.

3 Identical costs of backing down and agreement

Two players, 1 and 2, play a two stage game. In what follows, a generic player
will be denoted as player i where i ∈ {1, 2}, with j being the other player,
j ∈ {1, 2}, j 6= i. In the first stage player i makes a demand zi ∈ [0, 1]. If the
demands are compatible, z1 + z2 ≤ 1, the game ends and the payoffs are given
by (y1, y2) where yi = zi − d with d = (z1 + z2 − 1)/2. If the demands are
incompatible, z1 + z2 > 1, the payoffs for the players are determined by the
outcome of the following game.

Accept Stick
Accept 1− z2 + d− k, 1− z1 + d− k 1− z2 − k, z2

Stick z1, 1− z1 − k 0, 0

Table 2: Payoffs following incompatible demands

In the first stage, when choosing their demands, players’ prior regarding the
cost of backing down k is given by a random variable K which takes values in
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[0, k̄] where k̄ > 1. Having announced their demands, each player i gets a noisy
signal, kεi about k before playing the simultaneous move game. In particular,
player i observes a realization of the random variable Kε

i that is defined by

Kε
i = K + εEi, i = 1, 2

where Ei is a random variable taking values in R and ε > 0 serves as the scale
parameter for the noise. A strategy for player i, comprises of a demand zi ∈ [0, 1]
and a measurable function si(z1, z2) for every incompatible demand profile, that
gives the probability of playing Accept as a function of the the observed cost of
backing down kεi . So, si(z1, z2) : [−ε, k̄ + ε] → [0, 1]. Γε is used to denote this
two stage game for a particular value of ε.

The following assumptions are made on the parameters of the model.

A1. K admits a density h that is continuously differentiable on (0, k̄), strictly
positive, continuous and bounded on [0, k̄].

A2. The vector (E1, E2) is independent of K and admits a density ϕ.

A3. The support of each Ei is contained in the interval [−1, 1] in R and ϕ is
continuous on [−1, 1]× [−1, 1].

I am interested in the perfect equilibrium prediction of Γε for small values
of ε. To this effect the following proposition holds.

Proposition 7. Given A1, A2, A3, and for sufficiently small ε > 0, if players
use pure strategies for their first stage demands, there is never any disagreement
in any perfect equilibrium of the game Γε.

It should be pointed out that the assumptions A1, A2, A3, are slightly weaker
than the corresponding assumptions made for the one-dimensional case in Carls-
son and van Damme(1993) (henceforth CvD). In particular the noise density
function is allowed to be discontinuous at the boundary points of its support in
the present study, while this is ruled out by the assumptions in CvD.3

The outline of the proof is as follows. Lemma 1 establishes the crucial
result that the conditional distribution of player 1’s observation conditional on
player 2’s observation is symmetric to the conditional distribution of player 2’s
observation conditional on player 1’s observation, in the sense that they add up
arbitrarily close to 1. Lemma 2 makes sure that even with the slightly weaker
assumptions made in this paper, given measurable strategies, the probability
with which player i chooses a particular action and the expected value of the true
cost, conditional on player j making some observation, is continuous in player
j’s observation. The intuitive result that for very high value of observations
both players will chose to play Stick is established first. It is then argued

3Indeed, the motivating example in CvD involves noise with a uniform density, and does
not satisfy the assumptions of their paper. However the discontinuity at the boundary points
merely requires a little more work as is done in Lemma 2, and does not endanger the equilib-
rium selection argument in CvD. I thank Hans Carlsson for clearing my doubt regarding this
issue.
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that following incompatible demands (z1, z2) if zi is sufficiently larger than zj ,
then there will always be observation values for which the unique dominance
solvable outcome would involve i backing down while j plays Stick. Lemmas
5 - 7 then show that following such an incompatible demand profile, either
for all lower observations i will continue to back down with j playing Stick, or
there will be two observation values really close to each other where the two
players will switch their actions. Lemma 8, the critical part of the proof, then
shows that if zi is sufficiently larger than zj , such switch points cannot exist
and therefore player i will continue to back down with j playing Stick. This
result is a consequence of the global games information structure used in the
model for small enough ε > 0. Player i backing down with j sticking to her
demand turns out to be the risk dominant outcome whenever K takes values
giving rise to multiple equilibria in the second stage following such incompatible
profiles. Given that backing down for player i always pays her less than if she
had simply made a compatible offer in the first stage, such incompatible profiles
cannot constitute an equilibrium. The analysis also allows for a characterization
of the expected payoffs such incompatible demands entail. I then consider the
choice of first stage demands. It can be easily seen that demands that add up
to less than 1 always allow for deviations. Next I establish a lower bound that
the sum of the demands must satisfy for any incompatible profile from which
neither player wants to deviate to a compatible profile. Finally it is shown that
if an incompatible profile of demands involves z1 and z2 that do not differ much
in value but sum up to greater than the bound mentioned above, then there
is always a player i who could strictly improve her payoff by making a lower
but still incompatible demand. This lower demand by i forces j, in equilibrium,
to always back down in the second stage. These arguments together exhaust
the possible set of incompatible demand profiles. Consequently it is shown that
equilibria involving pure strategies in the first stage cannot involve incompatible
demands, thereby eliminating the possibility of disagreement.

First I define a few terms for the game Γε that allow the use of Lemma 4.1 in
Carlsson and van Damme(1993), henceforth (CvD). Let F εi (kj |ki) and f εi (kj |ki)
be the distribution and density functions, respectively, of Kε

j conditional on
Kε
i = ki. Let ϕε be the joint density of (εE1, εE2). Then,

f εi (kj |ki) =

∫
h(k)ϕε(k1 − k, k2 − k)dk∫ ∫
h(k)ϕε(k1 − k, k2 − k)dkjdk

(8)

The following lemma is the one dimensional version of Lemma 4.1 in CvD that
applies to the present model.

Lemma 1 (CvD). Let k1, k2 ∈ [−ε, k̄ + ε]. Then their exists a constant κ > 0
such that for sufficiently small ε > 0,

|F ε1 (k2|k1) + F ε2 (k1|k2)− 1| ≤ κε (9)

Proof. Let l = maxk∈[0,k̄] |h′(k)|, where h′(k) is the derivative of the function h

at k for k ∈ (0, k̄) with h′(0) and h′(k̄) defined as limk→0 h
′(k) and limk→k̄ h

′(k),
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respectively. Given A1, l is well defined with l ≥ 0. Let ν = mink∈[0,k̄] h(k).

Given that h is continuous and strictly positive on [0, k̄], ν is well defined with
ν > 0. Let ε be such that lε < ν/2. Then (8) leads to the following inequality
for all ki, kj ∈ [0, k̄] ,

f εi (kj |ki) ≤
(h(ki) + lε)

∫
ϕε(k1 − k, k2 − k)dk

(h(ki)− lε)
∫ ∫

ϕε(k1 − k, k2 − k)dkjdk
=

(h(ki) + lε)ψε(k1 − k2)

h(ki)− lε

ψε is the density function for εE1 − εE2 and is equal to the integral in the
numerator of the second term for given values of k1 and k2 . Note that the
double integral in the denominator of the second term above is equal to 1.

Similarly, (h(ki)−lε)ψε(k1−k2)
h(ki)+lε

≤ f εi (kj |ki). For ki ∈ [−ε, 0] the relevant inequality

is (h(0)−lε)ψε(k1−k2)
h(0)+lε ≤ f εi (kj |ki) ≤ (h(0)+lε)ψε(k1−k2)

h(0)−lε . If ki ∈ [k̄, k̄ + ε] then the

inequality is (h(k̄)−lε)ψε(k1−k2)

h(k̄)+lε
≤ f εi (kj |ki) ≤ (h(k̄)+lε)ψε(k1−k2)

h(k̄)−lε . Therefore,

(1− 2lε

h(ki) + lε
)ψε(k1 − k2) ≤ f εi (kj |ki) ≤ (1 +

2lε

h(ki)− lε
)ψε(k1 − k2)4

Further let κ = 8l
ν . Now,

1 +
2lε

h(ki)− lε
≤ 1 +

2lε

ν − lε

≤ 1 +
2lε

ν/2

Also,

1− 2lε

h(ki) + lε
≥ 1− 2lε

h(ki)− lε

≥ 1− 2lε

ν − lε

≥ 1− 2lε

ν/2

Then,

ψε(k1 − k2)(1− (κε)/2) ≤ f εi (kj |ki) ≤ ψε(k1 − k2)(1 + (κε)/2) (10)

⇒
∫
y≤k2

ψε(k1 − y)dy − (κε)/2 ≤ F ε1 (k2|k1) ≤
∫
y≤k2

ψε(k1 − y)dy + (κε)/2

(11)

4For values of ki in [−ε, 0] and [k̄, k̄ + ε] replace h(ki) by h(0) and h(k̄), respectively.
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(10) also implies,∫
z≤k1

ψε(z − k2)dz − (κε)/2 ≤ F ε2 (k1|k2) ≤
∫
z≤k1

ψε(z − k2)dz + (κε)/2

⇒
∫
z≥k1

ψε(z − k2)dz + (κε)/2 ≥ 1− F ε2 (k1|k2) ≥
∫
z≥k1

ψε(z − k2)dz − (κε)/2

⇒
∫
y≤k2

ψε(k1 − y)dy + (κε)/2 ≥ 1− F ε2 (k1|k2) ≥
∫
y≤k2

ψε(k1 − y)dy − (κε)/2

(12)

Subtracting (12) from (11) gives the required inequality.

Next, it is shown that player i’s expectation regarding the true value of k
and the probability with which j plays Accept, conditional on observing kεi are
continuous functions of kεi . Given j’s second stage strategy sj , let the probability
with which i, conditional on observing kεi , expects that j will play Accept be
denoted by Pr(Aj |kεi , sj).5 So,

Pr(Aj |kεi , sj) =

∫
sj(kj)f

ε
i (kj |kεi )dkj (13)

Also, let i’s expectation of k given her observation kεi be denoted as Eε(k|kεi ).

Lemma 2. For a given incompatible demand profile (z1, z2) and strategies si, sj,
Pr(Aj |kεi , sj) and Eε(k|kεi ) are continuous in player i’s observation kεi .

Proof. The continuity of ϕε is implied by the continuity of ϕ assumed in A2.
Consider the numerator in the expression for f εi (kj |ki) as expressed in (8).
WLOG take a sequence kn1 that converges to k1, such that kn1 ∈ [−ε, k̄ + ε]
for all n. Given the continuity of ϕε it is immediate that holding k2 fixed,
h(k)ϕε(kn1 − k, k2 − k) → h(k)ϕε(k1 − k, k2 − k), almost everywhere in [0, k̄].
Further h(k)ϕε(kn1−k, k2−k) ≤ h(k)ϕ̄ε for all n and k, where ϕ̄ε is the maximum
value taken by the function ϕ on [−1, 1]× [−1, 1]. Consequently by the Domi-
nated Convergence Theorem,

∫
h(k)ϕε(k1−k, k2−k)dk = limn→∞

∫
h(k)ϕε(kn1−

k, k2 − k)dk. In other words,
∫
h(k)ϕε(k1 − k, k2 − k)dk is continuous in ki.

For the denominator in (8), consider first the marginal density. Fix k. Let
k1 6∈ {k−ε, k+ε}. Then for any sequence kn1 that converges to k1 it must be the
case that ϕε(kn1−k, k2−k)→ ϕε(kn1−k, k2−k) for all values of k2, by A3. Again
by the Bounded Convergence Theorem, the marginal

∫
ϕε(kn1 − k, k2 − k)dk2

for a given value of k is found to be continuous at all k1 other than poten-
tially two points, k − ε and k + ε. Consequently for any sequence kn1 that
converges to k1, it is true that h(k)

∫
ϕε(kn1 − k, k2 − k)dk2 → h(k)

∫
ϕε(k1 −

5The dependence of sj on the demand profile (z1, z2) is suppressed for notational con-
venience, but it should be noted that the arguments are for a given pair of incompatible
demands.
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k, k2 − k)dk2 for all values of k other than possibly k1 − ε and k1 + ε. Fur-
ther, h(k)

∫
ϕε(kn1 − k, k2 − k)dk2 ≤ h(k)ϕ̄ε for all k, n. By the Dominated

Convergence Theorem, it must be that
∫
h(k)

∫
ϕε(kn1 − k, k2 − k)dk2dk, the

denominator in (8), is continuous in k1. Given A1 and the additive structure
of the noise, the denominator is also strictly positive for all k1 ∈ (−ε, k̄ + ε).
Therefore for all k1, k2 ∈ [−ε, k̄ + ε], f εi (kj |ki) is continuous in ki. f

ε
i (kj |ki) is

also continuous in kj , since kj does not affect the denominator of (8), while
its influence on the numerator is symmetric to that of ki. So let f̄ε be the
maximum value taken by f εi (kj |ki) for k1, k2 ∈ [−ε, k̄+ε]. Then for any measur-
able function sj , it must be that sj(kj)f

ε
i (kj |kni ) → sj(kj)f

ε
i (kj |ki) if kni → ki

and sj(kj)f
ε
i (kj |kni ) ≤ sjkj f̄ε, for all values of kj . Therefore by the Dominated

Convergence Theorem, Pr(Aj |kεi , sj) =
∫
sj(kj)f

ε
i (kj |kεi )dkj is continuous in kεi .

To show that Eε(k|kεi ) is continuous in kεi consider first the conditional den-
sity of the true k given an observation ki.

f εi (k|ki) =

∫
h(k)ϕε(k1 − k, k2 − k)dkj∫ ∫
h(k)ϕε(k1 − k, k2 − k)dkjdk

(14)

Continuity of the denominator of (14) in ki has already been established before.
The numerator for a given k is the product of the strictly positive h(k) and the
marginal density of ki. It has been shown earlier that for a given k the marginal
density of ki is continuous at all ki other than possibly when ki ∈ {k− ε, k+ ε},
the boundary points. As a result, for a given k, f εi (k|ki) is continuous for all ki
other than the two boundary points. Therefore for a sequence kni that converges
to ki, kf

ε
i (k|kni )→ kf εi (k|ki) for all k other than possibly when k ∈ {ki−ε, ki+ε}.

Further since the denominator in (14) is bounded below and the numerator
bounded above, the Dominated Convergence Theorem delivers the continuity of
Eε(k|kεi ) =

∫
kf εi (k|kεi )dk in kεi .

Equilibrium behavior in the second stage game following an incompatible
demand profile is considered next. The payoffs specified in Table 2 make it
evident that if the observed cost is high enough the player would strictly prefer to
play Stick. The following lemma captures this immediate but useful implication
of observing such high costs of backing down.

Lemma 3. In equilibrium, following an incompatible demand profile (z1, z2),
conditional on observing kεi > 1 − zj + ε, Stick is the strictly dominant action
for player i.

Proof. Given the payoffs in Table 2, it is clear that whenever j chooses Accept,
i always does strictly better by choosing Stick. Upon observing kεi > 1− zj + ε
player i knows that for all the possible values that k can take she would get a
strictly negative payoff by playing Accept if j plays Stick. As a result i would still
strictly prefer to play Stick since it guarantees a payoff of 0 as opposed to the
negative expected payoff from playing Accept, when j plays Stick. Consequently,
upon observing kεi > 1− zj + ε, Stick is the strictly dominant action for player
i.
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Lemma 3 shows that for high enough observation values (i.e. greater than
1−min{z1, z2}+ ε) the unique dominance solvable outcome in the second stage
game is (Stick, Stick).

The next lemma shows that if the higher of the two incompatible demands
is sufficiently larger than the lower demand, there will be an interval of obser-
vations that would always lead to a unique dominance solvable outcome in the
second stage game where the player with the higher demand plays Accept while
the other plays Stick.

Fix a small δ > 0.

Lemma 4. For an incompatible demand profile (z1, z2) such that zi−zj > δ+4ε,
the unique dominance solvable outcome of the second stage game following both
players making an observation in (1 − zi + 3ε, 1 − zj − ε), involves i playing
Accept and j playing Stick.

Proof. From lemma 3 it is already known that j plays Stick for every observation
kεj > 1−zi+ε. Player i making an observation kεi ∈ (1−zi+3ε, 1−zj−ε) learns
two things. Firstly, she knows that j must have observed kεj > 1 − zi + ε and
must therefore be playing the strictly dominant Stick. Secondly, she knows that
the true state k must lie in the interval (1 − zi + 2ε, 1 − zj). Conditional on j
playing Stick for any such value of k, playing Accept strictly dominates playing
Stick for i. The dominance solvable outcome following such an observation,
therefore, involves i playing Accept while j plays Stick.

Given an equilibrium of Γε and a pair of incompatible demands (z1, z2) where
zi−zj > δ+4ε, let kε∗i denote the highest observation value kεi below 1−zi+3ε
for which i chooses to play Stick. Similarly let kε∗j denote the highest observation
value kεj below 1− zi+ 3ε for which j chooses to play Accept. It is assumed that
if i following some observation strictly greater than −ε is indifferent between
her actions she chooses to play Stick while when j is indifferent he plays Accept.
The next lemma shows that kε∗i and kε∗j are well defined. Let Bεi (z1, z2) denote
the set of observations kεi > −ε such that kεi ≤ 1 − zi + 3ε and i plays Stick
for such observations (i.e. si(k

ε
i ) = 0). Similarly let Bεj(z1, z2) denote the set

of observations kεj > −ε such that kεj ≤ 1− zi + 3ε and j plays Accept for such
observations (i.e. sj(k

ε
j) = 0).

Lemma 5. In any equilibrium of Γε following a pair of incompatible demands
(z1, z2) where zi − zj > δ + 4ε, either Bεi (z1, z2) is empty or kε∗i = max{x|x ∈
Bεi (z1, z2)} is well defined.
Similarly, either Bεj(z1, z2) is empty or kε∗j = max{x|x ∈ Bεj(z1, z2)} is well
defined.

Proof. Suppose the statement is false for player i, who makes the higher demand.
This means that Bεi (z1, z2) is non empty but y = sup{x|x ∈ Bεi (z1, z2)} 6∈
Bεi (z1, z2). So there exists a sequence of observations kni that converge to y, with
i playing Stick for all n but she plays Accept upon observing y. i’s expected
payoff from playing Accept following an observation ki is given by 1 − zj −
Eε(k|ki) + dPr(Aj |ki) while it is ziPr(Aj |ki) from playing Stick. Given that i
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plays Stick for all observations in the sequence kni it must be that ziPr(Aj |kni ) ≥
1 − zj − E(k|kni ) + dPr(Aj |kni ). By Lemma 2, Eε(k|ki) and Pr(Aj |ki) are
continuous in ki for all measurable strategies, sj . So if kni → y it must be that
ziPr(Aj |y) ≥ 1− zj −E(k|y) + dPr(Aj |y). Given the tie break rule mentioned
earlier this implies that i would play Stick upon observing y. This contradicts
the earlier claim and proves the lemma for i. A symmetric argument proves the
lemma for player j.

Lemma 6. If Bεi (z1, z2) or Bεj(z1, z2) is empty then they are both empty.

Proof. Let Bεi (z1, z2) be empty. Then for all observations kεi ≤ 1 − zi + 3ε
player i chooses to play Accept. In that case whenever player j receives a signal
kεj ≤ 1− zi + 3ε it is conditionally dominant for him to play Stick. This would
imply that Bεj(z1, z2) is empty.

Now if Bεj(z1, z2) is empty then for all observations kεj ≤ 1− zi + 3ε player j
chooses to play Stick. Player i following an observation kεi ≤ 1− zi + 3ε knows
that the true value of k is such that 1−zj−k > 0. Consequently conditional on
j playing Stick, she is strictly better off playing Accept. As a result Bεi (z1, z2)
is empty.

The next lemma establishes a relation between kε∗i and kε∗j when they are
well defined.

Lemma 7. In any equilibrium of Γε following a pair of incompatible demands
(z1, z2) where zi− zj > δ+ 4ε if the terms are well defined then, kε∗i < kε∗j + 2ε.

Proof. Let kε∗j + 2ε ≤ kεi ≤ 1 − zi + 3ε. Conditional on such an observation
player i knows that for all the possible values of k, 1− zj − k > 0 and hence she
would strictly prefer to play Accept if j plays Stick. Further such an observation
implies that j has observed kεj > kε∗j implying that j would certainly play Stick.
Consequently i’s conditionally dominant action is to play Accept.

The next lemma contains the crucial argument that drives the result, since
it shows that for incompatible demands with the higher demand sufficiently
larger than the smaller one, the player with the higher demand always concedes
whenever the observed cost is in the range that generated multiplicity in the
complete information game.

Lemma 8. In any equilibrium of Γε following a pair of incompatible demands

(z1, z2) where zi − zj ≥ max{δ + 4ε, (κ+2)ε
d }, the sets Bεi (z1, z2) and Bεj(z1, z2)

are empty.

Proof. Suppose not. Then, by Lemmas 5 and 6, kε∗i , k
ε∗
j > −ε are well defined.

Let player i’s payoff from playing Accept and Stick upon observing kε∗i be de-
noted as ui(Ai|kε∗i ) and ui(Si|kε∗i ) respectively. Given the payoffs in Table 2,
ui(Ai|kε∗i ) = 1− zj −Eε(k|kε∗i ) + dPr(Aj |kε∗i ). Also ui(Si|kε∗i ) = ziPr(Aj |kε∗i ).
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Given that i chooses Stick after such an observation, it must be that ui(Si|kε∗i ) ≥
ui(Ai|kε∗i ). This in turn implies the following inequality,

Pr(Aj |kε∗i ) ≥ 1− zj − Eε(k|kε∗i )

zi − d
(15)

Similarly, player j choosing Accept upon observing kε∗j implies that uj(Aj |kε∗j ) ≥
uj(Sj |kε∗j ). Writing out the payoffs, 1−zi−Eε(k|kε∗j )+dPr(Ai|kε∗j ) ≥ zjPr(Ai|kε∗j ).
This gives rise to the following inequality,

Pr(Ai|kε∗j ) ≤
1− zi − Eε(k|kε∗j )

zj − d
(16)

Now, player j plays Stick following any observation kεj > kε∗j . Therefore, it must
be that,

Pr(Aj |kε∗i ) ≤ F εi (kε∗j |kε∗i ) (17)

On the other hand, player i plays Accept for observations kεi > kε∗i as long as
kεi < 1 − zj − ε. For values of kεi that are within 2ε of kε∗j it must be that
kεi < 1− zj− ε since kε∗j ≤ 1− zi+ ε by Lemma 3 and 1− zi+ ε < 1− zj− δ−2ε
by assumption. As a result the following inequality holds.

Pr(Ai|kε∗j ) ≥ 1− F εj (kε∗i |kε∗j ) (18)

Subtracting (18) from (17) and using (9) from Lemma 1 gives the inequality,

Pr(Aj |kε∗i )− Pr(Ai|kε∗j ) ≤ κε (19)

Finally combining (15), (16) and (19) gives,

κε ≥ 1− zj − Eε(k|kε∗i )

zi − d
−

1− zi − Eε(k|kε∗j )

zj − d
(20)

≥ 1− zj − kε∗i − ε
zi − d

−
1− zi − kε∗j + ε

zj − d
(21)

>
1− zj − kε∗j − 3ε

zi − d
−

1− zi − kε∗j + ε

zj − d
(22)

(20)⇒ (21) by the fact that Eε(k|kε∗i ) ≤ kε∗i + ε and Eε(k|kε∗j ) ≥ kε∗j − ε. While
the inequality from Lemma 7, namely kε∗i < kε∗j + 2ε, makes (21) ⇒ (22).
(22) ⇒

κε(zi − d)(zj − d) > (zj − zi)(1− kε∗j + d)− (z2
j − z2

i )− 3εzj − εzi + 4εd

⇒κε(1− (zi − zj)2) > (zj − zi)(1− kε∗j − (zi + zj) + d) + ε(zi − zj)− 2ε

⇒κε(1− (zi − zj)2) > (zi − zj)(kε∗j + d+ ε)− 2ε

⇒kε∗j + d+ ε <
κε(1− (zi − zj)2)

zi − zj
+

2ε

zi − zj

⇒kε∗j < −ε+
κε

zi − zj
+

2ε

zi − zj
− d− κε(zi + zj)

⇒kε∗j < −ε+
(κ+ 2)ε

zi − zj
− d (23)
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Given that kε∗j must be a value strictly greater than −ε, (23) delivers a contra-
diction to the initial claim if,

zi − zj ≥
(κ+ 2)ε

d
(24)

The premise in the lemma satisfies (24) and therefore it must be that Bεj(z1, z2)
is empty. Lemma 6 then guarantees that Bεi (z1, z2) is empty too.

Lemma 8 makes it immediate that following an incompatible demand profile

(z1, z2), where zi− zj ≥ max{δ+ 4ε, (κ+2)ε
d }, player j plays Stick irrespective of

the observation kεj . On the other hand player i plays Stick for kεi > 1 − zj + ε
while playing Accept for kεi < 1 − zj − ε. This allows for a characterization of
the expected payoffs in the first stage, from making such incompatible demands.
Let yi(z1, z2) and yj(z1, z2) denote i and j’s expected payoff in equilibrium
from making demands zi and zj . The following lemma is delivered simply by
calculating payoffs given the characterization of equilibrium behavior in the
second stage discussed in Lemmas 3, 4 and 8.

Lemma 9. In any equilibrium of Γε following a pair of incompatible demands

(z1, z2) where zi − zj ≥ max{δ + 4ε, (κ+2)ε
d }, it must be that

zjF
ε
i (1− zj − ε) ≤ yj ≤ zjF εi (1− zj + ε) (25)

yi ≤
∫ 1−zj

0

(1− zj − w)h(w)dw (26)

The analysis can now turn to the choice of first stage demands. Let the
set of demand profiles that can be supported by equilibrium strategies in Γε be

denoted by Eqε. Further let φ(d) = max{δ + 4ε, (κ+2)ε
d }

Lemma 10. If (z1, z2) satisfies either of the following conditions,

a. z1 + z2 < 1

b. z1 + z2 > 1 and |z1 − z2| ≥ φ(d)

then, (z1, z2) 6∈ Eqε.

Proof. (a) is immediate, since player i has an incentive to demand 1 − zj and
strictly increase her payoff by 1 − zj − zi > 0. Lemma 9 shows that following
an incompatible demand profile such as (b), the player with the higher demand,

say i, has an expected payoff yi ≤
∫ 1−zj

0
(1− zj −w)h(w)dw < 1− zj and could

do strictly better by simply making the compatible demand 1− zj .

Let k̂ =
∫

min{k, 1}h(k)dk. The following lemma shows that for an incom-
patible demand profile to be supported in equilibrium, the excess demand must
be above a positive lower bound.

Lemma 11. If z1 + z2 > 1 and d < k̂/2 then (z1, z2) 6∈ Eqε.
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Proof. Following an incompatible demand profile, the payoffs are determined by
outcomes in the second stage game described in Table 2. Notice that following
any possible realization, k, the maximum total payoff would be max{1−k, 0}. As
a result the expected payoffs from making incompatible demands must satisfy,
y1 + y2 ≤ 1− k̂. Now for the incompatible profile (z1, z2) to be supported as an
equilibrium in Γε, it must be that neither player gains by making a compatible
demand instead. This means, yi ≥ 1 − zj . Summing across the two players

gives, y1 + y2 ≥ 2− z1 − z2, which in turn implies, 2− z1 − z2 ≤ 1− k̂. Given
that d = (z1 + z2 − 1)/2 it must be that d ≥ k̂/2.

Recall that φ(d) = max{δ + 4ε, (κ+2)ε
d }. Let φ∗ = φ(k̂/8). The next lemma

shows that incompatible demands that are close to each other but result in an
excess demand that exceeds the bound from Lemma 11 cannot be supported in
equilibrium.

Lemma 12. If z1 + z2 > 1, d ≥ k̂/2 and |z1 − z2| < φ(d) then (z1, z2) 6∈ Eqε
for small enough δ and ε.

Proof. Equilibrium behavior in the second stage game involves a total payoff of
0 if both parties play Stick or 1 − k if (Accept, Stick) or (Stick,Accept) is the
outcome. Players using mixed strategies results in the total payoff lying in the
interval [0,max{0, 1−k}]. Lemma 2 makes it clear that if k > 1−min{z1, z2}+2ε
then the players would always play (Stick, Stick). So it can be said for certain
that following an incompatible demand profile, the total expected payoff in
equilibrium must be no more than (1−

∫
kh(k|k ≤ 1−min{z1, z2}+2ε)dk)H(1−

min{z1, z2} + 2ε). This in turn implies that following incompatible demands
there exists i with an expected payoff,

yi ≤
1

2
(1−

∫
kh(k|k ≤ 1−min{z1, z2}+ 2ε)dk)H(1−min{z1, z2}+ 2ε) (27)

d ≥ k̂/2 implies zi + zj − 1 ≥ k̂. Also by the definition of φ, it must be that

φ(d) ≤ φ∗ since d ≥ k̂/2. So,

|zi − zj | < φ(d) ≤ φ∗

⇒2 min{z1, z2}+ φ∗ − 1 ≥ k̂

⇒min{z1, z2} ≥
1

2
+
k̂

2
− φ∗

2
(28)

Let ε and δ be small enough such that φ∗ < k̂
8 .

Then,

(28)⇒ min{z1, z2} >
1

2
+

7

16
k̂ (29)

Now consider what happens if player i, who receives the payoff mentioned in
(27), deviates to making a still incompatible demand of z̃i = 1/2. Note that

zj − z̃i >
7
16 k̂ > φ∗. Further d(z̃i, zj) >

7
32 k̂ which implies that φ(d) ≤ φ∗.
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Therefore zj − z̃i > φ(d(z̃i, zj)). As a result, the new demand profile satisfies
the condition of Lemma 9, which implies that player i following such a deviation
must expect a payoff ỹi,

ỹi ≥
1

2
F εi (

1

2
− ε) ≥ 1

2
H(

1

2
− 2ε) (30)

Player i’s initial payoff inequality described in (27) along with (29) implies,

yi <
1

2
H(

1

2
− 7

16
k̂ + 2ε) (31)

For small enough values of ε, it is clear that yi < ỹi. Given that such a profitable
deviation exists, (z1, z2) 6∈ Eqε.

Proof of Proposition 1

Proof. Proposition 1 follows immediately from the observation that Lemmas 10,
11 and 12 exhaust the entire set of incompatible demand profiles.

4 Independent costs of backing down

Work in progress.

5 Conclusion

Work in progress.
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